
1

Distance-based k
m-anonymization of trajectory data

Giorgos Poulis∗, Spiros Skiadopoulos∗, Grigorios Loukides†, Aris Gkoulalas-Divanis‡

∗ University of Peloponnese, Email: {poulis,spiros}@uop.gr
† Cardiff University, Email: g.loukides@cs.cf.ac.uk

‡ IBM Research - Ireland, Email: arisdiva@ie.ibm.com

Abstract—The publication of trajectory data opens up new
directions in studying human behavior, but it is challenging to
perform in a privacy-preserving way. This is mainly because, the
identities of individuals, whose movement is recorded in the data,
can be disclosed, even after removing identifying information.
Existing works to anonymize trajectory data offer privacy, but at
a high data utility cost. This is because, they either do not produce
truthful data, which is important in many applications, or are
limited in their privacy specification component. This paper
proposes an approach that overcomes these shortcomings by
adapting km-anonymity to trajectory data and by using distance-
based generalization. We also develop an effective and efficient
anonymization algorithm, which is based on the apriori principle.
Our experiments verify that this algorithm preserves data utility
well, and it is fast and scalable.

I. INTRODUCTION

The widespread use of GPS-enabled smartphones and

location-based social networking applications, such as

Foursquare (https://foursquare.com), opens up new opportu-

nities in understanding human behavior through the analysis

of collected mobility data. However, the publication of these

data, which correspond to trajectories of personal movement

(i.e., ordered lists of locations visited by individuals), can lead

to identity disclosure, even if identifying information (ID) is

not published [23]. The values that, in combination, may lead

to identity disclosure are called quasi-identifiers (QI) [24],

[22]. For example, let us assume that a location-based social

network service, publishes the movement of users during a

day in form of checkins in various locations. An example of

this data is shown in Fig. 1a. If Mary’s colleague, John, knows

that sometime that day, Mary checked in at locations a and d,

he cannot associate Mary with her record (trajectory), as both

trajectories t1 and t3 include the locations a and d. But if John

knew that Mary first visited d and then a, he can accurately

link Mary with her trajectory t1.

This example highlights not only the need to transform a set

of user trajectories T to prevent identity disclosure, based on

partial location knowledge held by adversaries, but also the dif-

ference from well-studied set-valued data anonymity models,

like km-anonymity [26] and privacy-constrained anonymiza-

tion [17], [11]. In these models, value ordering is not sig-

nificant; thus records are represented as unordered sets of

items. For instance, if an adversary knew that someone visited

location c and then e, they could link this individual only to

record t1 (Fig. 1b). On the other hand, if T was a set-valued

dataset, records t1, t2 and t4 would have items c and e, hiding

this individual’s identity among 3 records. Consequently, for
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Fig. 1: (a) the original database T (b) visual representation of

trajectories t1 and t2

any set of n items in a trajectory, there are n! possible quasi-

identifiers.

This difference makes anonymizing trajectory datasets more

challenging, as it drastically increases the number of poten-

tial quasi-identifiers. Existing methods operate either by (i)

anonymizing each trajectory as a whole, thereby not assuming

any specific background knowledge of attackers [1], [2], [18],

[21], or (ii) by anonymizing parts of the user trajectories

by considering attackers who can effectively link specific

locations to individuals in order to re-identify them [25], [28].

The first category of approaches are based on clustering and

perturbation [1], [2], [21], while the second category employs

generalization and suppression of quasi-identifiers [19], [28],

[20], [25].

The main drawback of clustering-based approaches is that

they may lose information about the direction of movement

of co-clustered trajectories, as well as cause excessive in-

formation loss, due to space translation. Moreover, applying

perturbation to datasets, creates data that are not truthful and

cannot be used in several applications [9]. Similarly, existing

generalization-and-suppression based methods [19], [28], [20],

[25] have the following limitations. First, they assume that

quasi-identifiers are known to the data publisher prior to

anonymization [28], [25] (e.g., defined by users) or that any

combination of locations can act as a quasi-identifier [19].

Second, they require a location taxonomy to be specified by

data publishers [20], based on locations’ semantics. However,

this taxonomy may not well reflect the distance between

locations and therefore the anonymized data may incur a high

amount of information loss. Last, some approaches assume

that each location can be classified as either sensitive or non-

sensitive [20]. In practice, however, this assumption may not

hold, as location sensitivity depends on context (e.g. visiting

a hospital may be sensitive for a patient, but not for a doctor).

Our proposed approach addresses the aforementioned short-
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comings by adapting km-anonymity [26] to trajectory data

and by applying generalization in a way that minimizes the

distance between the original and the anonymized user trajec-

tories. km-anonymity is a privacy model that was proposed

to limit the probability of identity disclosure in transaction

data publishing. The benefit of this model is that it does not

require detailed knowledge of quasi-identifiers, or a distinc-

tion between sensitive and non-sensitive information, prior to

publication. At the same time, our approach avoids the use for

a location taxonomy and generalizes trajectories in a way that

preserves data utility.

The rest of the paper is organized as follows. Section II

discuss related work. Section III formulates the problem and

Section IV presents our anonymization algorithm. Section V

presents the experimental evaluation of our algorithm in terms

of utility and efficiency. Finally, Section VI concludes the

paper.

II. RELATED WORK

k-anonymity is a privacy model that prevents identity dis-

closure, by requiring at least k records of a dataset to have

the same values over QI [24], [23], [16], [12], [13], [27].

Thus, a k-anonymous dataset upperbounds the probability of

associating an individual to their record by 1
k

. To enforce k-

anonymity, most works [22], [14], [15], [10] employ gener-

alization, which replaces a QI value with a more general but

semantically consistent value, or suppression, which removes

QI values prior to data publishing.

The k-anonymity principle has been recently considered in

the context of publishing user trajectories, leading to several

trajectory anonymization methods [4]. These methods operate

either by (i) anonymizing each trajectory as a whole [1],

[2], [18] or (ii) by anonymizing parts of the user trajectories

by considering attackers who can link specific locations to

individuals in order to perform identity disclosure [25], [28].

The approaches of the first category operate by grouping

original trajectories into clusters of k members in a way

that each trajectory within a cluster becomes indistinguishable

from the other trajectories in the cluster. One such method,

called NWA [1], enforces (k, δ)-anonymity to anonymize user

trajectories by generating cylindrical volumes of radius δ that

contain at least k trajectories. Each trajectory that belongs

to an anonymity group (cylinder), generated by NWA, is

protected from identity disclosure, due to the other trajectories

that appear in the same group. To produce the cylindrical

volumes, the anonymity algorithm proposed in [1] identifies

trajectories that lie close to each other in time and employs

space translation.

