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Abstract. We prove that the semistability growth of hyperbolic groups is linear,
which implies that hyperbolic groups which are sci (simply connected at infinity) have
linear sci growth. Based on the linearity of the end-depth of finitely presented groups we
show that the linear sci is preserved under amalgamated products over finitely generated
one-ended groups. Eventually one proves that most non-uniform lattices have linear sci.

1. Introduction. The metric spaces (X, dX) and (Y, dY ) are quasi-
isometric if there are constants λ, C and maps f : X → Y , g : Y → X
(called (λ,C)-quasi-isometries) such that

dY (f(x1), f(x2)) ≤ λdX(x1, x2) + C, dX(gf(x), x) ≤ C,
dX(g(y1), g(y2)) ≤ λdY (y1, y2) + C, dY (fg(y), y) ≤ C,

for all x, x1, x2 ∈ X and y, y1, y2 ∈ Y .

Definition 1.1. A connected locally compact locally simply connected
topological space X with π1X = 0 is simply connected at infinity (abbrevi-
ated sci, and one also writes π∞1 X = 0) if for each compact k ⊆ X there
exists a larger compact k ⊆ K ⊆ X such that any closed loop in X rK is
null homotopic in X r k.

The sci is a fundamental tameness condition for non-compact spaces,
as it singles out Euclidean spaces among contractible manifolds, following
classical results of Stallings and Siebenmann. The concept of sci of finitely
presented groups goes back at least to Siebenmann’s thesis [25] and seems
to first appear in its present form in Houghton’s paper [13] (see also [19, 4]),
as follows:

2010 Mathematics Subject Classification: 20F65, 20F67, 20F69, 22E40, 57M50.
Key words and phrases: simple connectivity at infinity, quasi-isometry, end-depth, lattices
in Lie groups, amalgamated products.

DOI: 10.4064/fm228-1-4 [47] c© Instytut Matematyczny PAN, 2015



48 L. Funar et al.

Definition 1.2. A finitely presented group G is simply connected at
infinity (abbreviated sci) if for some (equivalently any) finite complex XG

with π1XG = G, its universal covering X̃G is sci.

The group Z2 is obviously not sci. More interestingly, M. Davis (see
e.g. [9]) constructed word hyperbolic groups G (of virtual cohomological
dimension n ≥ 4 by the results of Bestvina and Mess from [1]) which are
not sci.

All groups considered here will be finitely presented (unless otherwise
explicitly stated), and a system of generators determines a word metric on
the group. Although this depends on the chosen generating set, different
word metrics are quasi-isometric. In [10] we enhanced the topological sci
notion in the case of groups by taking advantage of this metric structure.

Definition 1.3. Let X be a sci non-compact metric space. The sci
growth VX(r) (called rate of vanishing of π∞1 in [10]) is the infimal N(r) with
the property that any loop in the complement of the metric ball B(N(r))
of radius N(r) (centered at the identity) bounds a 2-disk outside B(r).

Remark 1.4. It is easy to construct examples of metric spaces with
arbitrarily large VX .

It is customary to introduce the following (rough) equivalence relation
on real valued functions: the real functions f and g are equivalent, denoted
by f ∼ g, if there exist constants ci, Cj for i = 1, 2, 3 (with c1, c2 > 0) such
that:

c1f(c2x) + c3 ≤ g(x) ≤ C1f(C2x) + C3 for all x.

It is proved in [10] that the (rough) equivalence class of VX(r) is a quasi-
isometry invariant. In particular, if a finitely presented group G is sci, then
the (rough) equivalence class of the real function VG = V

X̃G
is a quasi-

isometry invariant of G, where X̃G is the universal covering space of any
finite complex XG with π1(XG) = G.

If a finitely presented group G is sci and VG is a linear function, we
will say that G has linear sci. In contrast with the abundance of equiva-
lence classes of geometric invariants of finitely presented groups (like group
growth, Dehn functions or isodiametric functions), the metric refinements
of topological properties seem highly constrained. We already found in [10]
that many cocompact lattices in Lie groups and in particular geometric
3-manifold groups have linear sci. The aim of this paper is to further ex-
plore this phenomenon by considerably enlarging the class of groups with
linear sci. Our first result is:

Theorem 1.5. Word hyperbolic groups which are sci have linear sci.
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Let us recall that a group G is one-ended (or 0-connected at infinity)
if, for any compact subset L of the Cayley graph XG of G, there exists a
compact subset K ⊃ L such that any two points outside K can be joined
by a path contained in XG r L.

