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Abstract—In this paper, the problem of dimensionality reduction
in adaptive distributed learning is studied. We consider a network
obeying the ad-hoc topology, in which the nodes sense an amount
of data and cooperate with each other, by exchanging information,
in order to estimate an unknown, common, parameter vector. The
algorithm, to be presented here, follows the set-theoretic estima-
tion rationale; i.e., at each time instant and at each node of the
network, a closed convex set is constructed based on the received
measurements, and this defines the region in which the solution
is searched for. In this paper, these closed convex sets, known as
property sets, take the form of hyperslabs. Moreover, in order to
reduce the number of transmitted coefficients, which is dictated by
the dimension of the unknown vector, we seek for possible solutions
in a subspace of lower dimension; the technique will be developed
around the Krylov subspace rationale. Qur goal is to find a point
that belongs to the intersection of this infinite number of hyper-
slabs and the respective Krylov subspaces. This is achieved via a
sequence of projections onto the property sets and the Krylov sub-
spaces. The case of highly correlated inputs that degrades the per-
formance of the algorithm is also considered. This is overcome via a
transformation which whitens the input. The proposed schemes are
brought in a decentralized form by adopting the combine-adapt co-
operation strategy among the nodes. Full convergence analysis is
carried out and numerical tests verify the validity of the proposed
schemes in different scenarios in the context of the adaptive dis-
tributed system identification task.

Index Terms—Adaptive distributed learning, diffusion, Krylov
subspaces, Projections.

I. INTRODUCTION

IRELESS sensor networks (WSNs) comprise of a
number of nodes, which sense an amount of data and
cooperate with each other in order to estimate an unknown and
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common parameter vector. Sensor networks have attracted a
considerable interest over the recent years due to a plethora of
applications in which they contribute. Some typical examples
are: environmental monitoring, acoustic source localization and
life sciences, just to name a few, e.g., [1]-[3]. A first approach
to the problem of estimating the unknown vector is the central-
ized one. In such a scenario, the sensors transmit the sensed
information to a central node, also known as fusion center,
and this one carries out the full amount of computations. The
existence of a fusion center is not always feasible due to power
and/or position constraints. Moreover, such a philosophy lacks
robustness, since if the fusion center fails, then the network
collapses. On the contrary, by following a fully decentralized
philosophy, the previously mentioned limitations can be over-
stepped. Depending on the way with which the sensors are
deployed over the field, the following topologies are defined.

* The incremental, in which each node is able to commu-
nicate with only one neighboring node and the nodes lie
in a cyclic pattern, e.g., [4], [5]. Despite the fact that this
topology requires small bandwidth, a Hamiltonian Cycle
has to be constructed and maintained, which is an NP hard
task, e.g., [6], [7]. Furthermore, if one node is malfunc-
tioning, the network collapses.

» The diffusion, where each node transmits information to a
subset of the node set. This subset is also known as the
neighborhood of a node. The diffusion ad-hoc topology
requires larger bandwidth, compared to the incremental
one. Nevertheless, its implementation turns out to be easier
when large networks are involved, and it is robust against
node failures [8]-[12].

In this paper, we study the problem of adaptive distributed
learning, where the estimate of the unknown vector is updated
dynamically based on measurements that become available
to each one of the nodes sequentially, one per time instant;
these updates are then diffused throughout the network. It has
been verified that if the nodes cooperate with each other and
embed in their local update mechanisms the estimates received
from their neighborhood, then the overall performance of the
algorithms is enhanced compared to the case where each node
operates individually [9].

Obviously, this cooperation demands that at every time in-
stant each node will transmit a number of coefficients, which
equals to the dimension of the vector to be estimated. In appli-
cations where this dimension is large, the exchange of informa-
tion among the nodes can be a burden. In the current study, in
order to achieve dimensionality reduction and consequently to
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reduce the number of transmitted coefficients, the reduced rank
adaptive filtering rationale is adopted. Algorithms whose goal is
to reduce the amount of transmitted information, by performing
dimensionality reduction, have been proposed in the context of
distributed quantized Kalman Filtering [ 13], [14], and quantized
consensus algorithms, e.g., [15]. However, to the best of our
knowledge, this is the first time that a reduced rank algorithm
able for adaptive operation in diffusion networks is developed.
The basic concept of our reduced rank adaptive filtering task
can be summarized as follows: instead of seeking for the un-
known vector in the original space, one seeks for the projec-
tion of it onto a lower dimension subspace. Via this procedure,
the obtained estimates are optimally forced in a lower dimen-
sion space, and each node transmits fewer coefficients than the
ones originally needed, in the case where the full dimension-
ality of the unknown vector was exploited. Here, the associated
subspaces are the so-called Krylov subspaces, constructed by
exploiting the statistics of the sensed information. The Krylov
subspaces have been used in several applications, as for example
in the reduced rank adaptive filtering [16], [17], in the Multi-
stage Nested Wiener Filter [18], in the auxiliary vector filtering,
[19], etc. It has been verified, e.g., [20], that the performance
of the algorithms, which employ the Krylov subspace rationale,
depends highly on the statistics of the input. More specifically,
if the input signal is highly correlated, then the performance of
the algorithms is degraded. In order to overstep this problem
we propose a whitening technique, which is based on the Dis-
crete Cosine Transformation (DCT) and it has been employed in
the context of non-distributed adaptive learning [20], [21]. This
strategy is properly reformed, in order to be suitable for opera-
tion in distributive learning.

The reported algorithms, follow the set-theoretic estimation
rationale [22]; i.e., instead of seeking for a unique optimum
vector, that minimizes a certain cost function, we search for a set
of points that are in agreement with the received set of measure-
ments. More specifically, we seek for solutions within the inter-
section of the Krylov subspaces and the property sets, namely
hyperslabs, formed by the received measurements. We assume
that any point that lies within this set is in agreement with the
current measurements. The goal becomes that of finding a point
that lies in the intersection of this infinite number of hyperslabs,
which are constructed sequentially one per time instant, with
the respective Krylov subspaces. This can be achieved via a se-
quence of corresponding projections, as dictated by the set-the-
oretic estimation, e.g., [23]-[26]. Furthermore, the algorithmic
scheme is brought to a distributed fashion, by adopting a coop-
eration strategy among the nodes. Summarizing, the main con-
tributions of the paper are the following:

* A novel reduced rank adaptive algorithm, which achieves
dimensionality reduction, suitable for operating in net-
works operating under the diffusion ad-hoc topology, is
developed for the first time. The algorithm is built around
the Krylov subspace rationale.

* The case where the input is highly correlated, which
leads to performance degradation of the Krylov based
algorithms, is separately considered. To this end, a mod-
ification of the algorithm is derived by employing a
whitening transformation (see [20], [21]).

Node 4
4n; Wan
Node 2
dyn, Uan
Node 7
d7,m U7
Node 6
Node 1 \ dons Uon
dln U1n
Node 3
d3ny Usn
Node 5
ds,m Usn
Fig. 1. Illustration of a diffusion network with ' = 7 nodes.

The paper is organized as follows. In Section II, the problem
formulation is described, and in Section III, the set-theoretic
rationale is given. In Section IV, we shed light on basic con-
cepts regarding the adaptive distributed learning, and in the
Section V, the algorithm, as well as its theoretical analysis are
provided. The algorithmic scheme, which is appropriate for
highly correlated environments, is described in Section VI.
Finally, in Section VII the performance of the proposed al-
gorithmic schemes is validated and in the Appendices the
theoretical background is discussed, and full proofs of the
theorems are given.

Notation: The set of all non-negative integers and the set of
all real numbers will be denoted by Z>¢ and R respectively.
Given two integers ji, Jo, with j; < jo, we define j1, 72 =
{j1.j1 +1,...,42}. Vectors will be denoted by boldface let-
ters and matrices will be denoted by uppercase boldface let-
ters. Moreover, || - || will stand for the Euclidean norm, whereas
(-, yw and || - ||w will stand for the weighted inner product and
the weighted norm respectively, with definition (w1, ws)w =
wi Wws, Yy, ws € R and ||w|w = VwTWw,Vw € R™,
where the m x m matrix W is positive definite. E[-] stands for
the expectation operator. The 2-norm of a matrix, say A, will
be denoted by || A||. Finally, given a set S, |S| will stand for its
cardinality.

II. PROBLEM STATEMENT

Following the philosophy of a diffusion network, we consider
a network consisting of K spatially distributed nodes. Our task
is to estimate an unknown parameter vector of interest, w.. €
R™, through measurements (dy, ,,, %) € R x R™, which are
related according to the linear model
dk,n = Uz,nw* + Vi ns Vn € ZZO; vk € JV, (1)
where A/ denotes the node set: N = {1,..., K} and Ugn 1S
the additive noise process with variance equal to oy, Vk € N.
An example of such a network is illustrated in Fig. 1. We as-
sume that each node is able to communicate with a subset of AV,
namely N}, which is the so-called neighborhood of k. In dis-
tributed adaptive learning, the estimates, at each node, are gen-
erated by exploiting: a) the sensed information, i.e., the mea-
surement pair, and b) the information received by the neigh-
borhood, whereas in the classical adaptive learning, only the
measurements are taken into consideration. At each node, say



CHOUVARDAS et al.: TRADING OFF COMPLEXITY WITH COMMUNICATION COSTS IN DISTRIBUTED ADAPTIVE LEARNING 259

k € N, and at every time instant, this extra information com-
prises the estimates of the unknown vector, occurring from the
nodes with which communication is possible, i.e., VI € N} Itis
by now well established, e.g., [9], [11], that this information-ex-
change results in a faster convergence speed, as well as a lower
steady state error floor, compared to the case where the nodes
operate individually. Furthermore, if the nodes cooperate with
each other and under a properly chosen algorithmic scheme,
asymptotic consensus can be achieved; that is, the nodes con-
verge to the same estimate, e.g., [10], [12], [27]. Further details
on the diffusion methodology will be presented in Section IV.

