
4692 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 59, NO. 10, OCTOBER 2011

Adaptive Robust Distributed Learning in
Diffusion Sensor Networks

Symeon Chouvardas, Student Member, IEEE, Konstantinos Slavakis, Member, IEEE, and
Sergios Theodoridis, Fellow, IEEE

Abstract—In this paper, the problem of adaptive distributed
learning in diffusion networks is considered. The algorithms
are developed within the convex set theoretic framework. More
specifically, they are based on computationally simple geometric
projections onto closed convex sets. The paper suggests a novel
combine-project-adapt protocol for cooperation among the nodes
of the network; such a protocol fits naturally with the philosophy
that underlies the projection-based rationale. Moreover, the pos-
sibility that some of the nodes may fail is also considered and it is
addressed by employing robust statistics loss functions. Such loss
functions can easily be accommodated in the adopted algorithmic
framework; all that is required from a loss function is convexity.
Under some mild assumptions, the proposed algorithms enjoy
monotonicity, asymptotic optimality, asymptotic consensus, strong
convergence and linear complexity with respect to the number of
unknown parameters. Finally, experiments in the context of the
system-identification task verify the validity of the proposed algo-
rithmic schemes, which are compared to other recent algorithms
that have been developed for adaptive distributed learning.

Index Terms—Adaptive filtering, adaptive projected subgra-
dient method, consensus, distributed learning, diffusion networks.

I. INTRODUCTION

D ISTRIBUTED networks, in which nodes are tasked to
collect information and estimate a parameter of interest,

are envisioned to play a central role in many applications. Typ-
ical examples of these are: environmental monitoring, acoustic
source localization, distributed classification, life sciences, etc.,
[1]–[5]. The general concept of such networks can be summa-
rized as follows:
• the nodes sense an amount of data from the environment;
• the essential computations, in order to estimate the un-
known parameter, are performed in each one of the nodes;
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• each node transmits the obtained estimate to a subset of
nodes, with which communication is possible, under the
network’s topology constraints.

The goal is to drive the estimates, that are obtained from all
the nodes, to converge to the same value (consensus) of the un-
known parameter. In such a way, one can exploit all the data
information, which becomes available at each node.
A first approach to the problem is to resort to a centralized

solution; each node collects data, which are subsequently trans-
mitted to a central node, also known as the fusion center, in
which the computations are performed. This philosophy is the
simplest one, albeit it is not always feasible to be adopted, due to
geographical constraints and/or limited bandwidth. Moreover,
this scheme lacks robustness, since whenever the fusion center
fails the whole network collapses. Henceforth, one has to seek
for a decentralized solution, where the nodes can themselves
take part in the computations.
A typical paradigm of a decentralized distributed network

topology is the incremental one [6], [7]. Each sensor is able to
communicate with only one node and consequently the nodes
constitute a cyclic pattern. Although this topology requires
small communications bandwidth, it is not practical to be ap-
plied in networks with many nodes. Moreover, in the case of a
possible node failure, the network collapses. For these reasons,
in many applications, a diffusion topology is adopted, where
each sensor can communicate with a subset of nodes, which
define its neighborhood. Each node receives information that
consists of the updates of the unknown parameter, which have
taken place in the nodes of its neighborhood. In the sequel,
the steps of information fusion and parameter adaptation are
performed according to a protocol. Although this topology
requires larger bandwidth and the convergence analysis is
more challenging, it accelerates the procedure of estimating
the unknown parameter ([8]–[10]) compared to the case where
each node works individually. Moreover, it is robust to cope
with cases where a number of nodes are malfunctioning and its
implementation is easier when large networks are involved.
The algorithms which are developed in this paper belong to

the family of the adaptive projected subgradient methodology,
[11]–[13], which enjoys a number of advantages such as the
following:
• any form of continuous nonnegative convex loss function
can be used, without altering the structure of the algorithm
as well as its theoretical analysis;

• convex constraints can be readily incorporated in the opti-
mization task, in a rather trivial way, e.g., [12], [13];

• the computations are cast in terms of inner products, hence
the kernel trick can potentially be exploited in order to deal

1053-587X/$26.00 © 2011 IEEE

Manuscript received November 09, 2010; revised March 16, 2011
and June 07, 2011; accepted June 18, 2011. Date of publication July 12,
2011; date of cur- rent version September 14, 2011. The associate
editor coordinating the review of this manuscript and approving it for
publication  was  Prof. Hideaki Sakai.  This work was supported in part by the 
European Union  (European  Social  Fund  ESF)  and  Greek  national  funds  through  the
 Operational  Program “Education and Lifelong Learning” of the National Strategic 
Reference Framework  (NSRF)  -  Research  Funding  Program:  Heracleitus  II.  
Investing  in  knowledge  society through the European Social Fund.



CHOUVARDAS et al.: ADAPTIVE ROBUST DISTRIBUTED LEARNING IN DIFFUSION SENSOR NETWORKS 4693

with the presence of nonlinearities in the problem, e.g.,
[14].