The second category of approaches considers attackers with

background knowledge on ordered sequences of places of

interest (POIs) visited by specific individuals. Terrovitis et

al. [25] proposed an approach to prohibit multiple attackers,

each knowing a different set of POIs, from associating these

POIs to fewer than k individuals in the released dataset.

To achieve this, the authors developed a suppression-based

method that aims at removing the least number of POIs

from user trajectories so that the remaining trajectories are k-

anonymous with respect to the knowledge of each adversary.

Yarovoy et al. [28] proposed a k-anonymity based approach

for publishing user trajectories by considering time as a

quasi-identifier and supporting privacy personalization. Unlike

previous work that assumed that all users share a common

quasi-identifier, [28] assumes that each user has a different set

of POIs and times for which he or she requires protection,

thereby enabling each trajectory to be protected differently.

To achieve k-anonymity, this approach uses generalization and

creates anonymization groups that are not necessarily disjoint.

A recent approach, proposed by Monreale et al. [19],

extends the l-diversity principle to trajectories by assuming

that each location is either nonsensitive (acting as a QI) or

sensitive. This approach applies c-safety to prevent adversaries

from linking sensitive locations to trajectories with a probabil-

ity greater than c. To enforce c-safety, the proposed algorithm

applies generalization to replace original POIs with general-

ized ones based on a location taxonomy. If generalization alone

cannot enforce c-safety, suppression is used.

Contrary to related work on trajectory anonymization ap-

proaches operating through data generalization or suppression

of quasi-identifiers, our method makes the realistic assumption

that an adversary may have knowledge of up to m locations

that a user has visited. To protect the trajectories, we em-

ploy a distance-based generalization approach that does not

depend on a pre-specified location taxonomy. Moreover, in

this work we refrain from classifying locations as sensitive or

nonsensitive (QI), and prevent identity disclosure, based on

any combination of up to m locations.

Recently, differential privacy [8] methods were proposed to

anonymize sequential datasets [6], [7]. These methods focus

on specific data analytic tasks, such as query answering or

frequent pattern mining [3] and work by adding noise to the

data. Thus, they harm data truthfulness, which is essential to

preserve in many data analysis tasks [17].

III. PROBLEM FORMULATION

Let L be a set of locations (points of interest, touristic sites,

shops, etc.).

Definition 1: A trajectory t is an ordered list of locations

(l1, . . . , ln), where li ∈ L, 1 ≤ i ≤ n. The size of the

trajectory t = (l1, . . . , ln), denoted by |t|, is the number of

its locations, i.e., |t| = n.

A trajectory represents the locations and the order these

locations are visited by a moving object (individual, bus, taxi,

etc.). In our setting a location may also model points in space

(1D, 2D, 3D, etc.) and even incorporate a temporal dimension.

Definition 2: A trajectory s = (λ1, . . . , λν) is a subtrajectory

of or is contained in trajectory t = (l1, . . . , ln), denoted by

s ⊑ t, if and only if |s| ≤ |t| and there is a mapping f such

that λ1 = lf(1), . . . , λν = lf(ν) and f(1) < · · · < f(ν).

Thus, a subtrajectory is formed by removing some locations

from the original trajectory, while maintaining the order of

the remaining locations. For instance, the trajectory (a, e) is

contained in t1 = (d, a, c, e) (Fig. 1).

Definition 3: Given a set of trajectories T , the support of a

subtrajectory s, denoted by sup(s, T ), is defined as the number
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of distinct trajectories in T that contain s.

In other words, the support of a subtrajectory s measures the

number of trajectories in a dataset that s is contained in. For

example, for the dataset in Fig. 1a, we have sup((a, e), T ) =
3. Naturally, by considering locations as unary trajectories, the

support can also be measured for the locations of a dataset.

In this work, we adapt the notion of km-anonymity to

trajectory data, as explained below.

Definition 4: A set of trajectories T is km-anonymous if and

only if every subtrajectory s of every trajectory t ∈ T , which

contains m or fewer locations (i.e., |s| ≤ m), is contained in

at least k distinct trajectories of T .

Definition 4 ensures that an attacker, who knows any

subtrajectory s of size m of an individual, cannot associate

the individual to fewer than k trajectories (i.e., the probability

of identity disclosure, based on s, is at most 1
k

).

Example 1: Consider the dataset of trajectories T depicted in

Fig. 1a. T is 21-anonymous and 13-anonymous. However, it

is not 22-anonymous, as the subtrajectory (d, a) is contained

only in the trajectory t1 of T .

To explain the way we generalize trajectories, we define the

notion of generalized location as follows.

Definition 5: A generalized location {l1, . . . , lv}, is defined

as a set of at least two locations l1, . . . , lv ∈ L.

A generalized location is interpreted as any of it’s locations.

Therefore, if a trajectory t in an anonymized version T ′ of T
contains a generalized location {l1, . . . , lv}, then the trajectory

t in T contains exactly one location among l1, . . . , lv .

To enforce km-anonymity, we either generalize a location l
to a generalized location that contains l or leave l intact.

We are interested in generalization transformations that

distort as little as possible the initial dataset T . A common way

to measure the distortion of a transformation is to measure the

distance between the original and the transformed dataset [25],

[21], [28]. In our case, the distance between the initial and

the anonymized dataset is defined as the average of the dis-

tances of their corresponding trajectories. In turn, the distance

between the initial and the anonymized trajectory is defined

as the average of the distance between their corresponding

locations. In more detail, we have.

Definition 6: Let l be a location that will be generalized to

the generalized location {l1, . . . , lv}. The location distance

between l and {l1, . . . , lv}, denoted by Dloc(l, {l1, . . . , lv}),
is defined as:

Dloc(l, {l1, . . . , lv}) = avg
{

EuclDist(l, li) | 1 ≤ i ≤ v
}

where EuclDist is the Euclidean distance. The trajectory dis-

tance between t = (l1, . . . , ln) and its generalized counterpart

t′ = (l′1, . . . , l
′
n), denoted by Dtraj (t, t

′), is defined as:

Dtraj (t, t
′) = avg

{

Dloc(li, l
′
i) | 1 ≤ i ≤ n

}

Finally, the trajectory dataset distance between T =
{t1, . . . , tu} and its generalized counterpart T ′ = {t′1, . . . , t

′
u}

Algorithm: SEQANON

Input: A dataset T and anonymization parameters k and m

Output: A km-anonymous dataset T ′ corresponding to T

1 T ′ := T // Initialize output

2 for i := 1 to m do
3 Let S be the set of subtrajectories s of T with size i such

that sup(s, T ′) < k sorted by increasing support
4 for each s ∈ S do

5 while sup(s, T ′) < k do
6 Find the location l1 of s with the minimum

support in T ′

7 Find the location l2 6= l1 with the minimum
distance from l1

8 Replace all occurrences of l1 and l2 in T ′ and s

with {l1, l2}

9 return T ′

(where the trajectory ti is generalized to trajectory t′i, 1 ≤ i ≤
u), denoted by D(T , T ′), is defined as:

D(T , T ′) = avg
{

Dtraj (ti, t
′
i) | 1 ≤ i ≤ u

}

For example, let a, a1, a2 and b be locations and let

EuclDist(a, a1) = 1 and EuclDist(a, a2) = 2. If location

a is generalized to the generalized location {a, a1, a2} the

location distance Dloc(a, {a, a1, a2}) = (0 + 1 + 2)/3 = 1.