If H is a subgroup of two groups G1 and G2, the amalgamated product
G1∗HG2 is the quotient of the free product of G1 and G2 where the copies of
H in G1 and G2 are identified. If H and K are isomorphic subgroups of G1,
the HNN-extension G1∗H is the quotient of the free product G1 ∗ 〈t〉, where
H is identified with t−1Kt and 〈t〉 denotes the free cyclic group generated
by t.

We next show that the class of groups with linear sci is closed under
amalgamated free products known to preserve the sci.

Theorem 1.6.

(1) Let G1 and G2 be one-ended finitely presented groups with linear sci,
and H be a finitely generated subgroup of G1 and G2 with one end.
Then the amalgamated free product G = G1 ∗H G2 has linear sci.

(2) Let G1 be a finitely presented group with linear sci, and H,K be iso-
morphic finitely generated subgroups with one end. Then the HNN-
extension G = G1∗H has linear sci.

Theorem 1.6 is similar to (but subject to stronger restrictions than) the
results obtained by Mihalik and Tschantz [21, 22] in the context of semista-
bility. Notice that the sci is not preserved under amalgamated products over
multi-ended subgroups (see [14]).

Previous results of [10] dealt with all cocompact lattices in connected
Lie groups but the solvable ones. We now consider non-uniform lattices.
Our main result in this direction is:

Theorem 1.7.

(1) Let G be a semisimple Lie group for which the associated symmetric
space G/K is of dimension n ≥ 4 and of R-rank greater than or
equal to 2. Let Γ be an irreducible, non-uniform lattice in G of Q-
rank one. Then Γ is sci with linear sci.

(2) Every lattice Γ ⊂ SO(n, 1), n ≥ 2, has linear sci.

Remark 1.8. We believe that the last result also holds for R-rank 1
semisimple Lie groups and for non-uniform lattices of Q-rank > 1. Further,
if moreover strongly polycyclic groups had linear sci, then all lattices in Lie
groups (of sufficiently large dimension) would have linear sci.

The results of this paper naturally lead to the question of the existence
of sci groups with superlinear sci growth. It seems still unknown whether
sci CAT(0) groups have linear sci.



50 L. Funar et al.

2. Proof of Theorem 1.5

2.1. Preliminaries on hyperbolic groups. Let (X, d) be a geodesic
metric space, which in our case will be the Cayley graph of a finitely gener-
ated group G endowed with the word metric induced by a finite generating
system. Let γ be a geodesic path in X, possibly infinite. For any x, y ∈ γ,
we denote by [x, y]γ the subpath of γ that connects x with y. When γ is
finite, we denote by `(γ) the length of the path γ.

A geodesic triangle in X is δ-slim if every side is contained in the
δ-neighborhood of the union of the other sides. The group G is δ-hyperbolic,
for some δ ≥ 0, if all geodesic triangles in X are δ-slim. The group G is hy-
perbolic if it is δ-hyperbolic for some δ ≥ 0. It is well known that hyperbolic
groups are finitely presented.

Suppose from now on that G is a δ-hyperbolic group and XG is its
Cayley complex associated with a finite presentation P = 〈S | R〉. We
will only consider geodesics within the Cayley graph, that is, the 1-skeleton

X
(1)
G of XG. Notice that while the Cayley complex may change when we add

words equal to the identity to the relators in P, the Cayley graph remains
unchanged.

Bestvina and Mess [1] proved the following crucial fact, which was pointed
out by Mihalik:

Proposition 2.1 ([1]). Let G be a hyperbolic one-ended group. There is
a constant c ≥ 0 such that for all x ∈ XG there exists an infinite geodesic
ray issuing from the identity of G which passes within c of x.

We say that two geodesic rays are asymptotic if their images in XG are a
finite Hausdorff distance apart. This defines an equivalence relation on the
collection of geodesic rays in XG. The boundary ∂XG of XG is the collection
of equivalence classes, under this relation, of geodesic rays in XG. Unless
otherwise stated, all geodesics considered will be assumed to be unit speed
geodesics.

We say that XG satisfies Rel(M) for some M > 0 if there exists L > 0
such that for all R > 0 and x, y ∈ XG with d(x, 1) = d(y, 1) = R and
d(x, y) ≤ M there exists a path of length at most L that connects x and y
outside the ball B(R− c), where c is the constant of Proposition 2.1. It will
be convenient to say that then XG satisfies Rel(M) with constant L. The
significance of Rel(M) is revealed in the following:

Proposition 2.2 ([1]). LetG be a hyperbolic one-ended group. If Rel(M)
fails for some M > 0, then ∂G contains a global cut point.

