

"Who killed the Cretan dwarfs?"

The relation between Late Quaternary environmental changes and the extinction of the Cretan megafauna

SCIENCE OUNDATION

Vassiliki Lianou

National and Kapodistrian University of Athens

European Union European Social Fund

MINISTRY OF EDUCATION & RELIGIOUS AFFAIRS M A N A G I N G A U T H O R I T Y

Co-financed by Greece and the European Union

Island biodiversity and cultural evolution

Some famous dwarfs

Cretan Dwarf Elephant -Mammuthus creticus in Emmen Zoo, the Netherlands

Cypriot Dwarf Hippopotamus -Hippopatamus minor in Natural History Museum of Vienna

Insular dwarfism

- Is a form of phyletic dwarfism.
- Reduction in size when their population's range is limited to a small environment (e.g. islands).
- Has occurred many times throughout evolutionary history (e.g. dinosaurs: Europasaurus, modern animals: elephants).
- This "island genetics" artefacts can occur also in: caves, desert oases and isolated valleys or mountains ("sky islands").

Insular dwarfism

Follows the general "island rule" (Van Valen, 1973):

when mainland animals colonize islands, small species tend to evolve larger bodies and large species tend to evolve smaller bodies.

But ... why studying the island dwarfs?

- Islands harbour a significant percentage of the world's biodiversity and cultural heritage sites.
 Still, our knowledge on islands is limited.
- Islands are numerous, with multiple variations, and therefore they are appropriate places to test specific hypothesis.
- Many insular animals (e.g. the larger vertebrates) play an important role in human societies.
- During the geologically recent past (Late Pleistocene -Holocene) most island ecosystems degraded due to natural and/or human-induced changes.

Ok! Then, where to study them?

- 🗸 Eastern Mediterranean Sea
- Indian Ocean
- Western Pacific Ocean

Luzon & Masbate

Madagascar & Mauritius

Crete & Karpathos

Cyprus

Ok! Then, where to study them?

Indian Ocean

Crete & Karpathos

Cyprus

✓ Western Pacific Ocean

Eastern Mediterranean Sea

- Different geologic, biogeographic and ethnographic background.
- Colonized by humans during different periods (800 ky B.P. -1700 A.D.).

Luzon & Masbate

ISOLARIO is a multidisciplinary research

5 countries

(Greece, Netherlands, USA, Switzerland, Philippines)

11 partners (Universities, Institutes, Museums)

3 teams

- Earth Sciences (spatio-temporal data)
- Life Sciences (species in relation to their environment)
- Humanities (contribution of animals to the culture)

ecosystem components Team 2 environmental eco-morphology of insular animals changes Team taxonomical insular identifications palaeoenvironmen fossil sites Team 3 island ethnozoology

Coordinator: Ass. Prof. X. Drinia

Everything is correlated to everything!

Why Crete?

- Numerous fossil sites excavated and already studied.
- Several marine cores available.
- Proximity to archeological sites.
- It is a nice and cheap island !

Stratigraphic & palaeoenvironmental research on Crete

to correlate the response of fossil Cretan mammals to environmental changes

to track evidence of the first human settlers on Crete.

Human Arrival - Interpetation of Charcoal Study

Stratigraphic & palaeoenvironmental research on Crete

to correlate the response of fossil Cretan mammals to environmental changes

W.P. 1. Reconstruction of Palaeogeography
W.P. 2. Bio-chrono-stratigraphic analyses
W.P. 3. Analyses of palaeobiological models
W.P. 4. Palaeoclimate

Necessary to apply a multi-proxy approach combining data from stratigraphy, sedimentology, (micro)palaeontology, palynology, geochronology and geomorphology.

Field work

- Sediments cores in lakes
 & coastal environment
- Marine sediment cores
- Excavations in selected sites

Dirk Hoffmann drilling sediments for OSL measurements (site Bali)

Lee Arlond counting the background radiation for OSL (site Katharo)

Fossil mouses & deers (site GERANI)

Fossil bones of Deer-candia (cave Liko)

More to be done ...

Bio-chrono-stratigraphic analysis

- micropalaeontological, palynological & geochemical analysis
- radiocarbon dating
- date several localities with fossil vertebrates

Palaeo- reconstructions

- sea-level variations
- environmental changes (pollen, ostracods, forams)
- climatic changes (δ¹⁸Ο, δ¹³C in forams & ostracods)

Some famous dwarfs

Elephas Falconeri - Siracusa - Museo Archeologico

Thank you!

Questions?

Suggestions?