The main contributions of the current paper can be summa-
rized as follows:
• A new combine-project-adapt protocol is adopted. This is
a modification of the combine-adapt protocol [9]. In each
node, after the fusion and prior to the adaptation, a pro-
jection step is employed, whose purpose is to “harmonize”
the received estimates from the neighborhood nodes. Its
effect, as we will see, is to speed up convergence, and it
fits naturally within the philosophy of projections that em-
braces the algorithmic family within which our solution is
developed.

• The case of having some of the nodes malfunctioning is
considered.

• Full monotone convergence to a single point, which satis-
fies the consensus requirement, is given in the Appendices.

The paper is organized as follows. In Section II, we describe
the notation that will be used throughout the paper, as well as the
general formulation of the problem, and in Section III the dif-
fusion LMS is provided, whose simple structure can serve as a
comparative standard, and the notion of consensus is discussed.
In Section IV, the adaptive projected subgradient method, i.e.,
the kickoff point of our methodology, is presented, in simple
geometric terms, and in the following section a novel diffu-
sion algorithm is developed. In Section VI, we treat the case
where a subset of the nodes set is malfunctioning. This problem
is successfully attacked by adopting the Huber loss function
[15]. Finally, in Section VII, a number of simulations are pre-
sented. In Appendix A, some basic mathematical preliminaries,
concerning convex optimization, are briefly described and in
Appendix B full proofs of our theorems are provided.
Finally, we provide with some notation which will be useful

in the sequel. The set of real numbers and the set of non-nega-
tive integers are denoted by and , respectively. Furthermore,
we denote vectors by boldface letters, e.g., , and matrices with
upper-case letters, whereas stands for the Euclidean norm,
in the vector case, and the 2-norm, in the matrix case. The nota-
tion stands for the transposition operator, with we
denote the supervector which is formed by the stacking of the
specified vectors, and denotes the block diagonal ma-
trix, which consists of the matrices shown inside the brackets.
Finally, we denote the Kronecker product of two matrices by .

II. PROBLEM FORMULATION

Consider a fully distributed network of nodes, and our goal
is to estimate an unknown vector using measure-
ments that are collected at each node. The node set is denoted
by and each node, , at time , has ac-
cess to the measurements . We assume
that there exists a linear system, which generates these measure-
ments according to the model

(1)

where is an additive noise process of zero mean and vari-
ance . A linear system, as defined by (1), is very common in
adaptive filter theory, e.g., [16], [17]. Furthermore, we assume
that every node is able to communicate with a subset of , say

Fig. 1. An example of a diffusion network with nodes.

, which is known as the neighborhood of . Throughout this
paper, we assume that every node is a neighbor of itself, i.e.,

. This scenario is depicted in Fig. 1.
The nodes cooperate with each other, which implies that the

estimate obtained at a certain nodewill be exploited by its neigh-
borhood; it turns out that such a scenario accelerates conver-
gence and it also leads to a better steady state performance, com-
pared to the case where every node works individually, e.g., [5],
[9], [18]. Moreover, such a cooperation can provide asymptotic
consensus ([18], [19]), i.e., all nodes will converge to the same
estimate. In the literature, three cooperation schemes have been
proposed:
• combine-adapt, e.g., [9], [20];
• adapt-combine, e.g., [19], [21], [22];
• consensus based, e.g., [8], [18].
In the combination stage, the information fusion takes place,

as stated before, and the adaptation stage computes an estimate
of the unknown parameter vector. In the consensus-based algo-
rithms, there is no clear distinction between the combine and
adapt steps.
The network’s topology can be represented by the adjacency

matrix , with elements

if
if .

It must be pointed out that the adjacency matrix, henceforth
the network’s topology, can be time varying, e.g., [19]. Addi-
tionally, we define the connectivity graph of the network

, which is assumed to be strongly connected, i.e., there
is a path connecting any two nodes in it. This is a very common
assumption that is adopted in distributed learning in diffusion
networks, e.g., [8], [19], [23] and it is essential in order to reach
consensus. Exploiting this topology, we can define the cooper-
ation strategy through the combination matrix , which is
defined as

if
if

where are known as the combination coefficients.
A very important property of this matrix is:

. Two typical examples of the combination ma-
trix, , are the Metropolis matrix, and the Nearest Neighbor
matrix. The Metropolis matrix is defined as

if and

if
otherwise
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whereas the Nearest Neighbor one as

if
otherwise

where stands for the number of neighbors of node . Fi-
nally, if is properly chosen, as for example in the previous
examples, then , a property that turns out to be very
useful, as we will see later on (see also [9], [19]).