Combining this with a result of Bowditch, Svenson and Swarup [3, 27, 26]
which states that ∂XG has no global cut points, we derive that every one-
ended hyperbolic group satisfies Rel(M) for any M > 0.
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2.2. Semistability and simple connectivity at infinity. The aim of
this section is to put the sci growth into a more general context. Recall that
a ray in a non-compact topological space X is a proper map γ : [0,∞)→ X.
As above we consider X to be a connected locally compact locally simply
connected topological space. Two rays γ1 and γ2 converge to the same end
of X if for any compact C ⊂ X there exists R such that γ1([R,∞)) and
γ2([R,∞)) lie in the same component of X r C. The set of rays under this
equivalence relation is the same as the set of ends of X.

Definition 2.3. An end of X is semistable if any two rays of X con-
verging to this end are properly homotopic. This is equivalent (see e.g. [11])
to the following: for any ray γ converging to the end and for any n ≥ 0,
there exists N ≥ n such that any loop based on a point of γ with image
outside the metric ball B(N) of radius N and fixed center can be pushed
(rel γ) to infinity by a homotopy in X rB(n).

A topological space is semistable if all its ends are semistable. This defini-
tion was extended to groups: A finitely presented group G is semistable if for
some (equivalently any) finite complex XG with π1(XG) = G its universal

covering X̃G is semistable.

Many classes of groups are known to be semistable (see e.g. [21, 20] and
also [3, 27, 26] for the case of hyperbolic groups) but examples of finitely
presented groups which are not semistable are still unknown. There is a
well-defined notion of topological fundamental group at infinity associated
to a semistable end of a group (see [12]). Now, much as in [10], we consider
the following metric refinement of semistability:

Definition 2.4. Let X be a non-compact metric space, e an end of X,
and γ a ray converging to e. The semistability growth function Se(r) is the
infimal N(r) with the following property: for any R ≥ N and any loop l
based on γ which lies in X rB(N) there exists a homotopy rel γ supported
in X rB(r) which moves l to a loop in X rB(R).

Set SG for supe Se, with e running over the set of ends of X̃G, where
XG is a finite complex with fundamental group G, whenever this is defined.
It is not difficult to see that the equivalence class of SG is a well-defined
quasi-isometry invariant of the finitely presented group G.

The principal result of this section is the following immediate connection
between sci growth and semistability growth:

Proposition 2.5. Assume that G is a finitely presented sci group. Then
VG = SG.

Proof. For given r, as the space X̃G is sci there exists some large enough
N(r) so that any loop within X̃G r B(N(r)) bounds a disk outside B(r).
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Let l be a loop not intersecting B(SG(r)). By the semistability assumption

one can homotope l in X̃G r B(r) to a loop l′ lying within X̃G r B(N(r)).
But l′ bounds a disk outside B(r), and hence l bounds a disk outside B(r).
This proves that VG(r) ≤ SG(r).

For the reverse inequality let l be a loop based at γ(VG(r) + ε) (for
arbitrarily small ε) outside B(VG(r)), where γ is a given ray. Then l bounds
a disk outside B(r), which yields a nullhomotopy of the based loop l to the
base point p. We then push p along γ as far as we want. This proves that
SG(r) ≤ VG(r).

It follows that Theorem 1.5 is an immediate consequence of the more
general

Theorem 2.6. The semistability growth of word hyperbolic groups is
linear.

2.3. Proof of Theorem 2.6. Consider first the case when G is a one-
ended hyperbolic group. Let δ be the hyperbolicity constant for a Cayley
complex XG of G, and let c be the constant provided by Proposition 2.1. By
Proposition 2.2 and the absence of cut points (see [3, 27, 26]), XG satisfies
Rel(M) for some M > 6c + 2δ + 3 with constant L > 2c + 4. Without loss
of generality we can assume that XG is associated with a presentation of
G that contains as relators all words of length less than 2L + 4c which are
equal to the identity in G. In this section, unless stated otherwise, the balls
we consider will be centered at the identity.

Let n ∈ Z+ and γ be a geodesic ray in XG that starts from the identity.
We will show that every loop f based at a point x ∈ γ and which lies outside
B(n + 2c) can be pushed rel γ arbitrarily far away by a homotopy outside
B(n).

Let p, q be two adjacent vertices of f , and r = d(p, 1) > n + 2c. There
exist unit speed geodesic rays γ0 and γ1 issuing from the identity which pass
within c of p and q, respectively.