A. Krylov Subspaces and the Reduced Rank Wiener Solution

Our kickoff point is the Wiener filtering task. Throughout this
section, the notational dependence on the nodes is suppressed
for simplicity purposes, since the results hold true for all nodes.
It can been shown, e.g., [21], that the solution that minimizes the
mean-square error (MSE), i.e., E[(d,, — uf'w)Q], where d,,, t,,
are related via (1), satisfies the celebrated Wiener-Hopf equa-
tion, given by

p= Ruw, 2)

where the . x mn matrix R = E[u, 1] is the so-called input
autocorrelation matrix, and the vector p = E[d,,u,,] is the cross-
correlation vector between the input and the desired response.
If the matrix R is invertible, which is usually the case, then the
solution of (2) is the unknown vector w., e.g., [28]. Throughout
this paper, we will assume that R is invertible. Our main goal in
this paper is to use the Wiener MSE solution in its constrained
form. Since our objective is to reduce dimensionality, we are
going to search for the filter that minimizes the MSE and at
the same time lies in a lower dimension subspace. This brings
Krylov spaces into the scene.

Given an m X m matrix A and a vector w € R™, the Krylov
subspace of dimension 2 < m is defined as Kp(A,w) =
span{w, Aw, ..., A” 'w}. The Krylov subspaces play a cen-
tral role and they have been employed in the reduced rank adap-
tive filtering task, e.g., [16], [29], and it has been observed that
they provide a good trade-off between the dimensionality re-
duction and the performance of the developed algorithms, due
to their strong connection with the Wiener solution. In the se-
quel, we will comment on the physical reasoning of these sub-
spaces. Following a similar rationale as in [30] and in [29], we
denote by w%{?} € R™ the solution of the Wiener-Hopf equa-
tion in the Krylov subspace, Kp(R. p). In words, 'w%? 1)? is the
vector we obtain if we solve the Wiener-Hopf equation and con-
straint the solution to lie inside K'p (R, p). This vector is the op-
timum one, in the MSE sense, which belongs to this subspace,
e.g., [29]. Moreover, it has an elegant geometrical property; it
is the projection of w, in the R-norm sense (see Appendix A)
onto Kp(R,p), ie., w%f)} = I((I?(RJJ) (w,), where the oper-
ator P]g? (R.p) (w..) stands for the previously mentioned projec-
tion. Analytically, it is given by [16]:

wP) = P(T"RT) ' T"p = T(T"RT) ' T" Ruw.,

where T € R™*P is a matrix whose columns form an or-
thonormal basis for the subspace K p (R, p).

Now, let us examine one more viewpoint which clarifies the
connection between wg/gl)p and w... Our starting point will be the
MultiStage Nested Wiener Filter (MSNWF), proposed in [31].
Put in general terms, the MSNWF solves the Wiener-Hopf equa-
tion, without inversion of the matrix B. The MSNWF consists
of m filters, t; € R™,¢ = 1,...,m, which produce m outputs
= t-Tun, 1 = 1,...,m, and they are computed via the
following optimization

t=2,....,m, t;= argmtax{tTRti_l}

= arg max E {d;[n]d;_1][n]}

st. tTt=1
t't, =0,

and t; occurs by maximization oft; = arg max, E{t'u,d,} =
arg maxy E{d1[n]d,}, s.t. t"'t = 1. The physical reasoning of
the previous optimization problem can be summarized as fol-
lows. The first filter £; is obtained so as to maximize the cor-
relation of the output dy[n] and the desired one d,,. The i-th
filter is computed in a similar notion, which is the maximiza-
tion of the correlation between the current and the previous out-
puts, i.e., d;[n] and d;_; [n]. Furthermore, as it can be seen by
(3), we restrict the filters to be orthonormal. It has been proved,
e.g., in [18], that the m-th output response occurring by the
MSNWF, equals to the one occurring by the unknown vector,
ie,d, = ulw,.

Itis very interesting to see what happens if one stops the itera-
tions in (3), at step ). It turns out that the obtained solution cor-
responds to the reduced rank Wiener Filter (WF), w%?. More-
over, as it has been proved, e.g., [30], the filters £;,¢ = 1,..., D,
form a basis in the Krylov subspace; in other words, if we group
them in a matrix, we obtain the matrix 7T'.

Now, let us see how the previous arguments can be employed
in the adaptive filtering task. As we have already mentioned, in
the reduced rank adaptive filtering, instead of seeking for the
unknown solution, which in our case is w,, one seeks for the
projection of it onto a subspace of reduced dimension; in our
case this is the projection, in the R norm sense, onto K (R, p).
Obviously, the fact that instead of tracking ., one tracks for
its projection in a subspace of lower dimension, results at an
increased error floor in the steady state, which depends on the
distance between the true solution, and the reduced rank one.
These issues will be clarified in the sequel.

A natural question rising is how accurately can w. be iden-
tified by employing the Krylov subspace rationale. It has been
proved, e.g., [16], that

D —1/2
Hw* - wE/VI)TH S 2Ttnin/ ”'HI*HR(IE, (4)

where 7,3, is the smallest eigenvalue of the matrix R, @, :=
(vVF — 1)/(v/% + 1) with s := ||R|)||[R™"|| > 1. From the pre-
vious findings, it can be readily observed that the input statistics
play a central role in the performance of the algorithms built
around the Krylov subspaces. More specifically, if the eigen-
value spread of the matrix R is large, which yields a large value
of «,, the upper bound in the previous inequality is larger, and
it has also been experimentally verified that the performance of
the respective algorithm is degraded.
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Illustration of a hyperslab, as well as the projection of an arbitrary vector

III. SET-THEORETIC ESTIMATION

A. The Full Rank Case

In this paper, the set-theoretic estimation rationale will be
adopted, e.g., [22], [25]. At each time instant, a property (closed
convex) set is constructed, based on the received set of measure-
ments, (d,,, %, ), and the noise statistics, such that the unknown
vector lies within this set, with high probability. The goal is to
find a point that lies in the intersection of an infinite number of
sets (with the possible exception of a finite number of them).

The adopted methodology was presented in [23] and gener-
alized in [24], [26], and comprises a sequence of projections. It
has been shown that under certain assumptions, the algorithm
converges to a point that lies arbitrarily close to the intersection
of these sets. This algorithmic scheme, can be seen as a gener-
alization of the classical Projections Onto Convex Sets (POCS)
algorithm, e.g., [22], [32], [33]. The difference lies in the fact
that in the POCS, the number of involved sets is finite, whereas
in its adaptive setting, an infinite number of sets is considered.

In the current study, the adopted property sets take the form
of hyperslabs, e.g., [12]. [25], [34]. The definition of a hyperslab
is given by: S, = {w € R™ : |d,, — ulw| < €}, where e > 0
is a user-defined threshold, which takes into consideration the
statistics of the noise. In words, a vector is in agreement with
the measurements (d,,, %, ) if the distance between the desired
response, d,,, and the response to the input, u -, is smaller or
equal than €. Such criteria have been proposed in the context of
the robust statistics rationale and successfully used in the sup-
port vector machine framework, e.g., [35], [36]. The projection
operator onto a hyperslab takes the following simple analytic
form

Vw € R™, Ps, (w) = w + B, (5)
where
dnfu?:w+e . T
W, if er -—u,w < —€,
Br 4§ 0, if |dn — ulw| <e
(1,1711-3:11;76 o T
dowaw ¢ r g —ulw > e

pi
[l ]

Finally, the geometry of a hyperslab is illustrated in Fig. 2.

