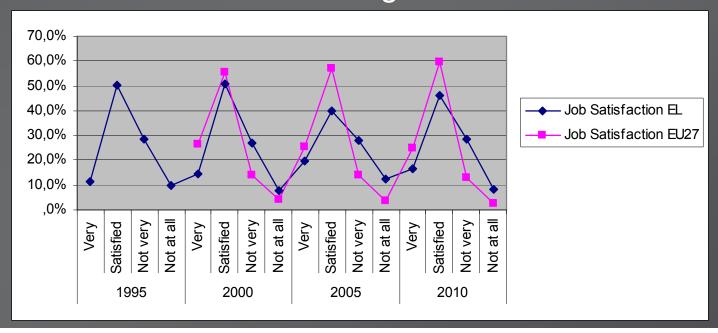
The Relationship between Absence from Work & Job Satisfaction in Greece

& Stavros Drakopoulos

National & Kapodistrian University of Athens Department of Philosophy & History of Science

Purpose of this study

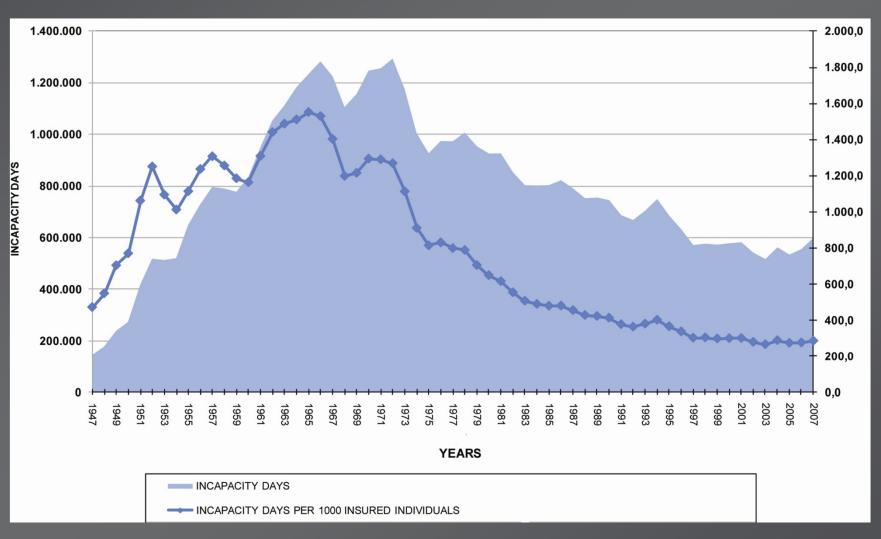
Investigate the casual relationship between Absence from wok and Job Satisfaction

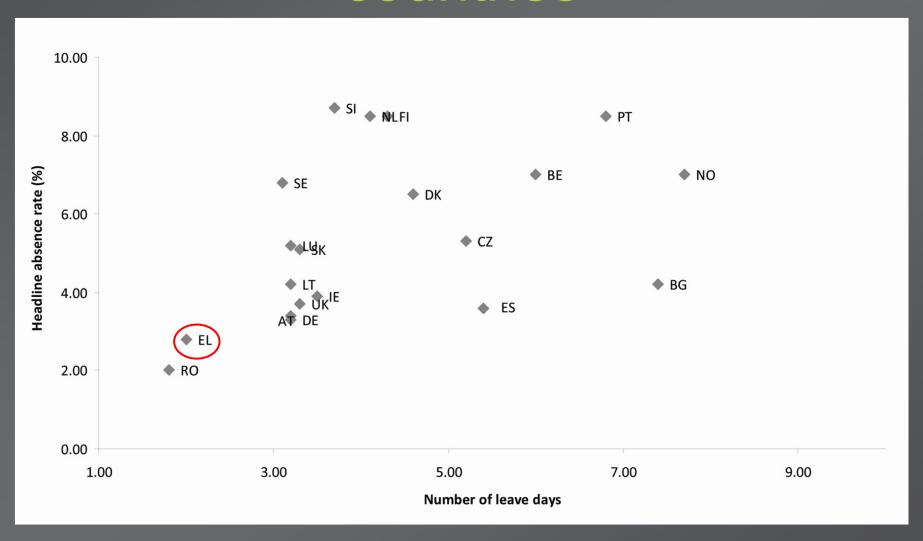

Definitions

- Job Satisfaction → "the difference between the reward employees receive and the reward they believe they should receive" (Robbins et al., 2003)
- Absence → "non attendance at work when attendance was scheduled or clearly expected"
- ⇒ Absence due to sickness
- ⇒ Absence due to accidents
- ⇒ Voluntary Absence

