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ABSTRACT

In this paper, a sparsity-promoting adaptive algorithm for distributed
learning in diffusion networks is developed. The algorithm follows
the set-theoretic estimation rationale, i.e., at each time instant and at
each node, a closed convex set, namely a hyperslab, is constructed
around the current measurement point. This defines the region in
which the solution lies. The algorithm seeks a solution in the in-
tersection of these hyperslabs by a sequence of projections. Spar-
sity is encouraged in two complimentary ways: a) by employing
extra projections onto a weighted ℓ1 ball, that complies with our
desire to constrain the respective weighted ℓ1 norm and b) by adopt-
ing variable metric projections onto the hyperslabs, which implicitly
quantify data mismatch. A combine-adapt cooperation strategy is
adopted. Under some mild assumptions, the scheme enjoys a num-
ber of elegant convergence properties. Finally, numerical examples
verify the validity of the proposed scheme, compared to other algo-
rithms, which have been developed in the context of sparse adaptive
learning.

Index Terms— Adaptive distributed learning, sparsity, diffu-
sion networks, projections.

1. INTRODUCTION

Sparse signal estimation has been recently attracting an overwhelm-
ing interest, mainly, under the compressive sensing framework.
The vast majority of such algorithms are batch solvers, which
implies that an estimate is obtained, once a fixed number of mea-
surements is collected and stored. However, scenarios where the
data are sequentially received and/or the unknown parameter vec-
tor is time-varying, cannot be treated by batch algorithms, since
this would imply excessive processing and memory requirements.
Online, sparsity-promoting adaptive learning techniques overcome
such limitations. Algorithms that belong to this category update
the estimate at each time instance, exploiting the newly received
measurements. Moreover, the a-priori information, concerning the
sparsity of the unknown parameter vector, is embedded by employ-
ing sparsity promoting constraints, which usually revolve around the
ℓ1 norm of the unknown parameter vector, e.g., [1, 2].

In this paper, we study the problem of adaptive distributed learn-
ing [3, 4]. Although, there are a few sparsity-promoting algorithms
for distributed learning for the batch scenario setting, e.g., [5], to our
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knowledge, this is the first time that an adaptive, sparsity-promoting
algorithm for distributed learning is developed. A network of sensors
is considered and the task is to estimate a parameter vector, which is
common to all nodes, based on the noisy measurements that are re-
ceived locally at each one of the nodes. A first approach would be the
so-called centralized solution. In such a scenario, the nodes trans-
mit the received information, to a central node, called fusion cen-
ter, which then takes over to carry out the full amount of computa-
tions. This scheme is not always feasible to be adopted, due to power
and/or geographical constraints. Moreover, it lacks robustness, since
if the fusion center fails, the whole network collapses. For these
reasons, in many applications, a fully decentralized methodology is
followed, and each node performs computations locally, according
to a predefined protocol. There are mainly two topologies; a) the in-
cremental, in which each node communicates with only one neigh-
bouring node and the network results to a ring topology and b) the
diffusion, e.g., [4, 6, 7], where each node communicates with a num-
ber of neighbouring nodes, which define its neighbourhood. In this
paper, the diffusion topology is considered, since it is more robust to
node failures, compared to the incremental one; in the latter topol-
ogy, if a node is malfunctioning the network collapses. Moreover,
the implementation of the diffusion topology turns out to be easier
when large networks are involved.

Our novel algorithm is developed within the set-theoretic esti-
mation rationale and, more specifically, it is based on projections
onto convex sets. At each time instance, a closed convex set, namely
a hyperslab, is constructed, based on the received measurements, and
one seeks for a solution within this set. Moreover, in order to impose
sparsity on the unknown vector, projections onto sparsity-promoting
weighted ℓ1 balls, [1], take place. Our desire for sparsity is fur-
ther strengthened, by reformulating the projection operators appro-
priately. To this end (see, for example, [8]), we adopt the variable
metric projections rationale. In principle, the variable metric pro-
jections improve the convergence speed, when seeking for a sparse
vector, due to the fact that different weights are assigned at each co-
efficient of the updated vector, and, through this procedure, small
coefficients are pushed to diminish faster. The rationale of assign-
ing different weights at each coefficient is also met in the so-called
proportionate algorithms, [9, 10]. The proposed algorithmic scheme
enjoys a number of nice convergence properties, such as, monotonic-
ity, asymptotic optimality and strong convergence to a point that sat-
isfies the consensus property, and the performance of the proposed
algorithm is validated, via a system identification task.
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2. SPARSITY-AWARE ADAPTIVE LEARNING