B. The Reduced Rank Case

According to the discussion in the previous subsection, the
property sets are constructed so as to contain the unknown
vector w, with a high probability. The question now is which
strategy to follow in the case of reduced rank scenarios. Our

kick off point will be the reduced rank Wiener solution. More
specifically, the property sets will be constructed so as to
contain the vector wiy with a high probability. As it will
become clear later on, this can be guaranteed by seeking
for points that lie in the intersection of the hyperslabs and
the Krylov subspace, i.e., Kp(R,p). Let us define the set
Sp =Sy, NKp(R,p) ={we Kp(R,p) : |d, —ulw| < e}
Recall from the discussion in Section II that w%?F) € Kp(R,p).
In order to have w%)F) € S, the following must hold true

'u, Wy + Uy — )‘

D)
d,, u wv\ <es 1UW

('I.U* _w%\[)l;) + Up, S €

(6)

From (6), it can be seen that the parameter €, which determines
the width of the hyperslab, determines the probability that
wE{?F) € S,, in the sense that the larger the €, the larger the
possibility that the previously mentioned condition will hold.
Obviously, in the full rank case, in which the condition to
be satisfied is w. € S,,, the only term, which dictates the
choice of ¢, is v,,. Hence, the width of the hyperslabs is chosen
with respect to the statistics of the noise. In the reduced rank
case, besides the noise, one has to take into consideration the
term ul (w, — w&VDF)) However, in practice, as it has been
documented in [16], in cases where the eigenvalue spread of R
is close to 1, which implies that the distance between w. and
wgy{/)F) is small (see also (4)), the noise term is the dominant one.
Hence, if the user-controlled parameter, €, is defined according
to the noise statistics, the condition of having U’%?F) € 5, holds
with a high probability. In the sequel, a technique appropriate
for the case where the eigenvalue spread is large, will be
proposed in order to overstep this limitation.

In order to construct the subspace, knowledge on the statis-
tics of the input and the desired response, i.e., I2, p, is required.
A reasonable strategy is to rely on estimates of the previously
mentioned quantities. To this end, the autocorrelation is esti-

1
mated via R,, := Z” iy 'u. and the crosscorrela-

tion via p,, = Y- Uig“"*l Tdu;, Where ¢ € (0,1] is the

so-called forgetting factor, employed in order to “forget past
values in time varying scenarios. The estimates, R, , Dy, are up-
darted ¥n € Z>g, according to the following formulas: R,, =
(R, 1+u, jul | andp,, = (p,,_y +dy—1%, 1. Having ob-
tained the estimates of R,, and p,,, our goal now is to develop
the projection operator that projects an estimate to the intersec-
tion of the corresponding hyperslab and the current estimate of
the Krylov subspace, i.e., S, N K, where K, := Kp(R,,,D,,).

Claim 1: The projection of a vector lying in K, onto S,,N K,
is given by

Yw e K, : PSnﬁKn( ) w+ﬁT ’Il,n, (7)

where T',, is an . X D matrix, whose columns form an or-
thonormal basis of K,, and

d,—w'T, T L U € g LSS
#7 if dn - T T , U, < —&
T, u,
g=140o, if [ — 0T DT, u| < e
dy—w T T, — i Té gl
?a 1f d'n —w TTLTT, U, > €.
nUn
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Proof: The proof is given in Appendix B. ]
Now, let us see how the case where the denominator in the
previous equation equals to zero is treated. First of all, recall
that the columns of T',, form a basis for the Krylov subspace.

If T LUy, = 0, this means that the vector ,, is perpendicular
to the Krylov subspace. Moreover, it holds, e.g., [25], that the
vector u,, is perpendicular to the hyperplanes H,,, = {w €
R™:d, —ulw=—eland Hy,, = {w € R" : d,, — ulw =
+e¢}, which constitute the hyperplanes that define the hyperslab.

These two facts imply that T:un = 0 in the case where the
subspace is “parallel” to the hyperslab. This case is treated as in
the full rank case, i.e., when the input vector is 0, e.g., [25]. To
be more specific, if such an input vector occurs, it is not taken
into consideration in the algorithmic flow.

IV. COOPERATION STRATEGIES IN DIFFUSION NETWORKS
AND THE CONSENSUS MATRIX

In this section, we will describe how the nodes cooperate with
each other in order to exploit the spatially received estimates.
First of all, depending on the strategy with which the received
estimates from the neighboring nodes are embedded in the adap-
tation, the following cooperation directions are defined:

» Combine-Adapt, in which, at each node, the estimates re-
ceived from the neighborhood are combined in a particular
way, and then the aggregate is put into the adaptation step,
e.g., [11], [12], [17].

* Adapt-Combine, where before the combination step, the
adaptation takes place, e.g., [9], [27].

+ Consensus based, where the computations are made in par-
allel and there is no clear distinction between the combine
and the adaptation step [10], [37].

In the current paper, the combine-adapt cooperation strategy
will be followed. We assume that the following statements, re-
garding the network, hold true: | € Ny < &k € Nyand k €
Ni,Vk € N and the network is assumed to be strongly con-
nected, i.e., there exists a possibly multihop path, connecting
every two nodes of the network. These assumptions are very
common in adaptive distributed learning (see for example [6],
[7]). At each node and at each time instant, the estimates re-
ceived from the neighborhood are fused under a certain pro-
tocol. To this end, we define the combination coefficients, such
that Ck._’l(n) > 0,ifl € Nk, ck_,l(n) = 0,if ] ¢ Nk and
Yten, cki(n) = 1,¥k € N. In words, every node assigns
a weight to each one of the estimates, which are received from
the neighborhood, and a convex combination of them is com-
puted; this aggregate takes part in the adaptation step. The steps
of the combine-adapt cooperation strategy are given in detail in
Section V-B. Two well known examples of combination coeffi-
cients are: the Metropolis rule, where

ifl e Npandl £ k,
if I =k,

otherwise,

1
max{IN:[,|M[}’
I- Zle/\/k\k ca(n),

ckJ(n) =

and the uniform rule, in which the coefficients are defined as

1
cui(n) = { (l)Nk\’ if 1 € N,

otherwise.

Gathering all the coefficients in a matrix, we define the com-
bination matrix C,,, in which the &, /-th component equals to
ck1(n). Now, let us give the definition of the consensus sub-
space O. This linear subspace is defined: @ := {w € RE™ :
w=[w?,... ,MT]T, w € R™}, and its dimension equals to 1.
The K'm x Km consensus matrix is givenby P,, = C,, ® I,,,
where the symbol ® stands for the Kronecker product and I,
stands for the m x m identity matrix. Some very useful proper-
ties of the consensus matrix as well as the consensus subspace
are [27]:

1) P,1x, = 1, where 1x,, € RE™ is the vector of
ones. Throughout the paper, we assume that the involved
consensus matrices are doubly-stochastic, i.e., P:l Km =
1]&'771,

2) P, = 1.

3) Any consensus matrix P,, can be decomposed as

P,=X,+BB",

where B = [by,...,b,,] is an K'm x m matrix, and by =
1x ® ek)/\/f, e, is anm x 1 vector of zeros except the
k-th entry, which is one and X,, is an K'm x K matrix
for which it holds that || X, || < 1.

4) Pn@ = @7V@ € 0.

5) The vectors by, k = 1,...,m constitute a basis for O. The
projection of a vector, w € R™™ onto this linear subspace
is given by Po(w) := BB w,Vw € RX™,

V. PROPOSED SCHEME

First of all, it has to be pointed out, that despite the fact that
the nodes seek for the same unknown vector, the input as well
as the noise statistics differ from node to node. Hence, in con-
trast to the non-distributed scenario, here, we should take into
consideration the statistics from all the nodes. Let us define the
mean square error loss function £ : R™ — [0, +oc), for the
whole network

1
E(w) = E Z E {(dk,n - ug,nw)z}
keN
e Z TRk'll) — 2’11)Tpk + O-gk)
keN
=w'Rw-— P + = Z O-dk’ ®)
keN

where o.d; = E{dk n} R/ = (1/K) Zkie./\f E{uk77lu{771,} =
(V/EK) Y pen Re and p = (1/K) Yo Eddintin} =
(1/K) > ,ca Pr- It can be readily shown following similar
steps as in [16], that the solution minimizing (8) is given
by w, = R’ 'p’. This argument indicates that a reasonable
strategy in order to achieve dimensionality reduction is to con-
struct the Krylov subspace relying on R’ and p'; i.e., the average
values relying on approximations of the previously mentioned
quantities. To this end at each node, the followmg appr0x1ma—

tions are computed: R (1/K) D oken Rk n» Where Rk n=
é.Rky"—l A+ ukﬂl‘lu%‘:nfl and pn = (1/K) ZkEJ\/pk,n’ with
Pin = Cpk:n_l + dp n—1Uk,n—1 and ¢ is the forgetting factor.
From the previous relations, it can be observed that in order to
construct the respective subspace, every node must have access
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to measurements coming out from the other nodes of the net-
work, i.e., i », dr,»; however, this is, in general, infeasible in
distributed networks. In the sequel, we present two techniques
which will help us overstep this obstacle.

A. Enhancing the Information Flow

First of all, it should be stressed out that in system
identification problems the input is defined as follows:
[k Wkn-1..-%kn-m+1]’ . Hence, the novel
information at each time instant comprises of two numbers:
g, and dp . In order to enhance the information flow, the
followmg strategies are adopted

U n =

1) We assume that Rn and ¢ pn will not be updated every time
instant but every L time instants instead. Thus the coeffi-
cients ug ,, and dj ,, will be delivered to the other nodes
of the network within a time window of size L. This pa-
rameter is chosen with respect to the size of the network
as well as the maximum distance between two nodes. As
it will become clear in the simulations section, the larger
the I the worse the performance of the algorithm; this be-

hav10r is due to the fact that for a large time window, R
and p., are updated less frequently and their convergence to
a good approximation is slowed down. Nevertheless, as it
will become apparent in the simulations section, provided
that L does not take too large values, the algorithm turns
out to be relatively insensitive to its choice.