Also, if trajectory (a, b) is generalized to ({a, a1, a2}, b) the

trajectory distance Dtraj ((a, b), ({a, a1, a2}, b)) = (1 + 0)/2.

Note that the distances in Definition 6 can be normalized

by dividing each of them with the maximum distance between

locations in T .

The problem we consider can be expressed as follows.

Problem 1: Given a dataset of trajectories T construct a km-

anonymous version T ′ of T such that D(T , T ′) is minimized.

In the rest of the paper, we present and evaluate a method

to tackle Problem 1.

IV. ANONYMIZATION ALGORITHM

Given an input set of trajectories T , we will present a

method that transforms T into a km-anonymous set of tra-

jectories T ′ corresponding to T by generalizing the locations

of the trajectories that do not satisfy the km-anonymity metric.

The proposed anonymization method is illustrated in Al-

gorithm SEQANON that takes as input a trajectories dataset

T and the anonymization parameters k and m and returns

the km-anonymous counterpart T ′ of T . The algorithm works

in an apriori, bottom up fashion. Initially, it considers and

generalizes the subtrajectories in T of size 1 (i.e., single

locations) that have low support. Then, SEQANON continues

by progressively increasing the size of the subtrajectories it

considers.

In more detail, SEQANON proceeds as follows. First, SE-

QANON initializes T ′ (Step 1). Then, Steps 2 – 2 follow

the apriori principle. Step 3 computes set S containing the

subtrajectories s of T having size i (i.e., having i locations)

and lower support than the anomymization parameter k (i.e.,

sup(s, T ′) < k). SEQANON considers the lower support

subtrajectories of S first. This tactic improves the efficiency of
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subT. sup

(d, a) 1

(c, e) 1

(b, a) 1

(a, d) 1

(b, d) 1

(a)

id trajectory

t′1 (d, {a, b}, c, e)
t′2 ({a, b}, {a, b}, e, c)
t′3 ({a, b}, d, e)
t′4 ({a, b}, d, e, c)
t′5 (d, c)
t′6 (d, e)

(b)

id trajectory

t′1 (d, {a, b, c}, {a, b, c}, e)
t′2 ({a, b, c}, {a, b, c}, e, {a, b, c})
t′3 ({a, b, c}, d, e)
t′4 ({a, b, c}, d, e, {a, b, c})
t′5 (d, {a, b, c})
t′6 (d, e)

(c)

Fig. 2: (a) Set S for subtrajectories of size i = 2 and the respective supports, (b) Transformed dataset T ′ after the processing

of subtrajectory (d, a), and (c) The final 22-anonymous result T ′

the method and the quality of the results. Remedying the lower

support subtrajectories commonly benefits higher support sub-

trajectories while at the same time, their generalization does

not significantly affect the dataset. Continuing, for every such

trajectory s ∈ S , the algorithm finds the location l1 of s with

the minimum support (Step 6). Similarly to subtrajectories,

we consider lower support locations first. Then, the algorithm

searches the locations of T to detect the closest location

l2 to l1 (Step 7). Finally, SEQANON generalizes l1 and l2
by constructing the generalized location {l1, l2} and replaces

every occurrence of l1 and l2 with the generalized location

{l1, l2} (Step 8). The algorithm repeats Steps 6 – 8 until

the support of the subtrajectory s exceeds the anonymization

parameter k.

The following is an example of SEQANON in operation.

Example 2: We will demonstrate the operation of SEQANON

with input the dataset T of Fig. 1a and k = m = 2. The

intermediate steps are illustrated in Fig. 2. The first iteration

of the for loop (Steps 2 – 2) considers the subtrajectories of

size i = 1. It is not hard to verify that all size 1 locations

have support greater than k = 2, thus, the algorithm proceeds

to i = 2. For this case, Step 3 computes the set of low support

subtrajectories S (illustrated in Fig. 2a). SEQANON considers

subtrajectory s = (d, a), which is the first subtrajectory in S .

Then, Step 6 sets l1 = a (since a is the lowest support location

of (d, a)) and Step 7 sets l2 = b (since location b is closer to a
– see also the map of Fig. 1b). Finally, Step 8 replaces a and b
with the generalized location {a, b} in s and all the trajectories

of T ′. After these replacement, we have s = (d, {a, b}) while

T ′ is depicted in Fig. 2b. Since, for the changes values of s
and T ′ we still have sup(s, T ′) < k, the while loop (Steps

5 – 8) is executed again. This time l1 = {a, b}, l2 = c and

after the replacements T ′ is depicted in Fig. 2c. The remaining

steps of the algorithm SEQANON do not change T ′, thus, Fig.

2c illustrates the final output.

Complexity analysis. Algorithm SEQANON executes the for

loop (Steps 2 – 8). For each iteration of this loop, set S
is constructed and explored. The size of S is, in the worst

case, O(|L|i), where |L| is the size of the location set used

in T and i is the loop counter. The above bound is a very

crude approximation. O(|L|i) is the size of S when all size i
subtrajectories have support lower than k. This is hardly the

case; the actual sutrajectories s with sup(s, T ′) < k are a

small fraction of O(|L|i). This number depends heavily on

the dataset T and the value of the anonymization parameter

k. To have a more precise bound we multiply with the factor

p(i, k, T ) which measures the probability of a subtrajectory

of size i having support less than k in dataset T . Thus, the

size of S is bounded by O(p(i, k, T ) · |L|i). For each element

s of S the while loop (Steps 5 – 8) is executed. This loop

takes O(|s|) = O(i) time in the worst case (i.e., when we are

going to generalize all locations of the trajectory). Overall,

each iteration of the for loop takes O(i ·p(i, k, T ) · |L|i) time.