III. DIFFUSION LMS AND THE CONSENSUS MATRIX

A first approach to address the problem is the Diffusion LMS
proposed in [9]. We present here the algorithm for the sake of
comparison and also in order to serve as an introduction to the
family of adaptive filters in distributed networks, since the LMS
has established itself as the “standard”, mainly due to its sim-
plicity. The LMS is an algorithm that approximately minimizes
recursively the mean square error

where denotes the expectation operator,
is a matrix of dimension having

as columns the input vectors, , where the dependence on
has been dropped, and . The

combine-adapt diffusion LMS, for every node, is given by the
following:

(2)

(3)

where stands for the local step-size. It is readily seen
that (2) constitutes the fusion step (combine) and (3) the adap-
tation step (adapt). One can rewrite the previous equations for
the whole network

where ,
,

,
,

and is the identity matrix
of size . From now on, we will refer to as the
Consensus Matrix . Some properties of this matrix are [19]:
1) .
2) Any consensus matrix can be decomposed as

(4)

where is an matrix, and
, is a vector of zeros except the th entry,

which is one and is an matrix such that
.

3)
. The latter set is the so

called consensus subspace of dimension , where
, constitute a basis for this set. From the

last argument, it can be readily verified that the orthogonal
projection of a vector, , onto this linear subspace is given
by .

IV. ADAPTIVE PROJECTION ALGORITHM USING PROJECTIONS
ONTO HYPERSLABS

The algorithms to be developed belong to the family of the
adaptive projected subgradient method (APSM) presented in
[11] and generalized in [13]. At the heart of the method lies the
following concept. Instead of a single loss function, that is min-
imized over the whole set of measurements, each time instant
is treated separately. Given the measurement pair

, at time , the designer quantifies his/her per-
ception of loss, with respect to the received measurement pair,
by a “local” loss function, which can also be considered to be
time varying (e.g., [19]). This “local” loss defines a region (set
of points), which is also known as a property set , where the es-
timate of the unknown vector would be desirable to lie, in order
to be considered in agreement with the current measurements
(i.e., low error, smaller than a predefined threshold). Assuming
the “local” loss function
to be convex, the respective property set, is nothing but the as-
sociated 0-th level set defined as

, which is also convex. The goal is to find a point
in the intersection of all these property sets, one per time instant.
This is the same goal that defines the classical projections onto
convex sets (POCS) theory. However, here, the number of the
involved convex sets is infinite. So, from this point of view, this
theory can be considered as a generalization of the POCS. The
key algorithmic recursion is

if
if

(5)
where is the subgradient of at the current
estimate (the definition as well as the geometrical in-
terpretation of the subgradient are given in Appendix A) and

. The goal is to push the available estimate
towards the current property set, which is defined by the mea-
surement pair at time . This is illustrated in Fig. 2(b), where
being at , a support hyperplane defined by a subgradient (the
gradient) divides in two halfspaces (see Appendix A). Pro-
jecting onto the halfspace, where the level set lies, guarantees
that we get closer to the level set, where a solution lies.
Before we proceed, it is interesting and it will help the reader

to grasp the reasoning behind the algorithms to be developed,
to notice a difference between Fig. 2(a) and (b). In Fig. 2(a), the
0-th level set is a hyperslab (see Appendix A), and one can reach
it in a single step, via a single projection of onto the hyperslab.
In other words, APSM algorithm in this case, breaks down to
a simple projection onto the hyperslab. The case of Fig. 2(b) is
different, where in order to approach the level set, APSM results
in a succession of projections onto a sequence of halfspaces. All
these simple intuitive geometric concepts will be theoretically
documented in the Appendix B.
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Fig. 2. (a) A cost function whose 0-th level set is a hyperslab (b) A cost function
and the supporting hyperplane generated by the differential.

Remark 1: Note that the APSM stems for Polyak’s algorithm
[24]. Nevertheless, in contrast to Polyak’s algorithm, where the
cost function to be minimized is fixed, here it may be time
varying, a fact that allows the adopted algorithmic scheme to
be applicable in dynamic and time-adaptive scenarios. Further-
more, despite the fact that the geometrical properties remind
us of the Newton-Raphson algorithm, the two schemes are dif-
ferent. This holds, since in the Newton-Raphson algorithm a
matrix inversion is needed in order to update the recursion,
which is not the case in the APSM. Moreover, as stated before,
in the APSM based algorithms differentiability of the cost func-
tion is not essential.
As it has already been stated, if the property set is a hyper-

slab, then the recursion breaks down to a projection on this hy-
perslab. This is the case to be considered in this section. Given
the measurement pair , the associ-
ated property set is defined as

(6)

where is a user-defined parameter and it is chosen such that to
account for the noise and it will be discussed in the next section.
The previous hyperslab is the 0-th level set of the loss function

(7)

Every that lies in the hyperslab scores a zero loss and it will
be considered to be in agreement with the current set of mea-
surements. Such cost functions are met in robust statistics and

have been popularized in the context of SVM regression, e.g.,
[25].
The algorithm whose goal is to push the currently available

estimate towards the hyperslab, which is defined by the current
set of measurement points, is given by

(8)

where is the projection operator associated with the hy-
perslab (6) and it is provided in Appendix A and

. It is a matter of simple algebra to see that (8) holds if (7)
is used as a loss function in (5).Moreover, as it is always the case
with adaptive algorithms, recursion steps coincide with time
steps. This algorithm can be further generalized if one projects
onto the more recent hyperslabs and then take a convex combi-
nation of the result. The effect of this is to speed up convergence,
and reminds us of the rationale behind the APA algorithm, e.g.,
[16]. The resulting algorithm then becomes

(9)

where and the overline
symbol, for given integers with , is defined as

. Moreover, and
is chosen so as to guarantee convergence. As it has

been shown, the scheme converges to the intersection of all the
hyperslabs (hence it is in agreement with all the measurements)
with the possible exception of a finite number of them, which
allows for the presence of outliers [11]–[13]. In the next section,
we present a diffusion version of it.