Following [1, Prop. 3.2] we now establish:

Lemma 2.7. For every integer i ≥ 0, there exists a path fi from γ0(r+ i)
to γ1(r + i) such that:

(1) The path fi lies outside B(r + i− c).
(2) For any j ∈ {0, 1, . . . , Li}, there is a unit speed geodesic ray γj/Li

issuing from the identity such that

γj/Li(r + i) ∈ fi,

and for j < Li − 1,

d(γj/Li(r + i), γ(j+1)/Li(r + i)) ≤M.
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Proof. We use induction on i. From the triangle inequality we obtain
d(γ0(r), p) ≤ 2c and d(γ1(r), q) ≤ 2c+1, so that d(γ0(r), γ1(r)) ≤ 4c+2 < M .
By property Rel(M), there is a path f0 of length at most L which joins γ0(r)
to γ1(r) outside B(r − c), hence the claim holds for i = 0.

Assume now that the result holds for some i ≥ 0. By property Rel(M),
for any j ∈ {0, 1, . . . , Li−1}, there is a path αj : [0, L]→ XG, of at most unit
speed, that joins γj/Li(r+ i) to γ(j+1)/Li(r+ i) and lies outside B(r+ i− c).

Next, for any k ∈ {1, . . . , L − 1}, there exists a geodesic ray γ′k issuing
from 1 that passes within c of αj(k). Let yk ∈ γ′k be a closest point to αj(k).
Then d(yk, αj(k)) ≤ c, so that d(yk, 1) ≥ r + i − 2c. It follows that there
exists zk ∈ γ′k with d(zk, 1) ≥ r + i+ 1 and d(zk, yk) ≤ 2c+ 1. We therefore
obtain d(zk, zk+1) ≤ 6c+ 3. As the geodesic triangle of vertices 1, zk, zk+1 is
δ-slim, we derive that

d(γ′k(r + i+ 1), γ′k+1(r + i+ 1)) ≤ 6c+ 2δ + 3 < M.

Therefore, from Rel(M) there exists a path of length at most L which lies
outside B(r + i + 1 − c) and joins γ′k(r + i + 1) to γ′k+1(r + i + 1). The
concatenation of these paths yields the desired fi+1. We set γ(jL+k)/Li+1 to
be the geodesic ray γ′k, thereby concluding the induction step. Notice that

`([γj/Li(r + i), γ(j+1)/Li(r + i)]fi) ≤ L.
Let P,Q be two geodesic arcs joining p and q to γ0(r) and γ1(r), respec-

tively. For any N ≥ 0, let ΦN (p, q) be the closed oriented loop obtained by
concatenation of P , γ0([r, r+N ]), fN , γ1([r, r+N ])−1, Q−1 and the edge qp.

Lemma 2.8. The loop ΦN (p, q) is null homotopic outside B(n) for N≥0.

Proof. The closed loop Φ0(p, q) has length at most L + 4c + 2 and lies
outside B(r− c−1). By our hypothesis on the group presentation, this loop
bounds a 2-cell A0 in the Cayley complex, thereby proving the claim for
N = 0.

Now, for any i ∈ {0, 1, . . . , N − 1}, let Φi be the concatenation of the
four paths γ0([r + i, r + i+ 1]), fi+1, γ1([r + i, r + i+ 1])−1, and f−1i . Then
ΦN (p, q) is homotopic to the product of Φ0(p, q) and Φ0Φ1 · · ·ΦN−1. We
can further decompose each Φi as the composition of loops Φi(j) consisting
of the concatenation of the following four paths: γj/Li([r + i, r + i + 1]),

[γj/Li(r + i+ 1), γ(j+1)/Li(r + i+ 1)]fi+1
, γ(j+1)/Li([r + i, r + i+ 1])−1, and

[γj/Li(r + i), γ(j+1)/Li(r + i)]−1fi .

Recall from above that `([γj/Li(r + i), γ(j+1)/Li(r + i)]fi) ≤ L. For fixed
i and j, let αj : [0, L]→ XG denote a path with image

aj([0, L]) = [γj/Li(r + i), γ(j+1)/Li(r + i)]fi .

Then aj has at most unit speed and lies outside B(r + i − c). For any k
in {0, 1, . . . , L− 1}, denote by yk a point on the geodesic γ′k = γ(jL+k)/Li+1
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which is closest to aj(k), and by βk a geodesic path that joins αj(k) to yk.
Then d(yk, aj(k)) ≤ c and

r + i− 2c ≤ d(yk, 1) ≤ L/2 + r + i+ c.

Hence d(yk, γ
′
k(r+i+1)) ≤ L/2+c+1 and the path [yk, γ

′
k(r+i+1)]γ′k lies out-

side B(r+ i− 2c). Therefore, the closed loop obtained by concatenating βk,
[yk, γ

′
k(r+i+1)]γ′k , [γ′k(r+i+1), γ′k+1(r+i+1)]fi+1

, [γ′k+1(r+i+1), yk+1]γ′k+1
,

βk+1, and [αj(k), αj(k+1)]αj has length at most 2L+4c−1 and lies outside
B(r + i − 2c). So, it bounds a 2-cell Ai,j(k) in the Cayley complex outside
B(n). The union Ai,j =

⋃
k∈{0,1,...,L−1}Ai,j(k) of all these 2-cells is the image

of a disk filling the loop Φi(j) outside B(n). This proves the lemma.