Thus, in total, the complexity of the SEQANON algorithm is

O
(

m
∑

i=1

(i · p(i, k, T ) · |L|i)
)

= O
(

m · p(k, T ) · |L|m
)

where

p(k, T ) averages p(1, k, T ), . . . , p(m, k, T ).

V. EXPERIMENTAL EVALUATION

In this section, we evaluate our algorithm in terms of data

utility and efficiency.

Experimental setup. We implemented our algorithm in C++

and tested it on an Intel Core i7 at 2.2 GHz with 6 GB of

RAM. We generated synthetic trajectories of moving objects

on Oldenburg city map using Brinkhoff’s generator [5]. This

setting has been used by many works [1], [21], [28], [25]. We

then normalized trajectories so that all coordinates take values

in a 103×103 map and we simulated trajectories corresponding

to these routes as follows. The map was divided into 100

regions using a uniform grid. An object visits a sequence of

regions in a certain order. The centroids of the visited regions

model the locations in the trajectories of T . The average

length of the generated trajectories is 4.72. The default number

of locations of L and trajectories of T are 100 and 18,143

respectively. Unless otherwise stated, m is set to 2.

Data utility. To measure data utility, we evaluated the number

of published original locations and the number of generalized

locations. For the generalized locations, we also measure their

average size and distance. Initially, we vary the anonymization

parameter k in [2, 100]. Our results are summarized in Fig. 3.

In Fig. 3a, we present the number of the original locations

published (i.e., locations that were not generalized) as a

function of k. As expected, increasing k led to fewer original

locations published. In Fig. 3b, we illustrate the number of

generalized locations. When k increases, more locations are

grouped together to ensure km-anonymity, leading to fewer

generalized locations. As an immediate result, the average

number of locations in a generalized location increased, as

shown in Fig. 3c. Finally, we present the average distance
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of all locations inside each generalized location from original

location in L. We normalize this distance as a percentage of

the maximum possible distance (i.e., the distance between the

furthermost points). This percentage quantifies the distance

distortion in a generalized location. In Fig. 3d, we illustrate

the distance percentage as a function of k. When k increases,

more locations are grouped together in the same generalized

location, leading to more distortion. As our algorithm focuses

in minimizing the distance of locations in each generalized

location, distortion is relatively low and increases slowly.

To show the impact of m on utility, we set k = 5 and

varied m in [1,4]. Since our dataset has an average of 4.72

locations per trajectory, m = 3 (respectively, m = 4) means

that the adversary knows approximately 65% (respectively,

85%) of a user’s locations. So, for m = 3 and m = 4,

we expect significant information loss. On the contrary, for

m = 1, all locations have support greater than k = 5, so no

generalization is performed and no generalized locations are

created. As m increases, more generalizations are performed,

in order to eliminate subtrajectories with low support. This

leads to fewer generalized locations with larger sizes. These

results are shown in Figs 4a-4d.

Also, we evaluated the impact of dataset size on data utility,

using various random subsets of the original dataset containing

2,000, 5,000, 10,000, and 15,000 records. In Fig. 5a, we illus-

trate the number of original locations published for variable

dataset sizes. For larger datasets, this number increases, as

the support of single locations is higher. Consequently, the

support of subtrajectories increases, and fewer locations are

generalized. This leads to more generalized locations, with

lower average size, and lower distance, as can be seen in

Figs 5b-5d.

Efficiency. We studied the impact of the anonymization pa-

rameters k and m, and the dataset size on efficiency. To

highlight the impact on efficiency of the apriori principle

used by our algorithm, we created a version of Algorithm
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SEQANON, denoted by SEQANON F, which does not use the

apriori principle. In this version, we removed the for loop from

Step 2 of SEQANON and set i = m. In other words, Algorithm

SEQANON F tries to eliminate directly subtrajectories of size

m with low support. At first, we evaluated our algorithm using

various k values, as in the experiments above. As we illustrate

in Fig. 6a, the execution time increases with k. As expected,

greater values for k lead to more subtrajectories with a lower

support than k, resulting in a S of increased size (see also Step

3 of SEQANON). Similarly, m has the same affect on execution

time. As m increases, our algorithm performs more iterations

(Steps 2-2 of Algorithm SEQANON). In Fig. 6b, we show

the impact of m on efficiency. Our algorithm significantly

outperforms SEQANON F, verifying that the apriori principle

improves the efficiency rate for larger m values. Finally, in

Fig. 6c, we illustrate the impact of dataset size in the execution

time of SEQANON. As expected, larger datasets require longer

processing time, since SEQANON needs to process more

records.

VI. CONCLUSIONS

In this paper, we proposed a new approach to publishing

trajectory data in a way that prevents identity disclosure. Our

approach makes realistic privacy assumptions, as it adapts km-

anonymity to trajectory data, and allows the production of

truthful data that preserve important data utility characteristics,

as it employs distance-based generalization. We also developed

an anonymization algorithm that performs well in terms of data

utility preservation, and it is fast and scalable, due to the use

of apriori principle.
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ABSTRACT

In this work, we focus on protection against identity disclosure in
the publication of sparse multidimensional data. Existing multi-
dimensional anonymization techniques (a) protect the privacy of
users either by altering the set of quasi-identifiers of the original
data (e.g., by generalization or suppression) or by adding noise
(e.g., using differential privacy) and/or (b) assume a clear distinc-
tion between sensitive and non-sensitive information and sever the
possible linkage. In many real world applications the above tech-
niques are not applicable. For instance, consider web search query
logs. Suppressing or generalizing anonymization methods would
remove the most valuable information in the dataset: the original
query terms. Additionally, web search query logs contain millions
of query terms which cannot be categorized as sensitive or non-
sensitive since a term may be sensitive for a user and non-sensitive
for another. Motivated by this observation, we propose an anonym-
ization technique termed disassociation that preserves the original
terms but hides the fact that two or more different terms appear in
the same record. We protect the users’ privacy by disassociating
record terms that participate in identifying combinations. This way
the adversary cannot associate with high probability a record with
a rare combination of terms. To the best of our knowledge, our pro-
posal is the first to employ such a technique to provide protection
against identity disclosure. We propose an anonymization algo-
rithm based on our approach and evaluate its performance on real
and synthetic datasets, comparing it against other state-of-the-art
methods based on generalization and differential privacy.