2) We adopt a multi-cluster architecture (see for example
[38]) for the network in order to improve the flow of
transmitted information. In principle, nodes which are
connected to a large number of neighbors are “equipped”
with better transmission capabilities. Despite the fact that
the issue of clustering the nodes according to predefined
protocols has been extensively discussed in the literature,
see [38] and references therein, complex protocols are
beyond the scope of this paper. So, we adopt a simple hier-
archical protocol, which has been employed in the context
of adaptive distributed learning in [39]. More specifically,
we classify the nodes, according to the number of their
neighbors, into two subclasses: the hierarchical and the
non-hierarchical ones. The former are able to communi-
cate over three nodes, whereas the latter are not, and every
non-hierarchical node is connected to a hierarchical one.
The rationale is to assign enhanced transmission capabili-
ties to the nodes which have many neighbors; through this
procedure the information is delivered faster throughout
the network, e.g., [38].

Now, let us see how the information needed to construct the
Krylov subspace is distributed over such a network, which is il-
lustrated in Fig. 3. Notice that the network comprises of K’ = 14
nodes and the number of the hierarchical nodes equals to 3. At
each time instant, nodes have to transmit D coefficients to their
neighborhood; these are the updated components lying in the
reduced space RP. At time instant 1, node 1 transmits to node
2, 1,1, dl,l, at time instant 2, g1, d4’1, at 3, Us 1, d511 and at
time instant 4, ug 1, dg,1. Node 2, at time instant ». = 1, trans-
mits to 3, U2,1, d271, U711, d771. Atn = 2, 1,1, Cll’l? Ug 1, d&l, at
n = 3, Uq.1, d4:1, U10,1» d1071, atn = 4, Us 1, d5:1, U9 1, d9,1 and
atn = 3, ug 1, dg,1. The rest of the exchanges follow a similar

Fig. 3. Illustration of a hierarchical network with L = 5. The solid lines de-
note the simple communication links, whereas the dashed-dotted ones the hier-
archical communication links.

philosophy. The largest number of coefficients is transmitted by
node 2 and amounts to 1) + 4, where D comes from the D coef-
ficients of the estimate and the other four from the information
needed to construct the subspace. In the full rank scenario, every
node has to transmit m coefficients to each neighboring node.
Hence, if DD is much smaller than m, which is the case of our
interest, then the nodes transmit fewer coefficients, if they seek
for a reduced rank solution.

Unfortunately, in networks with a large number of nodes
and/or in scenarios where the longest path, among the nodes of
the network, is large, the previously mentioned techniques may
fail. Nevertheless, as it will become apparent in the simulations
section, another route can be followed. Indeed, the Krylov
subspace can be constructed by exploiting information coming
from a single node, e.g., a master node, without significant
degradation of the performance of the algorithm. It can be
readily obtained that, if the information of a single node has to
be delivered throughout the network, each node transmits D 42
coefficients at most. Hence in this scenario, the only limitation
is to use a large enough L, which depends on the longest
path among the nodes of the network, and then distribute the
two coefficients, which are used to construct the subspace. A
possible criterion in order to chose the master node is to find
the node with the smallest eigenvalue spread, as (4) suggests.
Techniques for finding this “optimum” node are beyond the
scope of this paper and will be presented in a future work. In
the simulations section, the case of choosing the “worst” node
is also adopted in order to study the sensitivity of this scenario
in failing to choose the “best” node.

Finally, if the statistics are the same for the nodes of the net-
work, then the Krylov subspaces can be constructed locally, and
then the information transmitted by each node drops to D coef-
ficients, i.e., the length of the reduced rank estimate.

B. The Algorithmic Scheme

As it has been already mentioned, our goal has now become
to search for estimates that lie in the reduced DD-dimensional
Krylov subspace. However, in general, any vector in such a sub-
space is expressed in terms of 7 components, since it is a subset
of R™. Our next goal becomes to map the respective estimates
in the R” subspace; this mapping will result in the description
of the estimates in terms of 1) components. Nevertheless, the
mapping which leads vectors from the Krylov subspace to R,
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is known. Moreover, the inverse mapping leading vectors from
R” to the subspace is also known. This correspondence between
vectors of the Krylov subspace with vectors lying in R” will be
the kick-off point in order to reduce the communication load.
More specifically, at each node, vectors which belong in R”
will be computed and transmitted, reducing the communication
load; these vectors can be readily mapped, locally at each node,
back to the original Krylov subspace where they belong.

Let us define the mn x D rnaAtlcix T, the columns of which
form a basis for K,, = Kp(R,,p.). The following holds:
v € RP, 3w € K, :w:Tﬂ)andﬁ;:Twl [16].
According to the previous discussion, the matrix T , maps vec-
tors, of dimension  which belogg in K,,, to the reduced di-
mension space, i.e., RY, whereas T',, maps vectors lying in R”
to K,, C R™.

The steps of the algorithm for each node & and at time instant
n, can be summarized as follows:

» The estimates, of reduced dimension, from the neighbor-
hood, i.e., w;,, € RP VI € N, are received and con-
vexly combined, with respect to the adopted combination
strategy in order to produce @y ,, = >, 1 ()W
As already said, these estimates are related to their coun-
terparts in the Krylov subspace in R™ ones, according
to: Vn € Zso,Vk € N,wi, = T:wkm (see also
Appendix B).

» Taking into consideration the newly received information,

e., (dg.n, g, ) the following hyperslab is defined in RP :
Sem = {0 € R? : |dy, — u;f‘nTn'ﬁA < ¢}, where
e > 0 can vary from node to node, depending on the
noise statistics. The aggregate ¢, ,,, which was computed
at the previous step, is projected onto the ¢ most recent hy-
perslabs, and then a convex combination of the resulting
projections is computed. It has been verified, that by pro-
jecting onto a ¢ > 1 number of hyperslabs the convergence
speed is accelerated [34], [40].

* The information needed in order to update the subspace
is distributed over the network, using one of the tech-
niques described in Section V-A. If mod(n, L) = 0, then
Rk s Py, are updated, and the matrix T,L+1 is computed.

IFrom now on, the tilded vectors will stand for vectors lying in R¥ .

263

The previous can be encoded in the following formula.

ﬂjk;n-l—l = (ﬁk,n + ﬁk,n Z wk‘]Ré‘k] (¢k7n) - ¢k,n ) (9)

jeJ

where J = max{0,n —q+1},n, 3 ,c;wn; = LYk € N
and fi , € (0, 2M %.n) where [25]: (see equation at the bottom
of the page).

In the previously described scheme, the obtained estimates
lie in R?, which implies that each sensor will transmit D co-
efficients at each time instant. The following claim clarifies the
connection between the algorithm in (9) and the Krylov sub-
spaces, discussed in the previous section.

Claim 2: Eq. (9) is equivalent to

Wy nt+1 = n+1T <¢kn

Fitkn | > wiiPs, ok, ($r0) — brn >7 (1)
jeg
where pig.n € (0,2Mp ), @y, = Tn¢kn, that is, the cor-
responding aggregate in the respective Krylov space, and (see
equation at bottom of page).
Proof: The proof is given in Appendix C. [ |

The geometrical interpretation of the algorithm is given in
Fig. 4. The complexity of the algorithm is of order O(¢D)
coming from (9), O(Km/L) from the update of ﬁ;, and
O(Dm?/L) due to the computation of T, e.g., [16]. It is
important to notice that the dominant complexity-contributing
terms, which are involved in the subspace computation, depend
also on the frequency with which the subspace is constructed.
Hence, if one is to reduce the computational load, a larger
L must be chosen. Obviously, this results to a performance
degradation; however as it will become clear in the simulations
section, the algorithms turn out to be relatively insensitive to
this parameter.

As it will become clear shortly, the algorithm enjoys a number
of nice convergence properties. Despite the fact that at each
node the recursion given in (9) is employed, the theoretical
properties for (11) will be studied since the estimates computed

Z.E,/.Wk,j Pz, .(&k,n)*&’k‘n ~ ~
Mk- _ o - - N 75 lfHZ;jej Wk,j-ng,j(qSk«,n) - ¢k,n 7£ 0, (10)
5T szEJ W'k,jpg*k’j (@D4.0) 9.0 A
1, otherwise.
Zi ’ wk,h,'”Ps ,;anl(n((ﬁk,ﬂ)*@c,nHz .
My n = ||Z€J i -P; o (@0,0) 1| © lfHZ.ieJn Wi L5, 00 (Bhn) = Brn | # 0
2, JETn W, i o, K \ Pl n ) TPk n

s

otherwise.
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Fig. 4. (a) Geometrical illustration of the algorithm for ¢ = 1. The aggregate
@, .., which belongs in the subspace, is projected onto the intersection of the
subspace and the hyperslab, generated by the measurement data. (b) The algo-
rithmic scheme in the reduced dimension space, i.e., R”.

by this scheme belong to the same subspace with '“’%)F) and
from the fact that the two schemes are equivalent. For the al-
gorithm in (11), we prove a number of nice convergence prop-
erties such as: monotonicity, asymptotic optimality and strong
convergence to a point which lies in the consensus subspace.
Moreover, we prove that the estimates at each node converge to
a vector which belongs to the Krylov subspace. It is important to
notice that asymptotic optimality implies that the distance of the
computed estimates from the intersection of the hyperslabs with
the Krylov subspace will tend asymptotically to zero. Moreover,
recalling the discussion in Section III-B, these sets contain 'wggg
with a high probability.
Assumptions 1:
(a) There exists a non-negative integer, say ng, for which
Q = ﬂn>n0 Q, # 0 where @, = K, n Q, with
@, = NreaNjes, Sk,j- In words, the hyperslabs to-
gether with the Krylov subspaces share a non-empty in-
tersection. . A
(b) There exists 7y such that T',, = T',,,,Vn > ni. In other
words, after a finite number of iterations, the subspace
remains fixed?.
(c) Let some sufficient small ¢ > 0 such that p, €
(61./\/11@7”, Mk,n(2 — 61)), ]{i S ,/\/.~
(d) Let us define € := € N O, where the carte-
sian product space £ = Qx...x§, Q =
_ ~ K
ngno Nien ﬂje{]n Sk and O := {w € RXP : w =

2For a large choice of 1, the approximations of the quantities used in order
to construct the subspace are good and, consequently, this assumption does not
lead to performance degradation.