The composition of all loops of the ΦN (p, q) for p, q successive vertices of
the loop f is then freely homotopic within XG r B(n) to a loop consisting
of concatenations of paths of the form fN which lie outside B(r+N − c). It
follows that for any N ≥ 0 our initial loop f ⊂ XGrB(n+2c) is homotopic
rel γ to a loop in XG rB(r +N − c) by a homotopy outside B(n).

Eventually, when G is not one-ended, we work on the connected compo-
nents of XG r B(n + 2c). This proves Theorem 2.6. Another proof can be
given following the arguments from [2, 15, 16].

3. Proof of Theorem 1.6

3.1. Preliminaries on the end-depth. The sci and its refinement
(the sci growth rough equivalence class) are 1-dimensional invariants at in-
finity for a group G, in the sense that they take care of loops and disks.
The 0-dimensional analogue of the simple connectivity at infinity is the con-
nectivity at infinity, namely the one-endedness. One could adapt the notion
of sci growth to the growth of an end—already considered by Cleary and
Riley (see [6]). This leads to the following metric refinement which is the
0-dimensional counterpart of the sci growth:

Definition 3.1. Let X be a one-ended metric space. The end-depth
V0(X) of X is the infimal N(r) with the property that any two points
which sit outside the ball B(N(r)) of radius N(r) can be joined by a path
outside B(r).

If G is a finitely generated one-ended group, then the end-depth of G is
the (rough) equivalence class of the real function V0,G = V0(XG), where XG

is the Cayley graph of G associated to a finite generating set.

In the same way one can define the end-depth of a specific end of a
space or finitely generated group which are not necessarily one-ended. In
[23] it is proved that the (rough) equivalence class of V0,G is a well-defined
quasi-isometry invariant of one-ended finitely presented groups. Examples of
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groups whose Cayley graphs have dead-ends (i.e. end-depth functions strictly
larger than x + c for any c) were obtained in [6]. Our second result shows
that the (rough) equivalence class of the end-depth is not meaningful:

Proposition 3.2. Every finitely generated one-ended group has linear
end-depth. More precisely we have the inequality

V0(XG)(r) ≤ 2r for large enough r,

where XG denotes the Cayley graph associated to a finite generating set of
the group G.

We postpone the proof of this proposition to the end of this section.

3.2. End of the proof of Theorem 1.6. Consider the amalgamated
product G = G1 ∗H G2. Let X1 and X2 be the standard 2-complexes asso-
ciated to some finite presentations of G1 and G2, respectively. Let SH be a
finite set of generators of H which are represented by a wedge of loops Y in
both X1 and X2. The space X obtained by attaching X1 and X2 along Y
has fundamental group G. Let CH be the Cayley graph of H corresponding
to the generators SH . The image of Ỹ in X̃i is then homeomorphic to CH .
Furthermore the universal covering X̃ is constructed from coset copies of
the universal coverings X̃1 and X̃2 which are attached along copies of CH .

We consider a metric ball B(r) of radius r in X̃ centered at a fixed point.

By compactness, B(r) intersects only finitely many copies of X̃1 and X̃2.

Since X̃1 and X̃2 have linear sci, there exists a constant c such that any loop
lying in one copy of either X̃1 or X̃2 which is outside B(cr) is contractible
by a nullhomotopy outside B(r).

Since the one-ended group H has linear end-depth by Proposition 3.2,
one can find a constant c1 such that any two points of a copy of CH lying
outside B(c1r) can be connected by a path within that copy of CH not
intersecting B(cr).

The proof that any loop of X̃ which lies outside B(c1r) bounds a disk
outside B(r) is now standard, following [14]. Any edge loop L starting at
g ∈ G can be written as a word ga1 · · · an, with ai ∈ G1 when i is odd and
ai ∈ G2 when i is even, such that the equality a1 · · · an = 1 holds in G. The
structure theorem for amalgamated products implies that there exists some
i such that ai ∈ H (see [18]). Thus the edge subpath l corresponding to the
element ai ∈ H starts and ends in the same copy of CH .