(Brown & Sessions, 1996)

Job Satisfaction: Evidence for Greece


- No data of official public databases of Greece
- 5th European Working Condition Survey (2010): 16,8% very satisfied, 46,4% satisfied, 28,6% not very satisfied, 8,3% not at all satisfied
- The percentage of job satisfaction in Greece is lower than in 27 EU countries average


Absenteeism: Evidence from Greece

- Greek Statistical Service provides No data
- Some primary data from IKA:
- ⇒**6.337.686** subsidy days for illness (2006)
- ⇒ **556.848** subsidy days for occupational accidents (2006) & **600.831** subsidy days for occupational accidents (2007)
- **⇒3.700.647** *days for maternity leave* (2006)
- Insufficient (IKA insured employees)
- ▶ Need to be processed

Incapacity Days 1947-2007


Number of leave days across countries

Source: European Foundation for the Improving of Living & Working Conditions, 2010

Absenteeism: Evidence for Greece

- 5th European Working Condition Survey (2010): 22,7% 1
 to 15 days & 2% more than 15 days
- The percentage of absent in Greece is lower than in 27 EU countries average

Absence from Work and Job Satisfaction relationship (1)

- Absenteeism → complex issue influenced by multiple causes (personal & organizational)
- No universal agreement concerning the relationship between absenteeism & job satisfaction (inconsistent connection)

Absence from Work and Job Satisfaction relationship (2)

- Some researchers find no relationship between the two (Goldberg & Waldman, 2000), while others find a weak negative relationship (Farrell & Stamm, 1988)
- Conflicting findings due to sampling error, measurement reliability, scale inadequacies
- Absence and job satisfaction are more strongly related under some conditions, e.g. blue collar workers (Spector, 2000)

Data & Methodology

- European research survey => 1001 participants (Greece-UK), 45-65 years old (SOCIOLD project)
- STATA → Tobit model (more sensitive, consistent, reliable and less biased than the OLS model (Sturman, 1996)

$$A_{j} = \alpha_{1} + \alpha_{2}JS_{j} + \alpha_{3}X_{j} + \varepsilon_{A}$$

Depended variable: Injury Absenteeism

Basic Independent variable: Job Satisfaction

Other independent variables: age, gender, type of employment, education level, industry dummies, career

Demographics

- 547 males; 454 females
- 35% secondary education; 30% tertiary
- 89% no absence due to injury; 3% 1 to 15 days;
 8% more than 15 days
- 3,3% fixed-term job; 3,4% temporary job; 59% permanent job
- 39,5% worked in other services; 17% worked in engineering & manufacturing industries
- 25% following a career path

Model output

	OLS		товіт	
Variable	Coef.	t-stat	Coef.	t-stat
Age	.1694638	0.42	1760954	-0.08
Males	10.49176	2.34 **	99.09221	3.46 **
fixedcontr~t	-7.031383	-2.70 **	-37.14601	-0.50
temporaryc~t	2.279484	0.56	42.00175	0.64
Educlow	1.639077	0.45	14.08396	0.42
Educmiddle	9.25437	1.92	55.70413	1.89
Lnjobsatisf	-4.918878	-4.08 **	-21.58677	-4.22 **
industrydu~1	-8.424329	-1.44	23.11932	0.28
industrydu~2	19483	-0.03	62.61307	1.27
industrydu~3	-4.242494	-0.67	14.00291	0.34
industrydu~5	2.818667	0.33	79.01094	1.52
industrydu~6	2.095163	0.25	-10.37384	-0.16
industrydu~7	9018672	-0.16	26.22377	0.75
Dummyuk	20.12243	4.18 **	121.3065	4.15 **
wealth_5	-2.714202	-0.72	-28.145	-0.91
_cons	-24.66702	-0.99	-487.9872	-3.65 **
N	1001		1001	
R ²	0.0664			
Pseudo R ²			0.0288	
F(15, 985)	1.82			
Log likelihood			-932.03101	