[, ... ,ﬂJT]T,'&) € RP}. We assume that ri Q@ # 0,
where this term stands for the relative interior of € with
respect to O (see Appendix A).
Theorem 1: Under the previously adopted assumptions, the
following properties can be proved.
* Monotonicity. Under assumptions (a), (b), (c) for the re-
cursion given in (11) it holds that

!
, VY >y

4 — ] <[lw, — @,

[¥]
o]

where n{ = max{ng,n1}, w = € RE™ Vi € Q

W1 n
andw, =
WK n

* Asymptotic Optimality. If assumptions (a), (b), (c) hold

true, we have that

lim d(wg ny1,20) =0, VE €N,

n—oo
where d(+, €),,) denotes the distance of a vector from 2,,.
In other words, the distance of the estimates from the in-
tersection set €2,,, tends asymptotically to zero.

» Asymptotic Consensus. Consider that assumptions (a),
(b), (c), hold. Then lim,, o0 ||we,n — win|] = 0,Vk, [ €
N.

* Strong Convergence. Under assumptions (a), (b), (¢), (d),
it holds that lim,, .., w, = w,,w, € O. Moreover, if
we define w, = [w5, ..., wk]", it holds that wo €
K,,,. The previous relation yields that the estimates for
the whole network converge to a point that lies in the con-
sensus subspace and the estimate at each node converges
to a point which lies in the estimated Krylov subspace.
Proof: The proof is provided in Appendix D. [ |

VI. WHITENING THE INPUT

Recall the discussion in Section II regarding (4). As it was
documented there, the performance of the Krylov based reduced
rank algorithm is dictated, mainly, by the input statistics. In
other words, in cases where the input is highly correlated and,
henceforth, the eigenvalue spread of the autocorrelation matrix
takes a large value, then the upper bound of the distance be-
tween the unknown vector and the one, which is tracked inside
the Krylov subspace, is large and as it has been experimen-
tally verified, the performance of the algorithms built around
the Krylov subspaces is degraded. This results to an increased
error floor in the steady state, as we will see in the Numerical
Examples section. Hence, a reasonable strategy, which will be
adopted here, is to employ a transformation that “whitens” the
input. To this end, at each time instant the input vectors are
multiplied with a properly chosen matrix, such that the auto-
correlation matrix of the “new” input to be as close as pos-
sible to the identity matrix. A first approach could be to employ
the celebrated Karhunen Loeve transform in order to produce a
transformed input for which the eigenvalue spread of the auto-
correlation matrix would be equal to 1. Nevertheless, as it has
been also documented in [21], this approach requires a-priori
knowledge of the input statistics, which is in general infeasible.
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Hence, an alternative route has to be followed. In the non-dis-
tributed scenario, the following transformation has been pro-
posed [21]: 4, = ZY%Yu, € R™, where Y is the m x m Dis-
crete Cosine Transformation (DCT) transformation matrix3, and
Z = diag{(1/63)...(1/52))}, where 6;,% = 1,...,m is the
i-th element in the diagonal of the matrix E{Yu,LuTYT} The
physical reasoning of this transformation can be summarized as
follows#. The left and right multiplication with the DCT matrix,
approximately diagonalizes the matrix R (see also [21]) so as to
produce

{Yu,luTYT} ~ (12)

0 &2,
Now, it is not difficult to see that the multiplication with the
matrix Z*/ %, normalizes the diagonal entries of the matrix in
(12) so that the resulting autocorrelation matrix approximates
the identity matrix. In practice, since the coefficients &;, i =
1....,m are unknown, one relies on the following recursive
approximation of them: 7, = 767, ; + [Y'u,n]f, where v €
(0, 1], and with [-]; we denote the i-th component of a vector,
e.g., [20], [21]. Obviously the performance of the previously
mentioned transformation, i.e., how “close” will be the final ma-
trix to the identity one, depends on R. However, in practice it
has been observed that the previously mentioned transformation
results in autocorrelation matrices, which are reasonably close
to diagonal.

In the distributed scenario, our goal is to impose a transfor-
mation, which is common to all the nodes of the network, and
which whitens the autocorelation matrix used for the construc-
tion of the subspace, i.e., R'. Assuming that the input vectors
between any two different nodes of the network are independent
and have zero mean, which is usually the case, e.g., [9], [10], we
have that R = (1/K)E[u,,w/T], where u, = >°, _ \ tx». The
transformed input takes the form ([21]): ¢, ,, =z 2)Yu
where Z' = diag{(1/67)...(1 /”:3)},and oli=1,....m
is the i-th element of the diagonal of the matrix YR'Y” . Em—
ploying the transformed input in the linear model, we get that
dk,n = ’M{:n’w* + Vpn = ¢£,nh* + ,n, where

1 1

h.=2 *Yw, s w,=Y"Z'%h,. (13)
It should be pointed out that, by employing a transformed input,
the generated estimates do not track the original unknown
vector, but the transformed one, i.e., h.. Nevertheless, by
multiplying them with the inverse transformation, which is in
our case Y7 2’/ 2), one obtains estimates tracking the original
unknown vector (see also [41]).

It is obvious that the definition of the corresponding Krylov
subspace changes, since the input changes. Let us define

= S (bl

kE./\/

3For the DCT transformation matrix holds that YY* = ¥*Y = I,,. It
should be pointed out that a variety of transformations could be employed, e.g.,
the Fourier Transformation. However, the DCT one is usually adopted [21].

4For a more detailed analysis the reader is referenced to [21].

Input signal space

Whitened input signal space

Solution space

Kp(R',r')

Fig. 5.

Illustration of K p(R/, r
belong to them.

, M and the connection between points that

1 z Tyt

=& 3 2wl ) ¥ 2
keN

=Z'*YRY"Z3, (14)
andr’ = (1/K) >, car E{drny ,, }. Using a similar rationale
as in Section III-B, the algorithm, after employing the trans-
formed input, tracks the following vector

h=T(TTR'T) T R'h = P o0 o (h),
where T’ is an m x D matrix whose column form an or-
thonormal basis of Kp(R', 7). Now, let us shed some light
on the connection between the estimates generated exploiting
the transformed input, and the estimates, which are produced
relying on the original input. If we substitute (13) and (14) into
(15) we obtain

(15)

h=T (T/TZ/%YR/YTZ/%T/) - T/TZ/éYR/YTZ/%h*

T (T’Tz’%YR’YTz’%T’) T7Z'*YRw.. (16)
Notice that 8y, := = YT Z'VIT is an m x D matrix, of rank
D ([42)), hence its columns form a basis for a new subspace
M := range{Y"Z ’(1/2)T} Fig. 5 illustrates the connection
between the points of the two subspaces. Now, according to the
previous discussion, if we left multiply (16) by Y7 2"/? in
order to employ the inverse transformation, we get

Y2 h =Sy (SRS, ) S5 Rw, =i =P (w,).
7

From (17) we conclude that

Y'Z'h=we h=2"Ye (18)
Equation (18) establishes the connection among estimates oc-
curring in the case where the input is 4, ,,, Vk € N,Vn € N,

with the ones produced by the input uy, ,,, Yk € A/, ¥n € N.
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It should be pointed out that, if we employ the whitening
transformation, the estimates obtained from the original input
(which are produced by employing the inverse transformation),
lie in M, which is also a subspace of dimension equal to D,
instead of Kp(R',p’), which would be the case if the original
input uy, , were employed. Despite the fact that the reduced rank
Wiener Filter w%’ z)? does not belong to M, in general, as it will
become apparent in the Numerical Examples section, if the input

is highly correlated it is better to seek for s instead of w%{?},

since the misadjustment between wg/e} and w, is large.

Obviously, in order to construct the matrix Z', knowledge
on the statistic has to be available. As in the previous section,
we rely on estimates of the unknown statistics in order to con-
str/’uct Z' More specifically, the approximated matrix is given by
Z, = diag{(1/67,)...(1/67 )}, where 673, = 767, 1 +
(1/K)Y [u,]7, 7 € (0,1].