V. DIFFUSION ADAPTIVE ALGORITHM USING PROJECTION
ONTO HYPERSLABS

Consider the problem described in Section II. The goal is to
derive (9) for every node of the network, following the rationale
behind the diffusion LMS, as presented in Section III. Although
this is a possibility, here we have added an extra step, that fol-
lows the combination stage and precedes the adaptation one. As
it will become apparent in the simulations section, such a step
turns out to be beneficial to the convergence performance, at the
expense of the minimal cost of an extra projection onto a hyper-
slab , which is defined as

where and is the user defined parameter associated
with the hyperslabs, that will be used in the adaptation step at
node . The algorithm comprises the following steps:
1) The estimates from the nodes that belong to are re-
ceived and convexly combined.

2) The aggregate is first projected onto the hyperslab .
3) The adaptation step is performed.
Algorithm 1:

(10)

(11)
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Fig. 3. Illustration of an iteration for the case of . The aggregate is pro-
jected onto an external hyperslab and the result, , is used in the adaptation
step. Note that is projected onto and , and the projections are
combined together. The update estimate, lies closer to the intersec-
tion of the hyperslabs, compared to . Note, also, that hyperslab
contains .

(12)

The geometry for the case of is shown in Fig. 3. The
aggregate is first projected onto to provide .
The latter is the point that gets involved in the adaptation step,
which consists of the projections onto and , and
in their subsequent convex combination in accordance to the
APSM rationale. As it will be shown in the Appendix B, con-
vergence is guaranteed if where

if

otherwise.
(13)

Also, [26], hence is an acceptable
step-size .
Before we proceed further, let us “translate” (10)–(12) from

the local to a global form to include all nodes. It is a matter of
simple algebra to see that

...

...
(14)

...

(15)

where ,
.

Observe that the resulting scheme is structurally simple. It
consists of two vector equations, one for the combination/fusion
and one for the update. Themain operations that are involved are
projections. The complexity per time update amounts to
in every node. Moreover, in a parallel processing environment,
the projections can take place concurrently.
As it will be established in Appendix B, the algorithm (14)

and (15) enjoys a number of nice convergence properties such
as monotonicity, strong convergence to a point and consensus.
To prove these properties the following assumptions must hold.
Assumptions:
a) There exists a non-negative integer, say , for which

, where .
This means that the hyperslabs share a non empty inter-
section. However, it is possible for a finite number of
them, , not to share a common intersection. This is im-
portant, since the presence of a finite number of outliers
does not affect convergence. A case where such an as-
sumption holds true is whenever the noise is bounded, and
the width of the hyperslabs, determined by the parameter
, is chosen appropriately so as to contain .

b) The local stepsize .
As it is always the case with adaptive algorithms, the
adaptation step must lie within an interval, in order to
guarantee convergence. Here, this interval is computed by
the algorithm itself.

c) Let be a sufficiently small constant such that
.

d) In order to guarantee consensus the following statement
must hold: .

e) Let us define , where the Cartesian product
space, , is defined as and has

been defined in property 3) in Section III. We assume that
, where stands for the relative inte-

rior of with respect to , and its definition is given in
Appendix A.

Theorem 1: For any , which is of the form
, with , the following hold true.

1) Monotone Approximation. Under assumptions a) and b)

(16)

The previous inequality yields that, the distance of
from any point (that comprises our solution space)
is a nonincreasing function of the time adaptation step, .

2) Asymptotic Minimization. Monotone approximation “in-
forms” us, as stated before, that every iteration step takes
the current update closer to a desired solution. However,
this cannot guarantee that asympotically the algorithm con-
verges to a point that lies close to the intersection . If as-
sumptions (1), (3) hold true then

where is the distance of from
(the definition of the distance function can be found in
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Appendix A). In other words, the distance of the obtained
estimates, in each one of the nodes, from the intersection of
the respective hyperslabs that define the solution set, tends
asymptotically to zero.

3) Asymptotic Consensus. It has been shown, [19], that in
order to achieve asymptotic consensus, i.e., [27]

(17)

the following must hold true:

where stands for the identity matrix. The
previous statement is true under assumptions a), c), and d).

4) Strong Convergence. If a), c), d), and e) hold true, then
there exists such that

In other words, the sequence generated by (15) converges
strongly to a point in .
Proof: The proof is given in Appendix B.