Results

- OLS regression & Tobit model => strong negative relationship between Injury Absenteeism & Job Satisfaction
- According to theory, all of the predictors should relate to absenteeism, but only four had significant relationship (males, job satisfaction, fixed contract and uk)

Endogeneity

 Theoretically, Job Satisfaction can simultaneously be affected by injury absenteeism

$$JS_j = \gamma_1 + \gamma_2 X_j + \gamma_3 Z + \varepsilon_{js}$$

• Z variable has to be highly correlated with Job Satisfaction but does not affect Injury Absenteeism directly. Z variable: "spouse's contribution to the overall household income"

$$\hat{\mathbf{A}_{j}} = \alpha_{1} + \alpha_{2} \hat{\mathbf{J}} \hat{\mathbf{S}}_{prj} + \alpha_{3} X_{j} + \varepsilon_{A}$$

Model output

	<u> </u>			
	OLS		товіт	
Variable	Coef.	t-stat	Coef.	t-stat
Age	353554	-0.84	-3.436051	-1.04
Males	22.86924	1.87	177.7451	2.95 **
fixedcontr	7.901691	0.74	53.6337	0.53
temporaryc	16.69592	1.44	125.7885	1.37
Educlow	-2.6915	-0.55	-12.76569	-0.32
Educmiddle	6.268631	1.38	41.30185	1.25
Lnjobsatisf pr	-15.7264	-1.80	-91.46024	-1.98 *
industrydu~1	-7.624397	-1.49	33.36843	0.39
industrydu~2	1.85126	0.32	82.10118	1.57
industrydu~3	-2.532072	-0.41	19.81656	0.46
industrydu~5	8.687869	1.01	119.4528	1.97 *
industrydu~6	10.76065	0.98	44.27452	0.59
industrydu~7	.7557147	0.12	35.03581	0.95
Dummyuk	37.46283	2.39 *	249.2506	3.09 **
wealth_5	4.226295	0.85	11.68954	0.27
_cons	-31.66521	-1.13	-558.8731	-3.88 **
N	1001		1001	
R ²	0.0325			
Pseudo R ²			0.0214	
F(15, 985)	1.78			
Log likelihood			-939.03839	
spouseincd~y	.0560978	0.74	.3807709	0.53

Marginal effects for the expected value of y conditional on being uncensored

	Marginal effects after tobit		
Variable	dy / dx	z	
Age	5627758	-1.04	
Males *	28.80202	3.00 **	
Fixedcontr *	9.343577	0.50	
Temporaryc *	23.8949	1.19	
Educlow *	-2.078074	-0.32	
Educmiddle *	6.866331	1.24	
Lnjobsatisf_pr	-14.97987	-1.99 *	
industrydu~1 *	5.680767	0.37	
industrydu~2 *	14.6514	1.45	
industrydu~3 *	3.298136	0.45	
industrydu~5 *	22.343	1.74	
industrydu~6 *	7.605327	0.56	
industrydu~7 *	5.791401	0.95	
Dummyuk *	39.7737	3.16 **	
wealth_5 *	1.928511	0.27	
у	108.96221		

^(*) dy / dx is for discrete change of dummy variable from 0 to 1

Results

- OLS regression: nonsignificant negative relation between injury absenteeism and job satisfaction
- Tobit model: weak negative relation between injury absenteeism and job satisfaction
- ⇒ Non significant negative relationship between age & injury absenteeism
- ⇒ Significant relation between gender & injury absenteeism (males have higher absence percentages than females)
- ⇒ Permanent worker exhibit less absenteeism rates
- ⇒ Injury Absenteeism higher for UK than for Greece
- Marginal effects do not differ from the level effects (tobit regression) in terms of significance

Conclusion

- Weak negative relationship between injury absenteeism and job satisfaction using Tobit model.
- Low level of employee job satisfaction is associated with an increase in the number and frequency of absent days
- Absenteeism => more systematic research
 & comparisons with similar findings from other countries

Thank You for your Attention!

e-mail: grimaniaik@phs.uoa.gr sdrakop@phs.uoa.gr

'This research has been co-financed by the European Union (European Social Fund – ESF) and Greek national funds through the Operational Program "Education and Lifelong Learning" of the National Strategic Reference Framework (NSRF) - Research Funding Program: Heracleitus II. Investing in knowledge society through the European Social Fund.