We will show that l can be homotoped in X̃ rel end points into this copy
of CH . As L lies outside B(c1r), the end points of l are outside B(c1r) and
by the above argument they can be connected by some path p lying within
the same copy of CH and which does not intersect B(cr). The resulting
loop l∪p obtained by gluing together l and p at their common end points is
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therefore contained in one copy of either X̃1 or X̃2. Moreover, l∪p lies in the
complement of B(cr). By hypothesis, Gi have linear sci, and thus l ∪ p can
be contracted off B(r). This establishes the claim. The word associated to
the path p belongs to H and it can be absorbed into ai−1. Thus we obtain a
free homotopy of L outside B(r) to a loop L′ starting at g which corresponds
to a word strictly shorter than that of L. Then, by induction on n, we can
decrease the length n until the resulting loop has n = 1. This proves the
first part of Theorem 1.6.

In order to prove the second part let us recall the HNN construction.
If H is a finitely generated subgroup of the finitely presented group G1,
and f : H → G1 is a monomorphism from H into G1, we set K = f(H).
Suppose that H is generated by a1, . . . , an and denote by ci the generators
f(a1), . . . , f(an) of K. Let

〈b1, . . . , bm, a1, . . . , an, c1, . . . , cn | p1 = 1, . . . , pk = 1〉
be a presentation for G1. Then the HNN-extension G = G1∗H of G1 by f
has the presentation

〈b1, . . . , bm, a1, . . . , an, c1, . . . , cn, t | pi = 1 for i ≤ k, cj = t−1ajt for j ≤ n〉.
Consider the 2-complex X1 associated to the given presentation of G1. It

contains two wedges of circles YH , YK associated to finite sets of generators
of H and K. Consider the space X obtained from a copy of X1 and a
copy of YH × [0, 1] where YH × {0} is identified with the copy of YH in X1

and YH × {1} is identified with the copy of YK in X1 by means of f . The

universal covering space X̃ of X can be constructed from coset copies of X̃1

and CH × [0, 1], where CH denotes the Cayley graph of H. As above, CH is

the image of ỸH inside X̃1.
As in the case of an amalgamated product above, the key tool is Britton’s

lemma giving the structure of an HNN-extension which we state as follows.
Suppose we have the equality g0t

i1g1t
i2 · · · tingn = 1 in G, where gk ∈ G1.

Then, for some k, either ik > 0, ik+1 < 0, and gk is in K, or else ik < 0,
ik+1 > 0, and gk is in H.

We denote by B(r) the metric ball centered at the identity in X̃. Since

each copy of X̃1 has linear sci, there is c such that any loop in X̃1 outside the
metric ball B(cr) contained in one copy of X̃1 bounds a disk not intersecting

B(r). The metric ball B(cr) intersects only finitely many copies of ỸH×[0, 1].
By Proposition 3.2, since H is one-ended, one can choose c large enough such
that any two points of one copy of ỸH × [0, 1] which lie outside B(cr) can
be joined by a path within this copy, not intersecting B(r).

Let L be an edge loop in X̃ r B(c2r). This loop can be represented by
a word g0t

i1g1t
i2 · · · tingn, where gj ∈ G1 and which is equal to 1 in G.

If
∑n

j=1 |ij | = 0, then the loop is contained in one copy of X̃1, and thus
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is contractible off B(r), by hypothesis. When
∑n

j=1 |ij | > 0, let k be the
one provided by Britton’s lemma in the form stated above. Then the edge
path corresponding to the word tsgn(ik)gkt

sgn(ik+1) can be closed in either
CH or CK by means of a path with the same end points which does not
intersect B(cr). Here sgn(i) denotes the sign of the non-zero i. We obtain a

loop lying in a copy of X̃1 outside B(cr), which can therefore be contracted
outside B(r). Thus the loop L is homotopic outside B(r) to a new loop for
which the quantity

∑n
j=1 |ij | dropped off by two units. The claim follows by

induction.

Remark 3.3. If Gi are one-ended sci and H is finitely generated multi-
ended, then G1 ∗H G2 is one-ended but not sci according to Jackson [14].

3.3. Proof of Proposition 3.2. The first step is the following lemma:

Lemma 3.4. In a homogeneous locally finite one-ended graph, through
any point p passes a discrete geodesic, i.e. an isometrically embedded copy
of the integers.

Proof. Since the graph is unbounded, for any n ∈ N there exist two
vertices at distance 2n, joined by a geodesic segment un, un−1, . . . , u−n. By
homogeneity, we can choose as u0 a fixed base point u0 = x0. Now, this is
true for any n ∈ N, and since the graph is locally finite, there exists, by a
compactness argument (e.g. diagonal extraction), the desired geodesic.