1. INTRODUCTION
The anonymization of sparse multidimensional data in the form

of transactional data (e.g., supermarket sales logs, credit card logs,
web search query logs) poses significant challenges. Adversaries
that have a part of a record as background knowledge are aided
by the dataset’s sparsity in identifying the original record. Con-
sider, for example, a dataset D which contains records that trace
web search query logs. Even without any direct identifier in the
data (user’s name or ID) the publication of D might lead to privacy
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not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page.
This research has been co-financed by the European Union (European Social
Fund - ESF) and Greek national funds through the Operational Program
"Education and Lifelong Learning" of the National Strategic Reference
Framework (NSRF) - Research Funding Program: Thales. Investing in
knowledge society through the European Social Fund.
Proceedings of the VLDB Endowment, Vol. 5, No. 1
Copyright 2011 VLDB Endowment 2150-8097/11/09... $ 10.00.

breaches, if an attacker has background knowledge that associates
some queries to a known user. Assume that John knows that Jane
was interested in buying air tickets to New York, so he has a back-
ground knowledge consisting of terms New York and air tickets. If
D is published without any modification then John can trace all
records that contain both terms New York and air tickets. If only
one such record exists, then John can easily infer that this record
corresponds to Jane.

To counter such privacy leaks, several anonymization techniques
have been proposed in the literature [5, 6, 11, 13, 14, 17, 19, 24,
27]. Most of these methods employ generalization [5, 13, 19, 27]
to reduce the original term domain and eliminate identifying com-
binations. For example, they would generalize New York to North

America, so that the infrequent combination would be replaced by
the more frequent {North America, air tickets}. Alternatively, other
methods which are based on suppression, simply remove infre-
quent terms or terms which participate in infrequent combinations.
Generalization and suppression have been mostly used to provide
protection against identity and attribute disclosure. There are few
works that rely on adding noise (fake records or terms) to offer dif-
ferential privacy [6, 14] or to hide the user intent in web search
engines [24]. The problem with existing methods is that a large
part of the the initial terms are usually missing from the anonymi-
zed dataset. There are only a few works [11, 18, 30] that preserve
all original terms, without adding noise, based on the Anatomy [30]
idea of separating quasi identifiers from sensitive values. Still, all
these methods can only protect against attribute disclosure.

The main contribution of this work is a novel method called dis-

association that preserves the original terms but hides identifying
combinations. The privacy model is based on km-anonymity [27]:
an adversary, who knows up to m items from any record, will not be
able to match his knowledge to less than k records in the published
data. Anonymization is achieved, not by hiding their constituent
terms (as done by earlier approaches), but instead by suppressing
the fact that some terms (like New York and air tickets) appear to-
gether in the same record. The disassociation transformation ex-
tends the idea of Anatomy [30] to provide for the first time protec-
tion against identity disclosure by separating terms of the original
data. We focus on protection against identity disclosure for three
reasons: (a) it is usually explicitly or implicitly required by law in
many countries and applications, (b) it is often the case that the sen-
sitivity of items cannot be accurately characterized, so protection
against attribute disclosure is not an option, and (c) differential pri-
vacy approaches [6, 14], which offer strong privacy protection, in-
cur a high information loss that is often not an acceptable trade-off.
Protecting identities using disassociation has already been identi-
fied as a complicated problem even for the case of simple relational



data [18], and no previous solution exists for our problem settings.
Finally, the proposed anonymization technique is equally capable
to existing state-of-the-art methods in providing protection against
attribute disclosure if sensitive terms have been identified.

In brief, the main contribution of the paper is the proposal of dis-

association, a new data transformation for sparse multidimensional
data that preserves the original terms of the dataset. We show how
this transformation can be used to anonymize a dataset and prove
that the resulting data adhere to our privacy guarantee. Moreover,
we present an anonymization algorithm that uses disassociation,
and we show that it achieves limited information loss, by evaluat-
ing it experimentally on real and synthetic datasets.

2. PROBLEM DEFINITION
The proposed anonymization method focuses on sparse multidi-

mensional data and provides protection against identity disclosure.
This section formally presents our assumptions about the data and
the attack model. In addition, we define the anonymity guarantee
our method targets to. Figure 1 summarizes our notation.

Data. We assume a collection D of records; each record is a set of
terms from a huge domain T . For example, a term can be a query
posed by a user in the context of web search logs, or a product
bought by a customer in the context of supermarket logs. As a
motivating example, consider a web search query log that traces the
queries posed by users over a period of time. Each record models
a different user and contains the set of queries posed by the user.
Figure 2a presents an exemplary web search query log consisting of
10 records (each being the web search history of a different user).
We do not distinguish between sensitive and non-sensitive terms;
we consider the general case, where any term might reveal sensitive
information for the user and any term can be used as part of a quasi-
identifier for a user. As we discuss in Section 5, having a clear
distinction between sensitive and identifying terms simplifies the
problem and our proposed technique can guarantee, in this case,
protection against attribute disclosure.

Attack model. The identification of a user in D is made possible
by tracing records that contain unique combinations of terms. For
example, if the database of Figure 2a is published and an adversary
A knows that a user U has searched for terms madonna and viagra,
he can infer that only record r2 contains both of them; therefore
A is certain that r2 is associated to U . We assume that the ad-
versary A may have background knowledge of up to m terms (i.e.,
queries) for any record (i.e., user) and that A does not have negative
background knowledge (i.e., the adversary does not know whether
a user did not pose a specific query). Moreover, we assume that
the adversary A does not have background knowledge for so many
individuals that it will allow her to infer negative knowledge about
U (see Section 5 for details).

Anonymity guarantee. The most popular guarantee for protec-
tion against identity disclosure is k-anonymity [26]. k-anonymity
makes each published record indistinguishable from other k−1 pub-
lished records. Applying k-anonymity on sparse multidimensional
data can result to a huge information loss, since groups of identi-
cal records must be created in a sparse data space [1, 13, 28]. For
this reason, we opt for km-anonymity [27], a conditional form of
k-anonymity, which guarantees that an adversary, who has partial
knowledge of a record (up to m items, according to our assumption
above), will not be able to distinguish any record from other k−1
records. More formally:

DEFINITION 1. An anonymized dataset DA is km-anonymous

if no adversary that has a background knowledge of up to m terms

Symbol Explanation Symbol Explanation

D, DA Original, anonymized dataset T Domain
A, I Anonymization, inverse transf. s(a) Support of a

P / J . . . Clusters / Joint cluster T
P cluster domain

C, C1, . . . Record Chunks T
C Chunk domain

SC, SC1,. . . Shared chunks CT Term chunk

Figure 1: Notation

of a record can use these terms to identify less than k candidate

records in DA.