The algorithm is similar to the one developed in the previous
section and its mathematical formula is given by

AT ~ /T
hk,n-&-l = Tn+1Tn Pr.n

), (19)

with Prn — Zlé/\/} Ck,l(”)hlm, and Sllﬁn = {’ll} e R™ :

A~
g — w9, .| < €}, Furthermore, the 7 x D matrix T,

+Mk,n Z wk,jPSL_jﬂKn (‘Pk,n) — Pen
JETn

is deﬁnedAsimilarly to fl},,, and its columps form an orthonormal
basis of K,, := Kp(R.,#,), where R/, ,#, are approxima-
tions of the R’ and #’ respectively, and they are computed re-
cursively in a similar way as in the previous section.

Recall the assumptions of Theorem 1. In order to derive the
convergence analysis of the algorithm in (19), we consider that
the assumptions of Theorem 1 hold true, with the following
slight modifications: X R

» The intersection 2 becomes ) = ﬂn>n0 Q, # (), where
Q, = K, N8, and ), := (Ve pr Ny, Sk ; (Assump-
tion (a’)).

* There exists 71 such that T/n = T;Ll,Vn > n1 (Assump-
tion (b')).

e After a finite number of iterations, say ns, Z;l =
Z,’,LZ,Vn > ng and, for compact notations, we define
ny = max{ng, n1, na} (Assumption (c¢’)).

* The upper bound of the step size equals to 2M], , where
(see equation at bottom of page). (Assumption (d')).

* The set €, now becomes &', with €' := 2 N O, where
Q:=0x...xQand Q = ﬂnzno nkeN njez]m wa-

K
employing the modified input (Assumption (&’)).
Theorem 2:

* Monotonicity: Assume that assumptions
(a’), (1), (¢/), (d"), hold true. It holds that
||wn+1 - QLHG S H/"—Un - @; fel ,V’Il Z ”6:

where G = e,
I
K T
T m—1 ~ 7 ~ 1T ~ 1T
Y an Y7 (’ﬁ X "L)’ w, = [w* y oo Wy

, Where
W, € 8,0 = Mop % &% = M N Q) and

M = rangc{YTZ’TS/ 2)T'm} is an approximation of
M. The last equation states that the algorithm enjoys
monotonicity, in the G norm sense.

* Asymptotic Optimality: Under
(a’), (M), (¢/),(d'), it holds that

diag {4, ..., A}, (Km x Km), A =
S——

Assumptions

lim d(wg nt1,Q,) =0,Vk € N.
n—oc
* Strong Convergence to a point that lies in the Con-
sensus subspace: Consider that (a’), (b), (¢'), (d'), (¢},
hold true it holds that lim,, .o, w,, = Wy, wy € O. Asin
Theorem 1, if we define
« w, = [wT, . .. wT]", it holds that w), € M. In other
words, as in Theorem 1, the estimates for the whole net-
work converge to a point that lies in the consensus sub-
space and the estimate at each node converges to a point
which lies in M.
Proof: The proof is given in Appendix D. [ |

VII. NUMERICAL EXAMPLES

In this section, the performance of the proposed algorithms
is validated within the system identification framework. To the
best of our knowledge, in the literature, there has not been pro-
posed a reduced rank adaptive algorithm, suitable for operation
in diffusion networks. To this end, in order to evaluate the per-
formance of the proposed algorithms, we compare it with a mod-
ified version of the proposed scheme, denoted as subsampled
Adaptive Projected Subgradient Method (SAPSM), where each
node, instead of transmitting the whole estimate vector, at every
time instant, transmits a subset of D coefficients of it. More
specifically, at time instant 1, the first D coefficients are trans-
mitted, at time instant 2, the coefficients #D +1, ..., #2D and
so on. Moreover, the proposed algorithms are compared with

2

. Wk j
Zaeﬂn !

PSL g Prn) ~Plon
°,.7

=

!
ko

szejn Wk,jps;cvj MK (‘Pk,n)“Pk,n

ifHEjejn Wk,j}js;c jm[}'ﬁ(sok,n) —Pin #0

otherwise,
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Fig. 6. Average MSE for the first experiment.

the full rank APSM, i.e., the proposed where the full vector es-
timate is transmitted and with the diffusion based Adapt-Com-
bine LMS (A-C LMS)[9].

In the first experiment, we consider a diffusion network, in
which the number of nodes equals to X = 20. The unknown
vector is of dimension yn = 160. We consider that the input
samples, %, = [y, ..., Uy _m+1]’ , obey the following model
Uk = OkUpn—1 + /1 — 02Xp.n, where 8, is a parameter,
which we will alter throughout the experiments, so as to validate
the proposed schemes in weakly or strongly correlated environ-
ments, and x , is drawn from the Gaussian distribution with
unit variance. The variance of the noise, at each node, equals to
o = 0.01 x &, where & € (0.5, 1], under the uniform distribu-
tion. Furthermore, the combination coefficients are chosen with
respect to the Metropolis rule. Finally, the adopted performance
metric, which will be used, is the average Mean Square Error
(MSE), given by MSE(n) = 1/K >, . \(dg, — 'u,{?n'wk_,n)Q,
and the curves are the result of averaging 100 realizations for
smoothing purposes.

The number of hyperslabs used per time update equals to
g = 4, the step-size is chosen 1. , = 1/2x M, ,, and the width
of the hyperslabs equals to €;, = 1.3 x 0. The weights are set
wg.n = 1/q. The step-size in the A-C LMS equals to 3 x 1073,
so that the algorithm converges to a similar error floor with the
full rank APSM. In the first experiment, we study the perfor-
mance of the proposed scheme (denoted as Proposed 1), with
respect to the dimension of the subspace, within which we seek
for a solution. For this reason, we consider a weakly correlated
environment, so the parameter 8;, € (0,0.5), Yk € N, with re-
spect to the Uniform distribution. Moreover, since the unknown
vector does not undergo changes, the forgetting factor is chosen

= 1. Finally, we assume that I, = 1, i.e., the subspace is up-
dated at each time instant and for the SAPSM ) = 30. From
Fig. 6 it can be seen that even if the dimension of the subspace
takes small values, compared to 1., the Proposed 1 performs sig-
nificantly well. Analytically, the Proposed 1, converges fast and
for the specific choices ) = 10, D = 30 the steady state error
floor is only slightly increased compared to the full rank APSM
and the A-C LMS. If D = 5, then the steady state error floor
increases significantly. Moreover, the Krylov-based algorithms

TABLE I
STEADY STATE DISTANCES

D | |way = wi|? | [, — w2
5 1.21 %104 3.49% 104
10 1.87+10~4 1.26 % 105
20 2.28 x 10—4 1.23 %102
30 2.40 % 10—4 1.22% 105

TABLE II
SQUARED DISTANCE FROM THE CONSENSUS SUBSPACE

D SDCS

5 |26x10-
10 | 211074
20 | 1.9%10~*
30 | 1.9x1074

outperform the SAPSM. Finally, it should be pointed out that the
complexity of the LMS is of order O(m) and the complexity of
the APSM is of order O(gm).

In Table I we present the steady state Mean Square Devia-
tion, i.e., ||Jw,, — w* Uz, as well as the distance of the steady
state estimate from 'w“?F), ie., ||way — 'LU%JF)HQ, where w,, =
1/K Y car Wi, for a large n. It can be observed, that the
smaller the dimension of the Krylov subspace, the smaller the
distance of the estimate from wW[,)F), whereas the mean square
deviation is larger. This is a direct consequence of (4) since, as
one can see in this equation, a smaller D leads to a larger upper
bound of the distance between 'wg,PF) and w., . Finally, in Table II,
we present the steady state squared distance from the consensus
subspace (SDCS), i.e., ||(I,, — BB" )w,,||?, » — oc. It can be
readily seen, that in the steady state every choice of D leads to
a small distance from the consensus subspace.

In the second experiment, Fig. 7, the parameters remain
the same as in the previous one. Nevertheless, here we
examine the Average Excess Mean Square Error (EMSE)
instead of the MSE. The Average EMSE is given by
EMSE := 1/K Y, ca(uf , w. — ug , wy ). From Fig. 7 it
can be seen that the full rank LMS and the APSM converge to a
lower steady state error floor, compared to the algorithms built
around the Krylov subspace rationale. This fact is expected
since in the Krylov based algorithms we seek for a vector lying
in a subspace of lower dimension, and not the unknown one.
However, the Krylov based algorithms converge significantly
faster and, moreover, compared to the full rank algorithms, the
difference in the steady state error is relatively small.

In the third experiment, we consider that the parameters re-
main the same as in the previous experiment, albeit a fixed di-
mension for the subspace, namely DD = 10, is chosen. Our goal
is to study the sensitivity of the algorithm, to the parameter L.
To this end, we set different values to L, or in other words, to
the frequency with which the subspace is updated. From Fig. 8 it
can be readily observed that the smaller the update window, the
faster the convergence, due to the fact that for a small window
we update the estimate of the subspace more often, and we reach
sooner a good approximation of it, compared to the case of a
larger window. Moreover, as in the previous experiment, the
Krylov-based algorithms outperform the sAPSM. Finally, we
should note that the Proposed 1 performs well even for large
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Fig. 7. Average EMSE for the second experiment.
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Fig. 8. Average MSE for the third experiment.

values of L, which makes it appropriate to be adopted in dis-
tributed learning.