Now, Proposition 3.2 follows from the following result:

Proposition 3.5. Let X be a graph as before. Let r ∈ N and K be a
finite subset of X whose diameter is at most 2r. Denote by C a connected
component of X r K. Then for any point x in C, we have the following
alternative: either

• x belongs to a geodesic ray (i.e. an embedded copy of the natural
numbers) of X within C (and this in particular implies that C is
infinite), or else
• the distance from x to K is at most r, and C is bounded.

Proof. Let x be a point of C. Then, by Lemma 3.4, there exists a discrete
geodesic (un) with n ∈ Z such that u0 = x. If x does not belong to any
geodesic ray contained in C, then one can find n and m > 0 (both minimal)
such that un and u−m belong to K. Since the diameter of K is by hypothesis
≤ 2r, one has m + n ≤ 2r. This means that the distance d(x,K) from x
to K is min{m,n} ≤ (m+ n)/2. Hence x is within r of K.

End of the proof of Proposition 3.2. Whenever K is a ball B(r) of radius
r centered at the neutral element of the Cayley graph of the group G, Propo-
sition 3.5 implies that any bounded connected component of XG r B(r) is
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included in the ball B(2r) having the same center and radius 2r. In partic-
ular, V0(r) ≤ 2r.

An alternative proof of Proposition 3.2. Suppose that there is a positive
integer r ≥ 2 such that V0(r) > 2r. Then there are a bounded connected
component A of XG r B(r) and a ∈ A such that d(a,B(r)) > r. As G is
one-ended, there is an unbounded connected component C of XG r B(r).
Consider the action of a on XG by multiplication. Since d(a,B(r)) > r,
clearly aB(r) = B(a, r) ⊂ A, and there are x ∈ A and y ∈ C such that
ax, ay ∈ B(r). Here B(a, r) denotes the metric ball of radius r centered
at a. Therefore, there is a path γ in B(r) that joins ax to ay. Then a−1γ
is a path that joins an element of A to an element of C, so it must pass
through B(r). Thus, there is w on γ so that a−1w ∈ B(r). This however
implies that w ∈ B(r) ∩ aB(r), which is a contradiction. This proves that
V0(r) ≤ 2r, and hence the end-depth of G is linear.

4. Proof of Theorem 1.7. Let G be a connected, semisimple Lie group
with trivial center and without compact factors. Unlike uniform lattices,
non-uniform lattices Γ in G are not quasi-isometric to the symmetric space
X = G/K since they do not act cocompactly on X. But one can consider
the following construction: chop off every cusp of the quotient X/Γ and
look at the lifts of each cusp to X, giving a Γ -equivariant union of horoballs
in X. These horoballs are not disjoint in general; they can be made dis-
joint by cutting the cusps far enough out precisely when Γ has Q-rank
one. The resulting space is called the neutered space X0 associated to Γ ,
and Γ acts cocompactly on it. The natural metric on X0 is the path met-
ric induced from X, given by the infimal length in X of paths contained
in X0 that join the two points. Then Γ endowed with the word metric is
quasi-isometric to X0 endowed with the path metric. However, sometimes
the path metric on X0 might be distorted with respect to the original met-
ric on X. In order to circumvent this difficulty we first only consider higher
rank groups.

Proof of Theorem 1.7. Since G has higher rank, a result due to Lubotzky,
Mozes, and Raghunathan (see [17]) states that the embedding of Γ endowed
with the word metric into G endowed with a left invariant metric is Lipschitz
and hence a quasi-isometric embedding. The projectionG→ G/K is a quasi-
isometry and hence Γ is quasi-isometric to an orbit Γ ·x0 ⊂ X endowed with
the restriction of the Riemannian metric dX on X. Finally the embedding
of an orbit of Γ into the neutered space X0 is a quasi-isometry when we
consider the metric dX |X0 on X0.

By the quasi-isometry invariance of the sci growth, it will be sufficient to
prove that X0 endowed with the metric dX |X0 has a linear VX0 . The metric
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balls B(X0,dX |X0
)(x0, r) of radius r centered at x0 ∈ X0 for this non-geodesic

metric are easy to describe, namely

B(X0,dX |X0
)(x0, r) = B(X,dX)(x0, r) ∩X0

in terms of the Riemannian metric balls B(X,dX)(x0, r).
Now, the neutered space X0 is obtained from X by removing a collec-

tion of disjoint horoballs, as the Q-rank of Γ is at least 2. Then any ball
B(X,dX)(x0, r) of X intersects only finitely many such horoballs.

This implies that the metric sphere S(X0,dX |X0
)(x0, r)⊂∂B(X0,dX |X0

)(x0, r)

is obtained from the usual metric sphere ∂B(X,dX)(x0, r) in X by removing
from it the intersection with a disjoint union of finitely many horoballs.