For the original dataset D and its anonymized counterpart DA,
we define two transformations A and I. The anonymization trans-
formationA takes as input dataset D and results in the anonymized
dataset DA. The inverse transformation I takes as input the an-
onymized dataset DA and outputs all possible (non-anonymized)
datasets D′ that could produce DA, i.e., I(DA) = {D′ | DA =
A(D′)}. Obviously, D ∈ I(A(D)). For example, consider the
dataset

D(age, zip) = {(32, 14122), (39, 14122)}

and its corresponding anonymized dataset (using generalization)

DA(age, zip) = {(3x, 14xxx), (3x, 14xxx)},

we have: A(D) = DA and

I(DA) =







{(30, 14000), (30, 14000)}, . . .
{(30, 14000), (31, 14000)}, . . .
{(32, 14122), (39, 14122)}, . . .







In this paper, to achieve km-anonymity (Definition 1), we en-
force the following privacy guarantee.

GUARANTEE 1. Consider an anonymized dataset DA and a

set S of up to m terms. Applying I(DA) will always produce

at least one dataset D′ ∈ I(DA), for which there are at least k
records that contain all terms in S.

Intuitively, an adversary, who has limited background knowledge
(consisting of a set S of up to m terms) about a person, will have to
consider k distinct candidate records in a possible original dataset.

3. ANONYMIZATION BY DISASSOCIATION
In this paper, we propose an anonymization transformation A

that is based on disassociation. The proposed transformation parti-
tions the original records into smaller and disassociated subrecords.
The objective is to hide infrequent term combinations in the orig-
inal records by scattering terms in disassociated subrecords. To
illustrate the crux of the disassociation idea, we will use Figure
2. We have already seen that the dataset of Figure 2a is prone to
identity attacks (e.g., r2 can be identified by madonna and viagra).
The corresponding disassociated anonymized dataset is illustrated
in Figure 2b. Our approach, initially, divides the table into two
clusters P1 and P2 containing records r1−r5 and r6−r10 respec-
tively. In each cluster Pi, records are partitioned to smaller sub-
records, after dividing the terms in Pi into subsets. For example, in
P1, the terms are divided into subsets T1 ={itunes, flu, madonna},
T2 ={audi a4, sony tv}, and TT ={ikea, viagra, ruby}. Then, each
record is split into subrecords according to these subsets. The col-
lection of all subrecords of different records that correspond to the
same subset of terms is called a chunk. For example, r1 is split
into subrecords {itunes, flu, madonna}, which goes into chunk C1

(corresponding to T1), {}, which goes into chunk C2, and {ikea,

ruby}, which goes into chunk CT . CT is a special, term chunk; the



ID Records

r1 {itunes, flu, madonna, ikea, ruby}
r2 {madonna, flu, viagra, ruby, audi a4, sony tv}
r3 {itunes, madonna, audi a4, ikea, sony tv}
r4 {itunes, flu, viagra}
r5 {itunes, flu, madonna, audi a4, sony tv}
r6 {madonna, digital camera, panic disorder, playboy}
r7 {iphone sdk, madonna, ikea, ruby}
r8 {iphone sdk, digital camera, madonna, playboy}
r9 {iphone sdk, digital camera, panic disorder}
r10 {iphone sdk, digital camera, madonna, ikea, ruby}

(a) Original dataset D
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Record chunks Term chunk

C1 C2 CT

r1 {itunes, flu, madonna}
r2 {madonna, flu} {audi a4, sony tv} ikea, viagra,
r3 {itunes, madonna} {audi a4, sony tv} ruby
r4 {itunes, flu}
r5 {itunes, flu, madonna} {audi a4, sony tv}
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Record chunk Term chunk

C1 CT

r6 {madonna, digital camera}
r7 {iphone sdk, madonna} panic disorder,
r8 {iphone sdk, digital camera, madonna} playboy, ikea, ruby
r9 {iphone sdk, digital camera}
r10 {iphone sdk, digital camera, madonna}

(b) Anonymized dataset DA

Figure 2: Disassociation example

subrecords that fall into the last chunk (CT ) are merged to a single
set of terms. In our example, CT contains set {ikea, viagra, ruby},
which represents the subrecords from all r1−r5 containing these
terms. In addition, the order of the subrecords that fall in a chunk
is randomized; i.e., the association between subrecords in differ-
ent chunks is hidden. According to this representation, the orig-
inal dataset could contain any record that could be reconstructed

by a combination of subrecords from the different chunks plus any

subset of terms from CT . For example, {itunes, madonna, viagra,

ruby} is a reconstructed record, which takes {itunes, madonna}
from C1, {} from C2, and {viagra, ruby} from CT . Observe that
this record does not appear in the original dataset.

Similarly to the generalization based techniques, the disassoci-
ated dataset DA models a set of possible original datasets I(DA).
However, in our case the possible datasets are not described in a
closed form captured by the generalization ranges, but by the possi-
ble combinations of subrecords. In other words, the original dataset
is hidden amongst the multiple possible datasets in I(DA) that can
be reconstructed by combining the subrecords and terms taken from
the disassociated dataset.

Overall, the anonymized dataset in Figure 2b satisfies Guarantee
1 for k = 3 and m = 2. We see in detail how this happens in
Section 5, but we can observe that an attacker who knows up to
m = 2 terms from a record r of the original database is not able
to reconstruct less that k = 3 records (by combining appropriate
subrecords) that might have existed in the original data.

In the following, we present the details of our technique, which
performs 3 steps: a horizontal partitioning, a vertical partitioning
and a refining. The horizontal partitioning brings similar records
together into clusters. The heart of the anonymization procedure
lies in the vertical partitioning which disassociates infrequent com-
binations of terms. Finally, to reduce information loss and improve
the quality of the anonymized dataset a refining step is executed.

Horizontal partitioning. Records of the original dataset D are
grouped into clusters according to the similarity of their contents
(e.g., Jaccard similarity). For instance, cluster P1 is formed by
records r1−r5 (Figure 2b). Horizontal partitioning reduces the an-
onymization of the original dataset to the anonymization of multi-
ple small and independent clusters. The benefits of this approach
are threefold. First, it limits the scope of the term disassociation to
the records that are contained in the cluster; two terms may be dis-
associated only within the local scope of a partition, limiting this
way the negative effect in the information quality of the published
dataset. Second, since clustering brings similar records together in
the same partition, the anonymity guarantee can be achieved with
reduced disassociation. Third, the anonymization process can be
done more efficiently and even in parallel.