Remark 2: A projection based algorithm of the adapt-com-
bine type has been developed in [19]. In contrast, our algo-
rithm follows the combine-project-adapt philosophy. This sce-
nario gives us the advantage of being able to accommodate the
extra projection. The notion behind this extra step is to “harmo-
nize”, at each node, the information that is sensed locally with
the information transmitted by the neighboring nodes. Although
all nodes search for the same unknown vector (i.e., ), the sta-
tistics of the regressors are, in general, different. For this reason,
by projecting the aggregate (which is the information collected
from the neighborhood) onto a hyperslab, i.e., , which is
constructed using information that is sensed locally, we push
the aggregate closer to the feasible region and the convergence
is accelerated, which is verified by the experiments. Note that if
we let be the identity mapping, then the algorithm con-
forms to the simple combine-adapt cooperation protocol. An-
other notable difference with [19] is that the theoretical analysis
of the algorithm is different and we have proved strong conver-
gence of our algorithm, which was not the case with [19].
The choice of the value of the user-defined parameter, , is

dictated by the noise variance. If its value is very small, the
width of the involved hyperslabs is small and the convergence
is slow. If the value is large, the convergence speeds up, but the
final error floor increases. This tradeoff follows the same trend
that underlies the choice of parameters in most adaptive learning
schemes.

VI. INTRODUCING ROBUSTNESS TO COPE WITH A
FAILURE OF NODES

Consider a scenario, in which some of the nodes are damaged
and the associated observations are very noisy1. In such cases,

1We assume that the noise remains additive and white. However, its standard
deviation becomes larger.

the use of loss functions suggested in the framework of robust-
statistics are more appropriate to cope with outliers. A popular
cost function of this family is the Huber cost function, e.g., [15],
[28], defined as,

if

if

otherwise.
(18)

The one-dimensional version of it is illustrated in Fig. 4. The
use of this function in the context of sensor networks has also
been suggested in [15]. Let us take a closer look at (18). First of
all, whenever , we assume that our
cost function scores a zero penalty and the non-negative, user-
defined parameter, , defines the 0-th level set (property set) of
the function. On the contrary, if
, where is also a user defined parameter, then the

estimate scores a non-zero penalty, with a square dependence on
the error. Finally, in the case when
, the measurements have probably occurred from a corrupted

node and the cost function now changes to a linear dependence
so as to treat it as an outlier.
In order to derive the new algorithm around the cost in (18),

all that has to change, with respect to the algorithm which was
previously developed, are the projection operators. Instead of
projecting onto hyperslabs, one has to project onto halfspaces,
denoted as , which are formed by the intersections of
the supporting hyperplanes (associated with the subgradients)
and the space where the solution lies, as already discussed in
Section IV and illustrated in Fig. 2(b). Algebraically, this is done
by the APSM formula (5), i.e.

if
otherwise.

(19)
The subgradient of the loss function is given by [29]

shown in (20) at the bottom of the next page where de-
notes the sign function.
We can also include the extra projection step, described in the

previous section, by introducing a modified version of (18) and
following a similar rationale as in Section V. However, instead
of projecting the aggregate onto an external hyberslab,
we project it onto a halfspace that is generated by a properly
modified cost function (Fig. 4). To be more, specific we define

if

if

otherwise

where and . The latter condition is required to
guarantee consensus. The projection of an arbitrary point onto
the halfspace is similar to (19) and the algorithm for the
whole network is similar to the one given in (14), (15) with the
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Fig. 4. Illustration of the cost functions . The aggregate, , is
projected onto , which is the intersection of the hyperplane associated
with the subgradient at with the space , to provide . In the
sequel, is used into the adaptation step.

slight difference that the involved hyperslabs have been re-
placed by halfspaces.
As in the case of the hyperslab projection algorithm, the algo-

rithmic scheme, which employs the Huber loss function, enjoys
monotonicity, asymptotic optimality, asymptotic consensus
and strong convergence. Obviously, the assumptions under
which the algorithm enjoys these convergence properties have
to change compared to the algorithm of the previous section.
More specifically, now becomes
where . Furthermore, the step-
sizes must lie inside the interval with upper bound determined
as in the previous algorithm, with the difference that
is replaced by a parameter determined by the projection oper-
ators onto the respective halfspaces. Finally, the assumption
regarding the consensus is now . Such a choice guar-
antees that , which is required in
order to prove consensus (see Appendix B).
Remark 3: Note that although the loss function used in this

section is quite different compared to the hyperslabs used be-
fore, both algorithms, i.e., the one built around the Huber loss
function and the one given in (14) and (15), are of the same form.
The only difference lies in the projection operators. Moreover,
the theoretical analysis is exactly the same. All that matters is the
property of convexity. This is a major advantage of the method-
ology behind this set theoretic approach.