In the fourth experiment, we consider a non-stationary envi-
ronment, since, as it is by now well established, a fast conver-
gence speed does not necessarily coincide with a good tracking
ability [28]. To be more specific, we consider that a sudden
change in the unknown parameter vector takes place. So, in
this experiment, we fix L = 1 and D = 10 and we alter
the forgetting factor. From Fig. 9 it can be seen that until the
system undergoes the change, the best performance is achieved
for ( = 1, whereas for smaller { the steady state error floor
is increased. Nevertheless, if { = 1, the algorithm has a long
memory of the old statistics, through which the subspace is
constructed, that have to change and its tracking ability is not
good. On the contrary, the other choices of { provide a good
tracking ability. Obviously, for large L the tracking ability may
be affected, since apart from the forgetting factor, one has to
take into consideration the fact that at time instant n the quanti-
ties sensed at a past time instant are delivered through the net-
work; this is a direct consequence of the strategy adopted in
Section V-A, in order to enhance the information flow. In this
case, we consider that the algorithm is able to monitor abrupt
changes of the orbit (@ ., )nez.,, in order to restart transmit-
ting the input and the desire response. In order to “sense” the

30 T T T T
: : Proposed 1 {=1

Proposed 1 £{=0.999

Proposed 1 {=0.995 ||

Proposed 1 £{=0.99

APSM

sAPSM

A-C LMS

e,

MSE (dB)

-30 i i i i
0 1000 2000 3000 4000 5000
Iteration Number
Fig. 9. Average MSE for the fourth experiment.
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h Proposed 2 D=20
20 |\ Proposed 1 D=10 [
—— APSM
sAPSM

A-C LMS

MSE (dB)
o

2000 3000 4000

Iteration Number

5000

Fig. 10. Average MSE for the fifth experiment.

previously mentioned abrupt changes, we employ the following
metric: || Wg 41 — Wk o ||/ Wh.o — Wi 1], Yk € N, o1, more
specifically, we restart the transmission of the input coefficients
and the desired responses, if this ratio is greater than a threshold,
which is chosen, here, to be equal to 10.

In the fifth experiment, we validate the performance of the
whitening version (denoted as Proposed 2), in a strongly corre-
lated environment. To this end, the parameter f, takes values
inside the interval (0.8,1). We compare the Proposed 1 for D =
10, the Proposed 2, for the following choices D = 10, D = 20,
the sAPSM, the full rank APSM and the A-C LMS. In the A-C
LMS, we choose the largest step-size for which the algorithm
converges, and it equals to 1072, The rest of the parameters re-
main the same as in the previous experiments, and the forgetting
factor which corresponds to the computation of &fn equals to
~ = 1. Fig. 10 illustrates that the performance of the Proposed 1
is degraded due to the highly correlated input. However, by em-
ploying the transformation, which whitens the input (Proposed
2), the performance is significantly enhanced, even if the dimen-
sion is relatively low, compared to the case where we employ the
original input.

Finally, in the sixth experiment, we examine how the perfor-
mance of the Proposed 1 is affected when the Krylov subspace
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Fig. 11. Average MSE for the sixth experiment.

is constructed based on information coming from a single node
(see also Section V-A). To this end, we compare the Proposed 1
in the case where the subspace is constructed using information
from every node, with the same algorithm in the cases where: a)
the optimum node, b) the worst node and c) an arbitrary node,
provide information in order to construct the subspace. IJ equals
to 20 and the rest parameters are the same as in the first experi-
ment. The optimum node is the one with the less correlated input
and the worst node is the one with the most correlated input.
Fig. 11 shows that by using global information the algorithm
converges faster. Nevertheless, the proposed scheme performs
well even in the worst case scenario, where the node with the
most correlated input is used in order to compute the subspaces.
This results is very useful, in large networks, where using global
information may be prohibited.

VIII. CONCLUSIONS

In this paper, the task of distributed reduced rank adaptive
filtering was studied. The algorithms follow the set-theoretic
estimation rationale. At each time instant and at each node, a
closed convex set, which takes the form of hyperslab, is de-
fined and a possible solution is searched within the intersec-
tion of these with a corresponding set of reduced dimension
Krylov subspaces. Thus, a significant reduction of the trans-
mitted number of coefficients to the network is achieved, at only
small performance degradation. Furthermore, since the perfor-
mance may degrade when the input samples are highly corre-
lated, a scheme employing a whitening preprocessing has been
proposed. Full convergence results are presented, and numer-
ical examples verify the robustness of the proposed algorithms
in different scenarios, in the context of the system identification
task.

APPENDIX A
BASIC TooLS OF CONVEX ANALYSIS

A set C C R™, for which it holds that Yaw, ws € C and
Vi € [0,1], twy + (1 — t)ws € C, is called convex. A function
O : R™ — R will be called convex if Vary, w2 € R™ and
Vi € [0, 1] it holds that ©(tw; + (1 — t)w,) < tO(wq) + (1 —
t)O(ws>). The subdifferential of © at an arbitrary point, w, is
defined as the set of all subgradients of @ at w ([43], [44]), i.e.,
00(w) :={s e R" : O(w) + (& — w, s) <O(z),Vz € R™}.

Letus define the distance of an arbitrary point w from a closed
non-empty convex set C. It is given by the distance function

d(-.C) : R™ = [0, +00)
cw e inf{||lw—2|:2zeC},

The projection mapping, Pe onto C, is defined as Pp(w) :=
argmingc|lw — x|/, whereas the projection in the W-norm
sense, where W is an m x m positive definite matrix, is given
via the following optimization Péw) (w) := arg mingec ||w —
z||lw. The projection operator is related to the distance func-
tion, as follows: d(w,C) = ||lw — F¢(w)||. Moreover, the pro-
jection of a point, say w, onto a subspace, say V, is given by
Py (w) = QQ"w, where Q is a matrix whose columns form a
basis for V', whereas the projection of w onto V' in the W-norm
sense equals to PV(,W ) (w) = Q(Q"WQ)Q" Ww. Finally, the
relative interior of a nonempty set, C, with respect to another
one, S, is defined as rig(C) = {w € C : e > 0 with
0 # (Bawg.eqy) NS) C C}, where Bu, <) is the open ball
defined as By, <) := {w € R™ : |lw —wo| < &0}, e.g., [45],
with center wg and radius equal to &g.

APPENDIX B

PROOF OF CLAIM 1

Proof: By basic linear algebraic arguments [46], it can be
verified that the subspace K, is isomorphic and isometric to RY
via the mapping T',, : R” — K,, where T, is the matrix whose
columns form an orthonormal basis for &, .

Take the previously mentioned argument into consideration
and fix a ¢ € K,,. Then notice that

16— Ps,ox, (@)l = _min [|¢—wl]
~ min [|¢ — |
®ES,

=[¢-re.o
=|¢-Turs @) o

where S,, = {weRP :|d, - uTTnﬂ)| < e}

By (21) and the uniqueness of the projection, we obtain
. ~ . T

Ps,n,(#) = TuPs (8) = T.Ps (T,9). @D

which completes our proof.
APPENDIX C
PROOF OF CLAIM 2

Recalling the arguments of Claim 1, it can be verified that

Mk,n = Mkm, (22)

Moreover, it holds that wy 41
to (9) and substituting q;S,M =

TNPS‘,CW (¢k7,71) = PS‘,C,,,/ (¢l¢,,n) :Tn PSk,nﬂKn (¢kﬁ,n)’ and if
left multiply with T°,, 41 and (23) we obtain the desired result.

APPENDIX D
PROOF OF THEOREMS 1 AND 2

= T 1wy n41. Going back
- T
Tngk‘,n’ Psk;,n,ﬁKn (¢k‘,n) =

We will prove Theorem 2, since Theorem 1 is a special case
of it. To be more specific, the properties which will be proved
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in this appendix hold also for Theorem 1, if we substitute the
matrix Z/_ /2y by I,,.

na

A. Monotonicity

h.
First of all let us define i)._* =1|:]€ RE™, Vh, € Q and
h.
hi .,
h, = . . Since ¥n > ny, we have that T:l = Tn+1' =
hin
T,L , it holds that (see also [16]) Tn+1 = Pffm . Fix anode,

say k € N. We have that, Yn > n{

Pf(nl (gok,n

ke § "*’Yk,j‘P‘S‘l’c jﬁf(nl (‘pk,n) — Prn
JETn '

ki1 — hal| = ‘

);;*

However, from the definition of ) and since h, € } = h, €
K, <h, = =Py (h ), Vn > nj by definition. Hence

K n ((pk',n

+/.L]¢,n Zj wk’:j]DSl’c,jﬂf{nl (‘pk,n) - ¢kn
F1€Tn

Hhk,n+1 h ” ‘

) ~ Py, (h)|.
(23)