Vertical partitioning. Intuitively, vertical partitioning leaves term

combinations that appear many times intact and disassociates terms
that create infrequent and, thus, identifying combinations. The dis-
association is achieved by concealing the fact that these terms ap-
pear together in a single record. Vertical partitioning applies on
each cluster and divides it into chunks. There are two types of
chunks: record and term chunks. Record chunks contain subrecords
of the original dataset; i.e., each chunk is a collection (with bag se-
mantics) of sets of terms, and they are km-anonymous. That is, ev-
ery m-sized combination of terms that appears in a chunk, appears
at least k times. Term chunks do not contain subrecords; they con-
tain the terms that appear in the cluster, but have not been placed to
record chunks. A term chunk is a simple collection of terms with
set semantics. Each cluster may contain an arbitrary number of
record chunks (≥ 0) and exactly one term chunk (which might be
empty). In Section 5, we explain how the term chunk can be used to
provide l-diversity some terms have been designated as sensitive.

Vertical partitioning is applied to each cluster independently. Let
us consider a cluster P and let TP be the set of terms that appear
in P . To partition P into v record chunks C1, . . . , Cv and a term
chunk CT , we divide TP into v+1 subsets T1, . . . , Tv, TT that are
pairwise disjoint (i.e., Ti ∩ Tj = ∅, i 6= j) and jointly exhaustive
(i.e.,

⋃

Ti = TP ). Subsets T1, . . . , Tv are used to define record
chunks C1, . . . , Cv while subset TT , is used to define term chunk
CT . Specifically, CT = TT and record chunks Ci, 1 ≤ i ≤ v
are defined as Ci = {{ Ti ∩ r | for every record r ∈ P}} where
{{·}} denotes a collection with bag semantics (i.e., duplicate records
are allowed in Ci). Thus, chunks C1, . . . , Cv are collections of
records while chunk CT is a set of terms. The partitioning of TP to
T1, . . . , Tv, TT is performed in a way which ensures that all result-
ing record chunks C1, . . . , Cv are km-anonymous. In Figure 2b,
two 32-anonymous record chunks C1 and C2 are formed for P1, by
projecting the records of P1 to sets T1={itunes,flu,madonna} and
T2 = {audi a4, sony tv} respectively; the remaining terms {ikea,

viagra,ruby} of P1 form the term cluster CT .
Note that, for each published cluster, we explicitly show the

number of original records in it. Without this explicit information,
a data analyst may only infer that the cluster has at least as many
records as the cardinality of the chunk with the greatest number of
subrecords. Not knowing the cardinality of a cluster introduces sig-
nificant information loss; for instance, it is not feasible to estimate
the co-existence of terms in different chunks.

Finally, we remark that horizontal and vertical partitioning are
applied in reverse order from what is followed by approaches that
employ similar data transformations [11, 18, 30]. Thus, since verti-
cal partitioning is applied independently in each horizontal partition
(i.e., cluster), our method follows a local anonymization approach.
This constitutes a significant difference from previous works that
anonymize datasets by performing a global partitioning between
terms (usually between sensitive terms and quasi-identifiers).



Record Term Shared

P1 cluster
{ikea,ruby}
{ruby}
{ikea}

{ikea,ruby}

{ikea,ruby}

{itunes, flu, madonna}
{madonna, flu} {audi a4, sony tv} viagra
{itunes, madonna} {audi a4, sony tv}
{itunes, flu}
{itunes, flu, madonna} {audi a4, sony tv}
P2 cluster

{madonna, digital camera}
{iphone sdk, madonna} panic
{iphone sdk, digital camera, madonna} disorder,
{iphone sdk, digital camera} playboy
{iphone sdk, digital camera, madonna}

Figure 3: Disassociation with a shared chunk.

Refining. At this final step of the method, we focus on improving
the quality of the published result while maintaining the anonym-
ization guarantee. To this end, we examine the terms that reside
in term chunks. Consider the example of Figure 2b. Terms ikea

and ruby are in the term chunk of P1 because their support in P1

is low (each term appears in only 2 records). For similar reasons
these terms are also in the term chunk of P2. However, the sup-
port of these terms considering both clusters P1 and P2 is not small
enough to endanger user privacy (ikea and ruby appear as many
times as itunes and iphone that are in record chunks).

To address such situations, we introduce the notion of joint clus-

ters that offer greater flexibility in our partitioning scheme by al-
lowing different clusters to share record chunks. Given a set T s

of refining terms (e.g., ikea and ruby), which commonly appear in
the term chunks of two or more clusters (e.g., P1 and P2), we can
define a joint cluster by (a) constructing one or more shared chunks

after projecting the original records of the initial clusters to T s and
(b) removing all T s terms from the term chunks of the initial clus-
ters. Figure 3 shows a joint cluster, created by combining clusters
P1 and P2 of Figure 2b, based on T s={ikea,ruby}.

The idea of a joint cluster can be recursively generalized. We
may form higher-level joint clusters by combining simple and joint
clusters of a lower level (for example see Figure 5). In the general
case a joint cluster J , has as children the joint clusters J1, . . . , Jn

and at its leaves the simple clusters P1, . . . , Pm. Moreover it con-
tains the km-anonymous shared chunks SC1, . . . , SCw, which are
created over a domain T s. All terms of T s come from the term
chunks CT1

, . . . , CTm of P1, . . . , Pm. If T1, . . . , Tw are the do-
mains of SC1, . . . , SCw, T1 ∪ · · · ∪ Tw = T s and Ti ∩ Tj = ∅
for i 6= j, then each shared chunk SCi is created by projecting
the records of every Pj to CTj ∩ Ti. Shared chunks are defined in
this way, in order to avoid having a record contributing the same
projection to shared or simple record chunks more than once.

Reconstruction of datasets. A disassociated dataset DA has the
original records of D partitioned into subrecords (residing in record
or shared chunks) and terms (residing in term chunks). An adver-
sary A can combine record, shared and term chunks in an effort to
reconstruct the world of all possible original datasets I(DA). Pos-
sible original datasets may be reconstructed by combining the sub-
records of record and term clusters padded with some terms from
the term chunks. Such datasets D′ are called reconstructed datasets

and by construction belong to I(DA). The adversary A may con-
sider only the reconstructed datasets that abide to his background
knowledge. Guarantee 1 requires that for every m terms that ex-
ist in a record of D, there will be a D′ that contains k records
with these terms. Thus, an adversary will always have k candidate
records that will match her background knowledge.