VII. NUMERICAL EXAMPLES

In this section, we present simulation results in order to study
the comparative performance of the developed algorithms with
respect to previously reported schemes. The general framework
of our experiments is the system identification task in diffusion
networks. A linear system described by (1) is adopted and our

goal is to estimate the unknown vector using the measure-
ments , . The components of the regression vectors,
i.e., , are generated according to

where and it is distributed according to the uni-
form distribution and is a parameter that we alter throughout
our experiments in order to investigate the behaviour of the al-
gorithms for cases where the regressors are strongly or weakly
correlated. Finally, is Gaussian with unit variance. The
standard deviation of the noise , which is assumed to be
white and Gaussian, equals to where
under the uniform distribution and is user-defined and will
change throughout our experiments. In order to construct the
network, the following strategy has been followed. A certain
node, say , is connected to any other node with probability
equal to 0.3, and it is connected to itself with probability 1. Addi-
tionally, the combination matrix is constructed according
to the Metropolis rule. Finally, the adopted performance metrics
used are as follows:
• mean square error (MSE), which is defined as

,
• mean square deviation (MSD), which is defined as

.
The experiments are averaged over 100 realizations for
smoothing purposes.
We compare the proposed algorithm 1 with a) the adapt-com-

bine LMS of [22] (A-C LMS), b) the consensus based LMS
[18] (D-LMS), and c) with the Adaptive Projected Subgradient
Method in Diffusion networks (APSMd) proposed in [19]. In
the first experiment, we consider a diffusion network with N=20
nodes, and the unknown vector is of dimension . The
noise profile for this network is obtained with ,
. The parameter for both the proposed algorithm

1 and for the APSMd and the parameter . Furthermore,
the number of hyperslabs onto which we project, in each step,
is , whereas the convex combination multipliers are all
equal, i.e., , and we let ,
for algorithm 1 and APSMd. It has been experimentally ver-
ified that for such a choice, the projection based algorithms
exhibit very good convergence performance as well as a low
steady state error floor. For the A-C LMS, the stepsize equals
to , whereas for D-LMS . The
stepsizes in the LMS-based algorithms are chosen so that the
algorithms reach the same steady state error floor in the MSE
sense. Throughout our experiments, if we let be the iden-
tity mapping, it turns out that the proposed algorithm 1 and the

if
if
if
otherwise

(20)
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APSMd have similar performance. Hence, as it can be seen in
Fig. 5(a) and (b), the extra projection onto the hyperslab ,
which adds an expense on the computational complexity
of the algorithm for each node, enhances the results compared to
the other algorithms, as it accelerates the convergence speed for
the same error floor.Moreover, the proposed algorithm 1 outper-
forms the LMS-based algorithms and the APSMd, as it achieves
a better steady state error floor in the MSD sense. Nevertheless,
compared to the LMS-based algorithms, the proposed algorithm
1 and the APSMd require knowledge on the noise statistics, i.e.,

. Moreover, for , the projection-based algo-
rithms require some extra memory in order to store past data.
We would also like to mention, that through experiments, we
observed small discrepancies between the steady state perfor-
mances of the nodes, despite the fact that the noise statistics may
be different. This is also known as equalization property and it
is a common effect met in diffusion based algorithms, e.g., [9],
[18].
In the second experiment, [see Fig. 6(a) and (b)], the pa-

rameters remain the same as in the previous one. However, we
choose a larger , namely 0.9, in order to compare the algo-
rithms in a more correlated environment. Furthermore, we alter
the step-sizes for the LMS-based algorithms. More specifically,
the values and were chosen
in a similar philosophy as in the previous experiment. As it
is expected, the LMS-based algorithms result in worse perfor-
mance compared to the previous example of less correlated sig-
nals, something that holds true also in the classical LMS case
[16]. This performance trend can be seen both in the MSE and
the MSD curves, as algorithm 1 outperforms significantly the
LMS-based algorithms. Moreover, as it was the case in the first
experiment, it can be seen that the extra projection step acceler-
ates the convergence speed of proposed algorithm 1 compared
to the APSMd.
The scenario in the third experiment [see Fig. 7(a) and (b)]

is the same as the one in the first experiment, but now after a
number of iterations there is a sudden change in the channel. At
time instant , changes to . This is a popular
experiment in adaptive filter theory in order to test the tracking
performance of the algorithm. As it is by now well established,
fast convergence speed does not necessarily guarantee a good
tracking performance [16]. It can be readily seen that the pro-
posed algorithm 1 shows a large capacity for tracking ability,
when a sudden change in the channel takes place. More specif-
ically, until the time instant at which changes, the perfor-
mance of the algorithms coincides with that of Fig. 5(a) and (b).
After the sudden change, the proposed algorithm 1 exhibits the
best tracking performance to the common steady state error
floor.
Next, the algorithms are compared in a scenario where a

subset of the nodes is malfunctioning. The number of nodes
is chosen equal to and the vector to be estimated is
of dimension . Five of the nodes are malfunctioning,
so for them , and . For algorithm 2,

, , , . Finally, the
rest of the parameters are , in the projection
based algorithms, and . The
stepsizes, as in the previous experiments, were chosen so that

Fig. 5. (a) MSE for experiment 1. (b) MSD for experiment 1. (c) The statistics
of the network’s regressors.

the algorithms converge to the same steady state error floor, in
the MSE sense.
From Fig. 8(a), it can be observed that the projection based

algorithms converge faster to the common error floor. Further-
more, the proposed algorithm 2 and the APSMd have a sim-
ilar convergence speed. In Fig. 8(c), the average MSE, taken
over the healthy nodes only, is given. It can be seen that the
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Fig. 6. (a) MSE for experiment 2. (b) MSD for experiment 2. (c) The statistics
of the network’s regressors.

