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Basic Definitions

An abstract simplicial complex is a geometric subdivision
Γ of the simplex 2V if it has a geometric realization
which subdivides the simplex.

Example:
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Basic Definitions

A simplicial complex is called flag if every minimal
non-face of Γ has at most two elements.

Example of a non-flag subdivision:

{a, b, c} is a minimal non-face
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Basic Definitions

Let fi be the number of the i -dimensional faces of a
simplicial complex Γ.
f -vector: f (Γ) = (f0, . . . , fd−1)
f -polynomial: f (Γ, x) = f0 + f1x + · · ·+ fd−1xd−1

Example:

f (Γ, x) = 6 + 10x + 5x2

Heracleitus II (68th SLC) The local h-vector of the cluster subdivision March 26, 2012 4 / 30



Basic Definitions
The h-vector h(Γ) = (h0, h1, . . . , hd) and the h-polynomial
h(Γ, x) = h0 + h1x + · · ·+ hdxd are defined by

h(Γ, x) =
d∑

i=0

fi−1x i(1− x)d−i , where f−1 = 0.

Example:

h(Γ, x) = 1 + 3x + x2
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Basic Definitions
For a geometric subdivision Γ of the simplex 2V the local
h-polynomial `V (Γ, x) of Γ with respect to V is defined as follows:

`V (Γ, x) =
d∑

i=0

`i x i =
∑
F⊆V

(−1)d−|F |h(ΓF , x).

Example:

`V (Γ, x) = 1 + 3x + x2 − (1 + x)− (1 + x)− 1 + 1 + 1 + 1− 1

`V (Γ, x) = x + x2
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Basic Definitions

Theorem (Stanley)
The local h-polynomial `V (Γ, x) has nonnegative and symmetric
coefficients, equivalently `i ≥ 0 and `i = `d−i for every 0 ≤ i ≤ d.

Thus the local γ-polynomial ξV (Γ, x) of Γ with respect to V can be
uniquely defined by

`V (Γ, x) = (1 + x)d ξV

(
Γ,

x

(1 + x)2

)
=

bd/2c∑
i=0

ξix
i(1 + x)d−2i .

Example:

`V (Γ, x) = x + x2 = x(1 + x)⇒ ξV (Γ, x) = x
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Motivation

Conjecture (Athanasiadis)

For every flag geometric subdivision Γ of the simplex 2V

we have ξV (Γ) ≥ 0.

Its validity implies the validity of Gal’s Conjecture
and the monotonicity property for the γ-vector.

It is proven in dimension 3 and for iterated edge
subdivisions.
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Main Results

For every root system Φ the local γ-vector of

the cluster subdivision Γ(Φ) is nonnegative.

Combinatorial interpretations to the entries

of the local γ-vector of the barycentric

subdivision.
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Cluster Subdivision

Given a root system Φ, the cluster complex ∆(Φ) is a simplicial
complex on the vertex set Φ≥−1 of almost positive roots, having
faces defined by a compatibility relation.
Example for type A2:

Φ = {a1, a2, a1 + a2,−a1,−a2,−a1 − a2} Π = {a1, a2}
Φ+ = {a1, a2, a1 + a2} Φ≥−1 = {a1, a2, a1 + a2,−a1,−a2}
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Cluster Subdivision

The cluster complex of type A2 The cluster complex of type A3

The positive cluster complex ∆+(Φ) is the restriction of
∆(Φ) on the positive roots Φ+. It naturally defines a
geometric subdivision of the simplex, the cluster
subdivision Γ(Φ).
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Cluster Subdivision

Theorem (Athanasiadis, Tzanaki)

h(∆+(Φ), x) =



n∑
i=0

1

i + 1

(n
i

)(n − 1

i

)
x i , if Φ = An

n∑
i=0

(n
i

)(n − 1

i

)
x i , if Φ = Bn or Cn

n∑
i=0

((n
i

)(n − 2

i

)
+
(n − 2

i − 2

)(n − 1

i

))
x i , if Φ = Dn
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Cluster Subdivision

For the type An the h-polynomial is equal to the
Narayana polynomial Cn(x).