A well known property of the projection operator, e.g., [23], is
the non-expansivity, i.e., given a non-empty convex set, say C,
HPC(wl) —FPe (’UJQ)” < ||’ll)1 —’ll)QH, le, wo € R™. Combining
the previous with (24) we obtain

R i1 — he]

S (pk’,n + Hk.n Z wk:jPS;\_ jmf{nl (Sok,n) - (pk,,n - h*
JET ’

Gathering the inequalities for every node, we obtain that (see

Theorem 1] and under assumptions (a')—(d’) it can be proved
that

¢1=n + H1n (ngjﬂ wk:{/'PSLjﬂf(,,,,l (Qol,n) - ‘ol,n>

(pK,n + K n (Zjejn wk:J'IDSL{ jﬁf{nl (SoK,n) - soKJL)
hl,n

—b<|| : |-k @9

K

hK,n

Combining (25), (26) obtain

||h‘n+1 - E*” S ”bn - E*H‘Vn Z ’IL6 (26)
From (27) we have
hl,n+1 - i"* hl,n - il*
: < : Y >ng (27
h]&',n-l—l - i"* hKﬁn - i"*

However, if we take into consideration (18) and Vn >
hini1 — (he | (Z* VY (wy g1 — w.) |

77,(]

hi i1 — (il J {Z,L,(I/Q) Y(wA ntl T ﬁl,)J
Having as kick off point the previous equation, it is not

difficult to obtain that Vn > nj,

7 ~
h* Wi n+1 — W,

hl,'n-l—l -
: = : C@8)

~ 7
hi nt1 — h. Wi i1 — W, | ||

Since A is a positive definite matrix ([16]), it is not difficult to
obtam that G is also positive definite. Let us take a closer look
on .. Since by assumption h, € K, N S’ ,Vk € N, vj €

7,n?

j Y > nf we have that there exists h. € R? such that b, =
T h and|’l/)k] —dp | <e.VekeN,je T, n>nj. The
previous equations yield that @/, = Y’z 5,}2/ 2)’T;ylﬁ* =
M, and since ’l/)anil* = ul W, it holds that @, € Sy ;,Vk €
N,n > nj. ’

Now, combining (28) and (29) implies

equation at bottom of page). Following similar steps as in [12, ||'u),,Jrl ||G < ||'w — W, ||G ,Vn > nyg, (29)
b1t Prn T Han (Zjeyn wiiPs nk, (P10) — 9"17%)
hg s Crnt+ UK (Zjejn WKJRSLS.J.QKM (‘PK,n) - ‘PK,n)
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B. Asymptotic Optimality

Let us define the following non-negative cost function Vk €

N
®k,n(h)
ﬁ Zjeﬁ,n wad (‘Pkﬂl? Sl/c,j n K,L)
d (b5, N k). i Ty # 0
0, ifIk,n = wa
(30)
where T = {j € TPin & St and Ly, =

Y e, Wkid(@g 0 S ; N K,), It can be readily seen that
since h, € Q, @k,n(il*) = 0,Yk € N,¥n > nyg. Following
similar steps as in [12] and [34], we have that (11) can be
equivalently written (See equation at bottom of page) where
M = (/M) € (€1,2 — 1) and with O], (¢, ,,) we
denote the subgradient of @, ,,(+) at the point g, ,,. Following
similar steps as in [12], [47] and if assumptions (a’)—(d’) hold
true, it can be proved that

”h_{n Okn(Ppn) =0,k €N 32)
which in turn implies that ([12])
lim d(hi o, Q,) =0,Vk e NV. (33)
This yields that
i ‘hk,ﬂ,H — Py (htnps )H = 0. (34)

However using similar arguments as before with 4, for every

point h that lies in €,, it holds that w = YZ, (1/2) h e Q,.

Hence, if we define w = YTZ 1/2) P, (hk,n+1), we have

) (wk,n+1)H
< | wh ng1 — @]
T L' T 1’
- HY Z3 hysr — Y722 Py (hin “)H

‘ Hhk,n—&-l - P(’zn (hk:n-l-l)

Hwk,nJrl - Pﬁ,,

T L’
< |v7zi.

(35

where the first inequality holds from the definition of the
distance function, as the vectors w, Pg (g pnp1) € Q.
Taking limits in (36) and recalling (35), we conclude that

C. Asymptotic Consensus

Under assumptions (a’)—(d’), the algorithmic scheme
achieves asymptotic consensus, i.e., [27]

im i — bl =0,k €N

It has been proved [27], that the algorithmic scheme achieves
asymptotic consensus, i.e., ||br ., —hi n]| = 0,0 — o0, Vk, 1 €
N if and only if

— Po(h,)|| = 0.

lim |h,
n—o0

(36)

First of all, notice that by, € K,,¥n € Zsy. Since ¢y, ,, =
e N, Gkl gn)hlm is a convex combination of vectors Whjch
belong to K, which is a convex set [45], then ¢, ,, € K.
Hence Py (Prn) = Phns Yk € N,V > nyg. So,

- Sok,,n”

:‘p

||hk,n+1

_Oknl@in) o

Ko, Pron — /\k,n, 2®k«,n(¢k,n)

(M),k,'n(sok,n)

- (pk,n

‘ P

@k,n((f’k'n)
—262,71.(¢k:,'rL)
636,n(§0k,7L)

f(nl Prn — Ak

IN
AS)

2 (-)2‘,’” (‘pk’,n> - on,,n

(ﬂk,??r(‘pk,n) ;

= )\k.,n, 2®k,n((pk,n,) _)07
@;971L(‘pk,7L)

where in the inequality we have used the nonexpan-
sivity of the projection operator onto a closed convex
set and the limit on the last equality holds true as
X Ok (@10 197 ()P0 (1)l (20—
51)(();‘,@(tpkm)/||0k7n(<pk:n)||) — 0 which holds from (33)
and [47]. Now, it can be readily seen that

limy, — oo d(wg 1v1, €2,) = 0. nh_l)& 1hknr1 = @pnll = 0, VK € N G7
hk,n+1 — T ) ||®L,u(<‘9k,n) 3T K13 * 3 \n (31)

if@;«,n(sok,'n) = 09
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If we generalize (38) for the whole network, we have

lim [|h,

n—00

Pnhn” = 0 (38)

Having as kick off point (39) and if we follow similar steps as in
[47] it can be verified that lim (Ix,, — BB )h,,; = 0. The
previous relation implies that

lim | — hipll = 0,VE, 1l € N. (39)
Hence, Vi > ni||wg.n — wy || < ||YT ||Hhk n— Ryl

Taking limits and recalling (40) completes our proof.

D. Strong Convergence

Following similar steps as in Claim 2, it can be proved that
the algorithm in (19) can be equivalently written:

ilk,"l'i'l :(ok,n + rﬁ”\'/” Z wk’IPSL ,(¢k,'rL)_¢k,'rL 3 (40)
jeJ K

where S, ,i={we RP . |dk,n—¢;‘:’nT;/ﬁ;| < e }. Notice that
the algorithm in (41) is a special case of the algorithm proposed
n [12]. The difference is that in the latter, the combined infor-
mation coming from the nodes of the neighborhood is projected
onto a convex set, before the adaptation step. So, the conver-
gence analysis, which took place in [12] holds for the scheme
presented in (9). In order to verify this, we have to examine if the
assumptions, under which the scheme converges, hold here too.
First of all notice that under Assumption (a), 3hg € 9 From the
previous we have that Elh(] € RP such that ho = T h() More-
over, since hy belongs to the intersection of the hyperslabs, it
satisfies |dj » — 'gbf,nh[)\ < €, Vk € N,V¥n > nl. So, we have
that

T T 4 7
g — Wi ho| < e |di; — 9 T ho

<er,Vk e N\)Vj € T.Vn>nj. (41)

From the previous we have that there exists izo € H’? , such
that hy € S, ;,Vk € N.¥j € J,¥n > nj). Thus, @ # 0.
Moreover, i € (0, 2./\/l§m) In [12, Theorem 1.1] it has been
proved, that these two facts, together with Assumption (d) are
the assumptions under which the algorithm converges to a point,
ie.,

lim b, = hg, (42)
- .. T N
where h, = [ho ..... ,ho] € O. Taking into consideration

(43) it follows that lim,, . h’k:,n = izo., Yk € A. Our proof is
complete, since from the previous equation we have that

. . "y 7 -~ 1
lim hg,, = lim T, hy,, = T, ho.
’ n—oo

n—oo

If we write the previous relation for all the nodes of the network
we obtain

lim b, = hg,

n—oc

A AL T
where by, = [(T'n, ho)", ... (T', ho)T] . In words, the al-
gorithm converges to a point, which lies in the consensus sub-
space.

According to the previous discussion we have that w,, =
Gh,.Vn > nl, with G = dlag{YTZ Y2 YTz“/?) ).

—=n’

K
Recall that from Theorem 1, we have lim,, o I,, = h, where

h, € O. Hence,

lim w, = lim Gh, = Gh, = w),. (43)
n—oc 1—> 00
ho
Since consensus holds for h,, i.e., by : |, it can be
ho
w,
readily obtained that w}, = , hence wy, € O. Finally,
wl,

since w), = YTZSQ/ 2)’T;lfzo = w}, € M, which finishes
our proof.
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