proposed algorithm 2 exhibits a significantly better steady state
error floor compared to the other algorithms. The reason that
the proposed algorithm 2 achieves this improved error floor,
whereas in Fig. 8(a) the algorithms converge to the same one, is
a consequence of the fact that by taking into consideration the

Fig. 7. (a) MSE for experiment 3. (b) MSD for experiment 3. (c) The statistics
of the network’s regressors.

malfunctioning nodes, the noise dominates the average MSE.
Furthermore, Fig. 8(b) demonstrates that the proposed algo-
rithm 2 also achieves a significantly improved steady state error
floor in the MSD sense, for the whole network. This implies that
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Fig. 8. (a) MSE for experiment 4 by considering all the nodes of the network.
(b) MSD for experiment 4. (c) Average MSE computed over the healthy nodes.
(d) The statistics of the network’s regressors.

the estimate occurring is closer to . The LMS-based algo-
rithms result in the worst performance compared to the projec-

tion based algorithms, which is expected as in the APSMd and
the proposed algorithm 2, robust cost functions are employed
for minimization. However, the proposed algorithm 2 results in
the lowest steady state error floor, since the Huber cost function
accounts for the outliers, that occur due to the malfunctioning
nodes, in a more focused way, compared to the hyperslabs used
in APSMd. Finally, the fact that the proposed algorithm 2 con-
verges slightly slower than APSMd, which can be seen from the
curves of Fig. 8(b) and (c), is not a surprising result and it is due
to the fact that in the case of hyperslabs the level set is reached
with a single projection, whereas in the proposed algorithm 2,
the corresponding level set is approached via a sequence of pro-
jections onto halfspaces that contain it.

VIII. CONCLUSION

Two novel efficient algorithms for distributed adaptive
learning in diffusion networks have been developed. The
schemes build upon convex analytic tools. A new com-
bine-project-adapt protocol, where in every node the informa-
tion collected by the neighborhood and the information sensed
locally are “harmonized”, is proposed. This is achieved by an
extra projection that takes place after the combination of the
received information, in every node, and before the adaptation
step. The goal is to bring the result of the former step closer
to the result of the latter one. Furthermore, the case where a
number of nodes are malfunctioning was considered, by uti-
lizing a Huber cost function, which is defined so as to take into
consideration the presence of outliers. Full convergence results
have been derived, while the stochastic analysis of this rich
family of algorithms remains an open problem and is currently
under investigation. The experiments verified the enhanced
performance of the new algorithms compared to previously
developed ones.

APPENDIX A
MATHEMATICAL NOTATION AND PRELIMINARIES

Basic Notions of Convex Analysis: A set , for
which it holds that

, is called convex. From a geometric point of
view, this means that every line segment having as endpoints
any will lie in . Moreover, a function will
be called convex if and the inequality

is satisfied.
Finally, the subdifferential of at an arbitrary point, say , is
defined as the set of all subgradients of at ([30], [31]), i.e.

(21)
The subgradient of a convex function is a generalization of the
gradient, which is only defined if the function is differentiable.
As a matter of fact, if a convex function is differentiable, its sub-
differential is a singleton, with a single element, i.e., the differ-
ential of the function at this point. It is well known that the dif-
ferential at a point has an elegant geometric interpretation. It
defines the unique hyperplane, which is tangent at to the graph
of . Moreover, if is convex, the graph of lies in
one of the sides of this hyperplane. Similarly, each subgradient
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Fig. 9. Illustration of a gradient and two subgradients of a convex function.
Note that in the function is differentiable, so there exists a unique supporting
hyperplane, which is tangent to the graph of the function, whereas in the
function is not differentiable and there exist more than one hyperplanes, that
support the graph of the function.

at a point of a convex function is associated with a hyperplane
that leaves the graph of on one of its side (supporting hy-
perplane). The only difference, now, is that there are more than
one, possibly infinite, such hyperplanes. This is basically guar-
anteed by (21) and it is illustrated in Fig. 9.
The distance of an arbitrary point from a closed non-empty

convex set is given by the distance function

This function is continuous, convex, nonnegative and is equal
to zero for every point that lies in [31]. Moreover, the projec-
tion mapping, onto , is the mapping which takes a point
to the uniquely existing point, , such that

It also holds that, . In the sequel, we present
some convex sets alongside their projection operators, that will
be used throughout this paper.
Given a scalar and a nonzero vector , the definition

of a closed halfspace (Fig. 10(a)) is given by
and the projection operator associated with it

is given by . In
a similar notion, we define the hyperplane

and the resulting projection operator is
.

Another typical example of a closed convex set is a hyperslab,
which is illustrated in Fig. 10(b). For an , a hyperslab is
defined as the set , and the
projection of a point onto it is given by

if

if

if .