Cn(x) =



1, if n = 1

1 + x , if n = 2

1 + 3x + x2, if n = 3

1 + 6x + 6x2 + x3, if n = 4

1 + 10x + 20x2 + 10x3 + x4, if n = 5

1 + 15x + 50x2 + 50x3 + 15x4 + x5, if n = 6

The coefficient of x i , 0 ≤ i ≤ n, is the number of
π ∈ NCA(n) which have n − i blocks.
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Cluster Subdivision
Let I be an n-element index set and Π = {ai : i ∈ I}. The local
h-polynomial `I (Γ(Φ), x) is given by

`I (Γ(Φ), x) =
∑
J⊆I

(−1)|IrJ| h(∆+(ΦJ), x),

where ΦJ is the standard parabolic root subsystem of Φ
corresponding to J .
Example for Φ = A3:

3∑
i=0

`i(A3)x i = C3(x)− C2(x)− C1(x) · C1(x)− C2(x)

+C1(x) + C1(x) + C1(x)− C0(x)
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Cluster Subdivision - Type A

n∑
i=0

`i (Φ)x i =



0, if n = 1

x , if n = 2

x + x2, if n = 3

x + 4x2 + x3, if n = 4

x + 8x2 + 8x3 + x4, if n = 5

x + 13x2 + 29x3 + 13x4 + x5, if n = 6

x + 19x2 + 73x3 + 73x4 + 19x5 + x6, if n = 7

x + 26x2 + 151x3 + 266x4 + 151x5 + 26x6 + x7, if n = 8

bn/2c∑
i=0

ξi (Φ)x i =



0, if n = 1

x , if n = 2, 3

x + 2x2, if n = 4

x + 5x2, if n = 5

x + 9x2 + 5x3, if n = 6

x + 14x2 + 21x3, if n = 7

x + 20x2 + 56x3 + 14x4, if n = 8

Heracleitus II (68th SLC) The local h-vector of the cluster subdivision March 26, 2012 15 / 30



Cluster Subdivision - Type A

Nested and nonnested singletons in NCA(n):

The singleton block {3} is nested, while {7} is nonnested.
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Cluster Subdivision - Type A

Proposition
For the root system Φ of type An the following hold:

• `i (Φ) is equal to the number of partitions π ∈ NCA(n) with i blocks, such that every
singleton block of π is nested,

• ξi (Φ) is equal to the number of partitions π ∈ NCA(n) which have no singleton block
and a total of i blocks.

Moreover, we have the explicit formulas

ξi (Φ) =


0, if i = 0

1

n − i + 1

(n
i

)(n − i − 1

i − 1

)
, if 1 ≤ i ≤ bn/2c

and

`i (Φ) =
i∑

j=1

1

n − j + 1

(n
j

)(n − j − 1

j − 1

)(n − 2j

i − j

)(n − 2j

i − j

)
.

Heracleitus II (68th SLC) The local h-vector of the cluster subdivision March 26, 2012 17 / 30



Cluster Subdivision - Type A

For the combinatorial interpretation of the local
γ-polynomial given by

`V (Γ, x) =

bd/2c∑
i=0

ξix
i(1 + x)d−2i

an equivalence relation in NCA(n) is defined.
Example:

{1, 3}, {2}, {4, 5, 6} {1, 3}, {2}, {4, 6}, {5} {1, 2, 3}, {4, 6}, {5} {1, 2, 3}, {4, 5, 6}
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Cluster Subdivision - Type B

n∑
i=0

`i (Φ)x i =



2x , if n = 2

3x + 3x2, if n = 3

4x + 14x2 + 4x3, if n = 4

5x + 35x2 + 35x3 + 5x4, if n = 5

6x + 69x2 + 146x3 + 69x4 + 6x5, if n = 6

7x + 119x2 + 427x3 + 427x4 + 119x5 + 7x6, if n = 7

bn/2c∑
i=0

ξi (Φ)x i =



2x , if n = 2

3x , if n = 3

4x + 6x2, if n = 4

5x + 20x2, if n = 5

6x + 45x2 + 20x3, if n = 6

7x + 84x2 + 105x3, if n = 7

8x + 140x2 + 336x3 + 70x4, if n = 8

The Dynkin diagram for type B is of the form
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Cluster Subdivision - Type B

Proposition

For the root system Φ of type Bn the following hold:

• `i (Φ) is equal to the number of partitions π ∈ NCB(n) with no zero
block and i pairs {B,−B} of nonzero blocks, such that every positive
singleton block of π is nested,

• ξi (Φ) is equal to the number of partitions π ∈ NCB(n) which have no
zero block, no singleton block and a total of i pairs {B,−B} of nonzero
blocks.