The set of all real numbers will be denoted by R. The stage of
discussion will be the Euclidean space Rm, where m is a posi-
tive integer. Vectors and matrices will be denoted by boldface, and
uppercase boldface letters respectively, and the symbol (·)T will
stand for the transpose of a vector. Given a positive definite ma-
trix, say V , of dimension m × m, we define the weighted inner
product as follows: ∀h1,h2 ∈ Rm, ⟨h1,h2⟩V = hT

1 V h2 and
the weighted norm, ∀h ∈ Rm, ∥h∥V =

√
hTV h. The Eu-

clidean norm, denoted by ∥ · ∥, is a special case of the weighted
norm, and occurs if we let V = Im, where Im is the m ×m iden-
tity matrix. Finally, given a vector h = [h1, . . . , hm]T ∈ Rm,
the ℓ1 norm is defined as ∥h∥1 =

∑m
i=1 |hi|, and the support set,

supp(h) := {i ∈ 1, . . . ,m : hi ̸= 0}. The ℓ0 (pseudo) norm, i.e.,
∥h∥0, denotes the number of non-zero coefficients of h.

We consider the problem of estimating an unknown parameter
vector h∗, through measurements (dn,un) ∈ R × Rm, which are
related according to the linear system

dn = uT
nh∗ + vn, (1)

where vn is the noise process, with standard deviation equal to σ.
The unknown vector is assumed to be sparse, i.e., ∥h∗∥0 ≪ m, or, in
other words, it has a few number of non-zero coefficients1. Sparsity
promoting, adaptive algorithms have been proposed in the literature,
e.g., [1, 2]. In a nutshell, in such techniques, the effort is twofold.
First, the estimate of the unknown parameter vector is obtained so
that to minimize the misfit based on the output-input training data.
At the same time, the learning process is assisted, via a constraint
built around the ℓ1 norm. It has been verified that by embedding this
sparsity-promoting constraint, the algorithms converge significantly
faster, and they rest at a lower steady state error floor, compared to
the ones which obtain estimates by relying solely on the received
measurement pairs.

2.1. Set theoretic estimation approach and variable metric pro-
jections

2.1.1. The set theoretic estimation approach

In the current study, the set theoretic estimation approach is fol-
lowed. That is, instead of seeking for a vector that optimizes a cer-
tain loss function, we seek for points that are in agreement with the
available measurements. More specifically, at each time instance, a
closed convex set, namely hyperslab, defined as Sn := {h ∈ Rm :
|dn−uT

nh| ≤ ϵ}, is constructed based on the current measurements
dn and un; any point that lies in this set is considered to be in agree-
ment with the current measurements. The user-defined parameter ϵ
is chosen so as to take into consideration the noise. Parameters, such
as ϵ, which determine the width of a set onto which one seeks for
a candidate solution, are also met in the so-called set-membership
algorithms [11]. So, the goal is to find a point that lies in the inter-
section of all the hyperslabs, which are built sequentially, one per
time instance, as the data are collected. In order to achieve this, pro-
jections onto the hyperslabs, under a certain rule, take place, sequen-
tially, in order to lead the produced estimates towards the required
intersection, e.g., [1].

1The derivation can easily be extended for the cases where the unknown
vector is not itself sparse but it accepts a sparse representation in some do-
main/dictionary.

Sn

h∗

h

PSn
(h)

P
(Gn)
Sn

(h)

Fig. 1. Illustration of a hyperslab, the Euclidean projection of a vec-
tor h onto it, denoted by PSn(h), and the variable metric projection
onto it.

2.1.2. Employing sparsity promoting variable metric projections

The first step, at which our a-priori knowledge, about the underly-
ing sparsity, is embedded into our algorithmic process, takes place
via a specific choice of the projection operator; more specifically,
the notion of the variable metric projections is adopted. Note that
this step can be bypassed and leave the sparsity promotion only to
”hands” of the ℓ1 norm. However, the combination of the two leads
to the best performance. The variable metric projection of an ar-
bitrary point, with respect to a positive definite matrix Gn, onto a
hyperslab, ∀h ∈ Rm, is given as

P
(Gn)
Sn

(h) = h+



dn − uT
nh+ ϵ

∥un∥2
G−1

n

G−1
n un, if dn − uT

nh < −ϵ,

0, if |dn − uT
nh| ≤ ϵ,

dn − uT
nh− ϵ

∥un∥2
G−1

n

G−1
n un, if dn − uT

nh > ϵ.