We need now a lemma which explains the geometry of such intersections:

Lemma 4.1. Let X be a proper CAT(0) manifold, H be a horoball, and
B be a sphere of X. If the center c of B does not belong to H, then B ∩H
is convex (i.e. topologically a ball).

Proof. Let fc(x) = d(x, c) be the distance function to a fixed point c 6∈ H.
Then fc restricted to H has only a critical point in H, namely the projection
p(c) of c on H, where it achieves a non-degenerate minimum. Since fc is
proper, the level sets on H retract onto p(c).

From Lemma 4.1 we derive that the metric spheres in (X0, dX |X0) are
obtained from Sn−1 by removing finitely many disjoint disks Dn−1. This
means that, whenever the dimension n of X is n ≥ 4, the metric spheres
in X0 are simply connected. It follows that V(X0,dX |X0

)(r) = r is linear and
hence Γ has linear sci.

For the second part of Theorem 1.7 consider a non-uniform lattice Γ
in SO(n, 1). The non-uniform lattice Γ acts properly and cocompactly by
isometries on X0 = Hn r F where F is a finite union of disjoint open
horoballs. The result does not follow from Lemma 4.1, as the metric on
this truncated hyperbolic metric space is the path metric, which is expo-
nentially distorted. Nevertheless this space is CAT(0) (by [5, Cor. 11.28,
p. 362] and [24]). Metric balls are therefore homeomorphic to balls and their
boundaries are spheres.

In order to understand the topology of the metric spheres it suffices to
consider a neighborhood of one horoball H. Given c ∈ X0 consider the cone
in Hn with vertex c which is tangent to the horoball H along an equidistant
(n− 1)-sphere Sn−1(c) ⊂ ∂H. If p belongs to the visible n-disk bounded by
Sn−1 on ∂H, then the geodesic segments joining p and c for the hyperbolic
metric dHn and the path metric on X0 coincide. When p ∈ ∂H is outside the
visible disk then a geodesic segment in the path metric consists of a spherical
segment pq joining p to q ∈ Sn−1(c) followed by a geodesic segment qc. It
follows that metric spheres in the path metric are obtained from a sphere by
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deleting a number of disjoint disks corresponding to visible disks at distance
smaller than the radius. For n ≥ 4 these are simply connected, and this
shows that X0 with its path metric has linear sci.

5. Other classes of groups with linear sci. Recall that a Coxeter
group is a group W with a presentation of the following form:

〈s1, . . . , sn | s2i = 1 for i ∈ {1, . . . , n}, (sisj)
mij = 1〉

where i < j ranges over some subset of {1, . . . , n}× {1, . . . , n} and mij ≥ 2.
Let W be a Coxeter group.

Proposition 5.1. Coxeter groups which are sci have linear sci.

Proof. The Davis complex DW (see [7]) of a finitely generated Coxeter
group W is a CAT(0) cell complex on which W acts cellularly, properly, and
with finite quotient. The links of the vertices of DW are all isomorphic to a
fixed finite simplicial complex L, where L can be described combinatorially
in terms of subsets of the generating set of W .

It has been proved in [8] that a Coxeter group is sci if and only if its
nerve L and all its punctured links L− σ are simply connected (where σ is
any simplex of L). The boundary of a metric ball in DW is a connected sum
of various punctured links L− σ, and hence it is simply connected.

Now any loop outside the metric ball of radius r can be contracted onto
the boundary of the metric ball and there contracted to a point. This implies
that VDW

(r) = r.

The action of the Coxeter group on the Davis complex is not free but
has finite stabilizers. Moreover there exists a finite index subgroup which
acts freely on the Davis complex. This finite index subgroup is still sci and
quasi-isometric to DW , and hence by the previous arguments it has linear
sci. This implies that W has linear sci.

Remark 5.2. The same proof shows that a sci right-angled Artin group
has linear sci. More generally, Artin groups are semistable and have linear
semistability (see [20]).

Remark 5.3. The connectivity of the punctured links determines the
connectivity of W at infinity. However in [9] the authors constructed a
CAT(0) cell complex acted on properly and cocompactly by W whose nerve
and punctured links are not simply connected, though W is sci. Thus the
linear sci is the geometric property of groups which is closest to the “simple
connectivity of large spheres”.

Remark 5.4. If 1 → H → G → K → 1 is an exact sequence of finitely
presented infinite groups where either H or K has one end, then G has a
linear sci growth, by [14].
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Remark 5.5. Mihalik and Tschantz [21, 22] have proved that amalga-
mated products and HNN-extensions of semistable groups over arbitrary
finitely generated subgroups are semistable. We do not know whether Theo-
rem 1.6 can be extended to multi-ended subgroups and linear semistability.
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