This family of sets plays a central role in many applications,
e.g., [20], [32], and [33], and are associated with loss functions
that spring from the rationale of robust statistics [15], [25], and
[28].
Two more convex sets, which will be used in our theoretical

analysis of the algorithms, are the closed and open balls with
center and radius (Fig. 10(c)). The definition of the closed

Fig. 10. (a) The geometry of a halfspace. Its boundary is a hyperplane.
(b) A hyperslab and the projection of a point onto it. (c) A closed ball .

ball set is: . In a similar
notion, the open ball is defined as

.
Finally, the relative interior of a nonempty set, , with respect

to another one, , is defined as

This will be used in the proof of Theorem 1.4.

APPENDIX B
PROOF OF THEOREM 1

Proof of Theorem 1.1: Assume that for a fixed node, say
, at time instant we have estimated . We define the
cost function, for any 2

if

otherwise.

We also define , for
which, by definition, if .
The previous statement holds true obviously because if

there exists for which
hence .

It can be seen that this cost function is convex, continuous
and subdifferentiable. Its subgradient is given by [26]

if

otherwise
(22)

2The proof when we use projections onto halfspaces, which are involved
when the Huber cost function is employed, follows similar steps. All one has
to do is to modify the cost function replacing projections onto hyperslabs with
projections onto halfspaces. However, the proofs rely on the properties of metric
projections and not on their specific form.
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where , and [31]

if

otherwise.

Additionally, if and ,
from (22) a choice of a subgradient is

Finally, if

(23)

The last equality is true, due to the fact that if there exists
such that , then .

Now, recall the definition of given in (13). We
define

(24)

One should notice here that
under assumption (2). In the case where

, if we go
back to the recursion given in (12) and combining (24) with
(22) and (23), we get

(25)

Equation (25) is a slight modification of the adaptive pro-
jected subgradient method. Following similar steps as in
[26], and under assumption (1), then it can be shown that:

. So for the whole network we have (26) and
(27) shown at the bottom of the next page. Notice here
that . This argument is true
since

. Furthermore, one basic property of the
projection operator onto closed convex sets [34] states that

.
Hence, if we recall the properties of the Consensus matrix, we
have

...

...

...

(28)

Moreover, from the definition of the subgradient

, where we have used the fact that
, which holds by the definition of the cost

function, since . Combining the last
argument with (27) and (28), we have

(29)
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Hence, we conclude that .
This completes the proof of Theorem 1.1.

Remark 4: Here, we would like to point out that mono-
tonicity also holds in cases where the subgradients of some
nodes equal to zero. Assume, without loss of generality, that the
subgradient of node , at time instance , is zero, which under
assumption (1) implies that . Then, from
[26] and if assumption (1) holds true, it can be proved that the
recursion for this node is . Loosely speaking,
the second term of the right hand side in (25) is omitted. So, fol-
lowing exactly similar steps as in the previous proof, (29) be-
comes

Proof of Theorem 1.2: We want to show that
. The sequence

is bounded and monotonically decreasing,
hence it converges. So it is a Cauchy sequence, from which
we obtain that

(30)

So from (29) and (30)

(31)

If we make one more assumption that states that
is bounded3, i.e., ,

3This assumption is realistic in general and it is adopted in the analysis of the
APSM related algorithms.

under assumption (3) and if we take into consideration (31), we
have that

From the last equation, we have that

(32)

Now, if we go back to the recursion given in (26) and combine
it with (31) we obtain

(33)

Let us assume that is an arbitrary point that belongs to .
We have that

, where this holds due to the triangle inequality.
Therefore

(34)

Following the same steps as in [26] and taking into consider-
ation (32), it can be proved that

(35)

...

(26)

...

...

(27)
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Taking limits into (34), and combining (33), (35) we conclude
that:

Proof of Theorem 1.3: First we need to prove the following
claim.

Claim 1: Assume that and that (1), (3) hold true.
Then, there exists such that
.
Proof: Since , for any vector on the boundary

of , there exists , which depends on the choice of
and , such that . We have shown

that under assumptions (1), (3).
However, since by definition we have that

. Due to the last argument, there
exists such that

(36)

However, if such that then will
lie on the boundary of , as it is the projection of
onto it. Hence which clearly contradicts
(36). Thus our claim holds true.
The fact that , after some iterations, implies

that . Recalling
(26) we have

...

(37)

where

...

Taking into consideration (31) we have that

(38)

Now, going back and iterating (37), we have

If we left-multiply the previous equation by ,
we obtain

If we exploit the decomposition of a consensus matrix, given
in (4), and follow similar steps as in [19, Lemma 2] it can be
verified that

(39)

which completes our proof.
Remark 5: Note that the result of this theorem can be

readily generalized to the algorithm using the Huber loss
function. The only condition needed to guarantee asymptotic
consensus is , which by con-
struction of the loss functions is true.

Proof of Theorem 1.4: Recall that the projection operator,
of an arbitrary vector onto the consensus subspace
equals to . Let assumptions a), c),
d), and e) hold. Since assumption (e) holds, together with (16),
from [11, Lemma 1] we have that there exists such that

(40)

Now, exploiting the triangle inequality we have that

(41)

where this limit holds from (39) and (40). The proof is complete
since (41) implies that .
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