(2)
The standard Euclidean projection, onto a hyperslab, occurs if in the
previous equation, we let Gn = Im. Let us now shed some more
light on the physical reasoning behind the variable metric projec-
tions. The positive definite diagonal matrix G−1

n is constructed by
following a similar rationale as in [8, 9]. In words, the i-th coefficient

of its diagonal equals to g−1
i,n = 1−α

m
+α

|h(n)
i |

∥hn∥1
, where α ∈ [0, 1) is

a parameter, which determines the extend to which the sparsity level
of the unknown vector will be taken into consideration, and h

(n)
i

denotes the i-th component of hn, which is the estimate at time in-
stance n. To learn by example, consider the ideal situation, in which
G−1

n is constructed using the unknown vector h∗. In that case, it
can be seen that g−1

i,n > g−1
i′,n, if i ∈ supp(h∗), and i′ /∈ supp(h∗).

Moreover, notice that the amplitude of each coefficient of the vector,
used to construct G−1

n , determines the weight that will be assigned
to the corresponding coefficient of the second term of the right hand
side in (2). Hence, from the previous, it can be readily seen that
components with smaller amplitude are multiplied with small coef-
ficients of G−1

n . Through this procedure, these coefficients diminish
faster, and the convergence speed is accelerated, when seeking for a
sparse vector, compared to the case where Euclidean projections are
performed. Obviously, since h∗ is unknown, in order to assign the
previously mentioned weights, we rely on the available estimate of
it, i.e., hn, at each time instance. Schematically, these concepts are
illustrated in Fig. 1.
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Fig. 2. Illustration of a weighted ℓ1 ball and an unweighted ℓ1 ball.

2.2. Sparsity-promoting adaptive algorithm based on projec-
tions onto weighted ℓ1 balls

This section refers to the second step, in which sparsity is en-
forced. In [1], a sparsity promoting adaptive algorithm, based
on set theoretic estimation arguments, was proposed. Besides the
Euclidean projections on the hypeslabs, an extra projection was
performed, at each time iteration, onto a weighted ℓ1 ball in order to
enforce sparsity. As a matter of fact, this extra projection is equiv-
alent to a soft-thresholding operation. Given a vector of weights
wn = [w

(n)
1 , . . . , w

(n)
m ]T , where w

(n)
i > 0,∀i = 1, . . . ,m, and a

positive radius, ρ, the weighted ℓ1 ball is defined: Bℓ1 [wn, ρ] :=

{h ∈ Rm :
∑m

i=1 w
(n)
i |hi| ≤ ρ}. The classical ℓ1 ball, occurs

if wn = 1, where 1 ∈ Rm is the vector of ones. The projection
onto Bℓ1 [wn, ρ], is performed in a finite number of steps, and it is
given in [1, Theorem 1]. A possible strategy, in order to construct
the vector of weights, as was suggested in [1], is the following:
w

(n)
i = 1/(|h(n)

i |+ ϵ̃n), i = 1, . . . ,m , where ϵ̃n is a sequence of
positive numbers, used in order to avoid divisions by zero. Further-
more, it has been shown that a necessary condition in order to have
h∗ ∈ Bℓ1 [wn, ρ], is to choose the radius according to the following
rule: ρ ≥ ∥h∗∥0. The geometry of the weighted and the classical ℓ1
ball is illustrated in Fig. 2

Towards developing our new scheme, the algorithm in [1] was
generalized to involve variable metric projections on the weighted ℓ1
ball, too. This was necessary in order to have a common projection
operator, both for the hypeslabs as well the weighted ℓ1 ball. Besides
faster convergence, such a common framework was necessary for the
theoretical analysis of the resulting algorithm, in its distributed mode
of operation.

Claim 1: The variable metric projection, with respect to the ma-
trix Gn, onto Bℓ1 [wn, ρ] is given by

P
(Gn)

Bℓ1
[wn,ρ] = G

− 1
2

n P
Bℓ1

[G
− 1

2
n wn,ρ]

G
1
2
n .

Proof: The proof is omitted due to lack of space, and it will be
presented elsewhere.