Moreover, we have the explicit formula

ξi (Φ) =


0, if i = 0

(
n

i

)(
n − i − 1

i − 1

)
, if 1 ≤ i ≤ bn/2c.
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Cluster Subdivision - Type D

n∑
i=0

`i (Φ)x i =


2x + 6x2 + 2x3, if n = 4

3x + 18x2 + 18x3 + 3x4, if n = 5

4x + 40x2 + 80x3 + 40x4 + 4x5, if n = 6

5x + 75x2 + 250x3 + 250x4 + 75x5 + 5x6, if n = 7

bn/2c∑
i=0

ξi (Φ)x i =



2x + 2x2, if n = 4

3x + 9x2, if n = 5

4x + 24x2 + 8x3, if n = 6

5x + 50x2 + 50x3, if n = 7

6x + 90x2 + 180x3 + 30x4, if n = 8

The Dynkin diagram for type D is of the form
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Cluster Subdivision - Type D

Proposition

For the root system Φ of type Dn we have

`I (Γ(Φ), x) = (n − 2) · xCn−1(x).

Moreover, we have the explicit formulas

`i (Φ) =


0, if i = 0

n − 2

i

(
n − 1

i − 1

)(
n − 2

i − 1

)
, if 1 ≤ i ≤ n

and

ξi (Φ) =
n − 2

i

(
2i − 2

i − 1

)(
n − 2

2i − 2

)
, for 1 ≤ i ≤ bn/2c.
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Cluster Subdivision

For the exceptional types we have

bn/2c∑
i=0

ξi (Φ)x i =



(m − 2)x , if Φ = I2(m)

8x , if Φ = H3

42x + 40x2, if Φ = H4

10x + 9x2, if Φ = F4

7x + 35x2 + 13x3, if Φ = E6

16x + 124x2 + 112x3, if Φ = E7

44x + 484x2 + 784x3 + 120x4, if Φ = E8.

Corollary

For every root system Φ the local γ-vector of

Γ(Φ) is nonnegative.
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Barycentric Subdivision

Vertices of sd(2V ): F ⊆ V
Faces of sd(2V ): Chains F1 ⊂ F2 ⊂ . . . ⊂ Fn of subsets
of V

Example:
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Barycentric Subdivision

Theorem (Stanley)

`V (sd(2V ), x) =
∑
w∈Dn

xex(w),

where Dn is the set of derangements (permutations with
no fixed points) in Sn and ex(w) = |{i : w(i) > i}|.
This polynomial, known as the derangement polynomial dn(x) of
order n, has been studied by

Brenti (1990)

Stembridge (1992)

Zhang (1995)

Chen, Tang, Zhao (2009).
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Barycentric Subdivision

For the first few values of n we have

dn(x) =



x , if n = 2

x + x2, if n = 3

x + 7x2 + x3, if n = 4

x + 21x2 + 21x3 + x4, if n = 5

x + 51x2 + 161x3 + 51x4 + x5, if n = 6.

Heracleitus II (68th SLC) The local h-vector of the cluster subdivision March 26, 2012 26 / 30



Barycentric Subdivision

Theorem

Let (ξ0, ξ1, . . . , ξbn/2c) be the local γ-vector of the barycentric
subdivision sd(2V ) of the (n− 1)-dimensional simplex 2V . Then ξi is
equal to each of the following:

(i) the number of permutations w ∈ Sn with i runs and no run of
length one,

(ii) the number of derangements w ∈ Dn with i excedances and
no double excedance,

(iii) the number of permutations w ∈ Sn with i descents and no
double descent, such that every left to right maximum of w is
a descent.
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Barycentric Subdivision

bn/2c∑
i=0

ξix
i =


x , if n = 2, 3

x + 5x2, if n = 4

x + 18x2, if n = 5

x + 47x2 + 61x3, if n = 6

For example we have the following permutations in S4

with no run of length one

1234 13.24 14.23
23.14 24.13 34.12.

Such permutations have been studied by Gessel.
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Open Problems

A more conceptual proof for the cluster subdivision
of type D in the spirit of those of type A and B .

Uniform interpretations for `i(Φ) and ξi(Φ) for all
types Φ.

Real-rootness for the local h-polynomial and the
local γ-polynomial of the cluster subdivision.

The local h-polynomial and the local γ-polynomial
of the barycentric subdivision of an arbitrary
subdivision of the simplex.
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Thank you all for your attention!
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