3. ADAPTIVE DISTRIBUTED LEARNING

We now turn our focus onto the main part of our paper; this part
blends the two previous steps in order to be used in a distributed pro-
cessing context. Our task is to estimate a sparse, unknown param-
eter vector h∗, exploiting measurements collected at the N nodes
of a network in accordance to the diffusion topology, e.g., [3]. We
denote the node set by N = {1, . . . , N}, and we assume that each

node is able to exchange information, with a subset of N , namely
Nk ⊆ N , k = 1, . . . , N . This set, is also known as the neighbour-
hood of k. Each node has access to the measurements (dk,n,uk,n),
which obey the linear model (1), and the standard deviation of the
noise at each node, equals to σk. In adaptive distributed learning,
a node, say k, in order to provide an estimate, exploits the infor-
mation sensed by the environment, i.e., dk,n and uk,n, as well as
the information received by the neighbourhood, that is, the estimates
∀l ∈ Nk. It has been shown, e.g., [6], that if the nodes of the network
cooperate, the performance of the respective algorithms is enhanced,
compared to the case where each node operates individually. More-
over, this exchange of information can lead to asymptotic consensus,
e.g., [4]; that is, the nodes will converge to the same estimate.

In this paper, we follow the combine-adapt cooperation strategy,
in which, at every node, the estimates from the neighbourhood are
fused under a certain protocol, and then the aggregate is put into
the adaptation step, e.g., [3, 4]. To be more specific, node k as-
signs a positive weight at the estimates of each node of its neigh-
bourhood, i.e., hl,n, ∀l ∈ Nk, in order to compute the aggregate
ϕk,n :=

∑
l∈Nk

ck,lhl,n, where the positive weights ck,l,∀k ∈
N , ∀l ∈ Nk are called combination coefficients, and it holds that
ck,l > 0, l ∈ Nk and

∑
l∈Nk

ck,l = 1,∀k ∈ N . After the combina-
tion step, i.e., the computation of ϕk,n, the latter term gets involved
in the adaptation process.

4. THE PROPOSED ALGORITHM

Our goal is to bring together the methodologies, which were pre-
sented in section 2, and to reformulate them in a distributed fashion,
by adopting the combine-adapt protocol. The main steps of the al-
gorithm, can be summarized as follows:

1. At each node k ∈ N , the estimates from the neighbourhood
are received and fused in order to compute ϕk,n.

2. Exploiting the newly received measurements, dk,n,uk,n the
following hyperslab is defined: Sk,n = {h ∈ Rm : |dk,n −
uT

k,nh| ≤ ϵk}. The parameter ϵk is allowed to vary from
node to node, according to the specificities of the respective
noise source. The aggregate ϕk,n is projected, using vari-
able metric projections, onto the q most recent hyperslabs,
constructed locally, and a convex combination of these q pro-
jections is computed. The effect of projecting onto a q > 1
number of hyperslabs is to speed up convergence, [1].

3. The result of the previous step is projected, via a metric pro-
jection, onto the sparsity promoting constraint set, i.e., the
weighted ℓ1 ball.

The previous steps can be written compactly in the following for-
mula

hk,n+1 =

P
(Gn)
Bℓ1

[wn,ρ]

ϕk,n + µk,n

 n∑
j=n−q+1

1

q
P

(Gn)
Sk,j

(ϕk,n)− ϕk,n

 ,

(3)

where µk,n ∈ (0, 2Mk,n), with

Mk,n :=



∑n
j=n−q+1

1
q
∥P (Gn)

Sk,j
(ϕk,n)− ϕk,n∥2

∥
∑n

j=n−q+1
1
q
P

(Gn)
Sj

(ϕk,n)− ϕk,n∥2
,

if
∑n

j=n−q+1
1
q
P

(Gn)
Sk,j

(ϕk,n) ̸= ϕk,n

1, otherwise.
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In this work, we have shown that under some mild assumptions,
the algorithm enjoys a number of nice properties, as for example:
monotonicity, asymptotic optimality, which implies that asymptoti-
cally the distance of the estimates from the hyperslabs will tend to
zero, asymptotic consensus, and strong convergence. It should be
stressed out that since the algorithm follows the set-theoretic estima-
tion rationale, the convergence proof is non trivial and it is built upon
deterministic arguments, as opposed to diffusion algorithms, which
are LMS-based, where the arguments are stochastic. Due to lack of
space, the proof is omitted and will be presented elsewhere.

Remark 1: Notice from (3), that the weighted ℓ1 ball and the
matrix Gn are assumed to be common in all the nodes of the net-
work. This is essential and it is required by the convergence proof,
in order to guarantee asymptotic consensus. In practice, a reason-
able strategy to achieve this would be to construct the weights wn

and Gn, via hkopt,n where kopt is the node with the smallest noise
variance. This requires knowledge, in every node, of hkopt,n, some-
thing that, in general, is infeasible. However, it turns out this not to
be essential to update the parameters every time instance; instead,
wn and Gn can be updated at every n′ time instances, where n′ are
the time steps required for hkopt,n to be distributed over the network.
However, as it will become clear in the numerical examples section,
it turns out that the algorithm is robust in cases where the knowl-
edge of the less noisy node is not available, and/or in cases where
the assumption that these quantities must be common to all nodes is
violated and each node uses the locally available values. It should
be pointed out that such discrepancies in the adaptive filtering are
common. For example, in the LMS, the independence assumption is
commonly employed to prove convergence, although in practice this
can be violated.

Remark 2: The complexity of the proposed algorithm, is of
order O(qm), coming from the projection onto the hyperslabs, and
O(m logm), coming from the projection onto the weighted ℓ1 ball
[1].

Remark 3: The algorithm needs the following main user-
defined parameters: a) ϵ; this is usually set equal to ϵk =

√
2× σk,

although the algorithm is not very sensitive to it. b) q; the larger
the q the faster the convergence. This corresponds to the number
of subspaces used in the Affine Projection Algorithm (APA). This
is not a critical parameter, and one can choose it depending on the
complexity load that can be afforded by the algorithm in real time
operations. c) The sparsity level; this is always required in one way
or another in any sparsity promoting algorithm.

5. NUMERICAL EXAMPLES

In this section, the performance of the proposed algorithm is vali-
dated, within the system identification task. In the first experiment,
we evaluate the performance of the proposed algorithm, in a non-
distributed scenario, since, to our knowledge, sparsity-promoting
adaptive algorithms, suitable for learning in diffusion networks, have
not been proposed in the literature before. To be more specific,
the proposed algorithm, is compared with the Adaptive Projection
based algorithm using Weighted ℓ1 Balls (APWL1) [1], with the
Proportionate Adaptive Projection based onto Hyperslabs algorithm
(PAPH), i.e., the proposed if we let P (Gn)

Bℓ1
[wn,ρ] = I , where I is

the identity mapping, with the Online Cyclic Coordinate Descent
Time Weighted Lasso (OCCD-TWL), the Online Cyclic Coordinate
Descent Time and Norm Weighted LASSO (OCCD-TNWL), both
proposed in [2], and with the LMS-based, Sparse Adaptive Orthog-
onal Matching Pursuit (Spadomp) [12]. The unknown vector is of

dimension m = 512 and also ∥h∗∥0 = 20. The coefficients of the
input un = [un, . . . , un−m+1]

T are drawn from a Gaussian distri-
bution, with zero mean and standard deviation equal to 1. The noise
process is Gaussian with variance equal to σ2 = 0.01. Finally, the
adopted performance metric is the average Mean Square Deviation
(MSD), given by MSD(n) = 1/N

∑N
k=1 ∥hk,n − h∗∥2. In the

projection-based algorithms, we choose q = 55, µn = 0.2 × Mn

and the width of the hyperslabs equals to ϵ = 1.3 × σ. It should
be pointed out that the performance of the algorithm turns out to be
relatively insensitive to different choices of this parameter. A de-
tailed experimental analysis on how different choices of ϵ affect the
projection-based algorithms, has taken place in [1]. The radius of
the weighted ℓ1 ball, ρ = ∥h∗∥0, whereas wn and G−1

n are con-
structed according to the strategy presented in Section 2 and the pa-
rameters are updated at every time instance, i.e., n′ = 1. It should
be stressed out that we experimentally observed that the proposed
algorithm is rather insensitive to overestimated values of the sparsity
level, which implies that even if we do not know the exact value of
∥h∗∥0, if we set ρ ≥ ∥h∗∥0, the proposed algorithm exhibits a good
performance; this behaviour was also observed in [1]. Regarding the
parameter α, we observed that a value close to 1 leads to a fast con-
vergence speed but it increases the steady state error floor, and vice
versa. So, at the beginning of the adaptation, we choose α = 0.99
and at every 250 time instances, we set α = α/2. In the OCCD-
TWL and the OCCD-TNWL, the regularization parameter is chosen
to be λTWL =

√
2σ2nlogm,λTNWL =

√
2σ2n4/3logm, respec-

tively, as advised in [2]. The step size, adopted in the Spadomp,
equals to 0.2, since this choice results in error floor similar to that
of the algorithms, which employ projections onto weighted ℓ1 balls.
The forgetting factor of OCCD-TWN, OCCD-TNWL and Spadomp
is set equal to 1 since, in the specific example, the system under
consideration does not change with time. From Fig. 3, it can be
seen that the proposed algorithm outperforms the APWL1, as it con-
verges faster to the common error floor. This is due to the use of
the variable metric projection. Nevertheless, the proposed and the
APWL1 outperform significantly the PAPH. This implies that when
seeking for sparse vectors, the projections onto the weighted ℓ1 balls
improve the performance of the respective algorithms.2 Moreover,
the proposed algorithm converges faster and the steady state error
floor is slightly better compared to the Spadomp. We should point
out, that the complexity of the Spadomp is O(m), which implies that
for the previously mentioned choice of q, the proposed algorithm is
of higher complexity, albeit still of linear dependence on the number
of free parameters. Compared to the OCCD-TWL, we observe that
the performance of the proposed algorithm is slightly worse, yet the
complexity of OCCD-TWL is much higher, which, in the absence of
the shift invariance property of the input data, as it is commonly the
case in sparse signal reconstruction applications, amounts to O(m2).
Finally, the OCCD-TNWL outerforms the other algorithms, at the
expense of a higher complexity, which is approximately twice than
that of OCCD-TWL.

In the second experiment, we consider a diffusion network con-
sisted of N = 10 nodes; the unknown vector is of dimension m =
256, and the number of non-zero coefficients equals to 20. The input,
at each node, is chosen as in the previous experiment, the variance
of the noise equals to σ2

k = 0.01ςk ∀k ∈ N , where ςk ∈ [0.5, 1]
is randomly chosen according to the uniform distribution, and the
combination coefficients are chosen with respect to the Metropolis

2This trend, i.e., the improved steady state error floor of the algorithms,
which employ projections onto weighted ℓ1 balls, compared to the propor-
tionate ones, was also verified, via an extensive comparative study with the
main representatives of the of the proportionate algorithmic family.
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Fig. 3. Identification of a sparse system in a non-distributed experi-
ment.
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Fig. 4. Identification of a sparse system in a distributed experiment.

rule [3]. The proposed algorithm is compared with the distributed
APWL1, i.e., if we let Gn = Im, and the distributed Lasso (Dlasso)
[5]. The Dlasso is a batch algorithm, so, at every time instance that
a new pair of data becomes available, the algorithm is re-initialized
so as to solve a new optimization problem. In the projection-based
algorithms, q = 20 and the rest of the parameters remain the same
as in the previous experiment. Finally, in the Dlasso, the regulariza-
tion parameter is chosen equal to ∥h∗∥1. From Fig. 4, it can be seen
that the proposed algorithm outperforms the APWL1, and it exhibits
a faster convergence speed. The Dlasso outperforms the projection-
based algorithms only slightly, albeit an inversion of a matrix of di-
mensions proportionate to m has to be performed at each time in-
stant. The reported performance corresponds to the best obtained
one, after extensive experimentation with respect to the involved pa-
rameters. It is interesting to note that in the case of the distributed
LASSO, the comparative performance gains of the LASSO in Fig.
3, seem to be lost.

In the third experiment, we study the robustness of the proposed
scheme, with respect to adopting different strategies in order to con-
struct wn and Gn. To this end, we consider the following strategies:
a) the previously mentioned quantities are constructed via the node
with the smallest noise variance (Proposed a), b) wn and Gn are
generated by the node with the largest variance (Proposed b) and c)
wn and Gn are constructed locally at every node (Proposed c). Note
that the latter one violates the theoretical assumption of having com-
mon weights to all nodes. In order to verify whether the nodes reach
consensus, instead of presenting the average MSD, as in the previ-
ous experiments, we fix two arbitrary nodes (node 1 and node 5), and
we plot the local MSD curves, for each one of the previously men-
tioned strategies. From Fig. 5, it can be seen that the performance of
the proposed algorithm is not affected by the strategy used in order
to construct wn and Gn, and, finally, the steady state error floors
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Fig. 5. Performance of the algorithm with respect to the strategy
adopted in order to construct wn and Gn.

nearly coincide, which implies that the nodes converge to estimates,
which are almost the same.
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