Reconstructed datasets are also useful to data analysts, since they
have similar statistical properties to the original one. We experi-
mentally evaluate this similarity in Section 7. The benefit of pro-

viding the disassociated form, instead of a reconstruction directly,
is threefold: (a) an analyst can work directly on the disassociated
dataset. The disassociated dataset reveals some information, i.e.,
itemset supports, that is certain to exist on the original data, (b) the
reconstruction procedure is transparent; an adversary cannot draw
incorrect conclusions about the identity of a user by considering the
reconstructed dataset as original or as ineffectively perturbated and
(c) an analyst can create an arbitrary set of reconstructed datasets
and average query results from all of them.

4. THE ANONYMIZATION ALGORITHM
The proposed algorithm uses heuristics to perform the partition-

ing (horizontal and vertical) and the refining step of Section 3.

Horizontal partitioning. Horizontal partitioning should bring to-
gether similar records that contain many common terms and few
uncommon ones. Similarity may be assessed using measures from
Information Theory (e.g., Jaccard coefficient). Related clustering
algorithms exist in the literature for set-valued data [29], but un-
fortunately they are not appropriate for our setting since: (a) they
are not efficient on large datasets and (b) they do not explicit con-
trol the size of the clusters. We employ Algorithm HORPART, a
lightweight heuristic that does not have these problems. The key
idea is to split the dataset into two parts: one with the records that
contain the most frequent term a in the dataset and another with the
remaining records. This procedure is recursively applied to the new
datasets until the final datasets are small enough to become clusters.
Terms that have been previously used for partitioning are recorded
in set ignore and are not used in subsequent splitting (Line 3).

Vertical partitioning. To vertically partition the clusters, we fol-
low a greedy strategy (Algorithm VERPART), executed indepen-
dently for each cluster. VERPART takes as input a cluster P and in-
tegers k and m; the result is a set of km-anonymous record chunks
C1, . . . , Cv and the term chunk CT of P .

Let TP be the set of terms of P . Initially, the algorithm com-
putes the number of appearances (support) s(t) of every term t and
orders TP with decreasing s(t). All terms that appear less than
k times are moved from TP to the term chunk TT . Since all the
remaining terms have support at least k, they will participate in
some record chunk. Next, the algorithm computes sets T1, . . . , Tv

(while loop). To this end, the algorithm uses set Tremain that con-
tains the non-assigned terms (ordered by decreasing support s) and
Tcur (that contains the terms that will be assigned to the current
set). To compute Ti (1 ≤ i ≤ v), Algorithm VERPART considers
all terms of set Tremain . A term t is inserted into Tcur only if the
Ctest chunk constructed from Tcur ∪ {t} remains km-anonymous
(Line 12). Note that the first execution of the for loop (Line 10) will
always add a term t to Tcur since Ctest = {t} is km-anonymous
(s(t) ≥ k). If the insertion of a term t to Tcur renders Tcur ∪ {t}
non km-anonymous, t is skipped and the algorithm continues with
the next term. After having assigned to Tcur as many terms from
Tremain as possible, the algorithm (a) assigns Tcur to Ti, (b) re-
moves the terms of Tcur from Tremain and (c) continues to the next

Algorithm: HORPART

Input : Dataset D, set of terms ignore (initially empty)
Output : A HORizontal PARTitioning of D
Param. : The maximum cluster size maxClusterSize

1 if |D| < maxClusterSize then return {{D}};
2 Let T be the set of terms of D;
3 Find the most frequent term a in T − ignore;
4 D1 = all records of D having term a;
5 D2 = D −D1;
6 return HORPART(D1, ignore ∪ a)∪HORPART(D2, ignore)



Algorithm: VERPART

Input : A cluster P , integers k and m
Output : A km-anonymous VERtical PARTitioning of P

1 Let TP be the set of terms of P ;

2 for every term t ∈ TP do

3 Compute the number of appearances s(t);

4 Sort TP with decreasing s(t);
5 Move all terms with s(t) < k into TT ; //TT is finalized

6 i = 0;

7 Tremain = TP − TT ; //Tremain has the ordering of TP

8 while Tremain 6= ∅ do

9 Tcur = ∅;
10 for every term t ∈ Tremain do

11 Create a chunk Ctest by projecting to Tcur ∪ {t} ;
12 if Ctest is km-anonymous then Tcur = Tcur ∪ {t};

13 i++;
14 Ti = Tcur ;
15 Tremain = Tremain − Tcur ;

16 Create record chunks C1, . . . , Cv by projecting to T1, . . . , Tv ;
17 Create term chunk CT using TT ;
18 return C1, . . . , Cv , CT

set Ti+1. Finally, Algorithm VERPART constructs record chunks
C1, . . . , Cv using T1, . . . , Tv and the term chunk CT using TT .

Refining. The result of the vertical partitioning is a set P of km-
anonymous clusters. The refining step improves the quality of the
anonymized dataset by iteratively creating joint clusters until no
further improvement is possible. A naı̈ve method to perform this
step consists of computing the information loss (e.g., using a metric
of Section 6) for all possible refinement scenarios and choosing the
one with the best effect on data quality. Since such an option is
very inefficient, we define a refining criterion. Let us consider two
clusters J1 and J2. These cluster are joined into cluster Jnew if the
following inequality holds:

s(t1) + · · ·+ s(tn)

|Jnew |
≥

u1 + · · ·+ um

|P1|+ · · ·+ |Pm|
(1)

where (a) t1, . . . , tn are the refining terms T s (Section 3), (b) s(t1),
. . . , s(tn) are the supports of t1, . . . , tn respectively in the shared
chunks of Jnew , (c) P1, . . . , Pm are the simple clusters of J1 and
J2 that contain t1, . . . , tn and (d) v1, . . . , vm are the number of
terms t1, . . . , tn that appear in the term chunk of each of P1, . . . , Pm

respectively. For instance, if J1 and J2 are clusters P1 and P2 of
Figure 2b and Jnew is the joint cluster of Figure 3 then the refin-

ing terms are ruby and ikea and we have:
s(ruby)+s(ikea)

|Jnew |
= 4+4

10
≥

2+2
10

= u1+u2

|P1|+|P2|
. Thus, J1 and J2 are replaced by Jnew .

Note that the left part of Equation 1 estimates the probability
of attributing one of t1, . . . , tn to the records of the joint Jnew

while the its right part expresses the probability of attributing one
of t1, . . . , tn to the initial records of J1 and J2.

Even with the criterion of Equation 1, we still need to exhaus-
tively explore all the combinations of clusters (simple or joint) in
order to choose the best ones. This is computationally infeasible.
Thus, we have opted for a heuristic that merges each time only
two existing clusters (simple or joint) to form a new joint cluster.
The sketch of this method is illustrated in Algorithm REFINE. The
algorithm takes as input a collection of simple clusters P and trans-
forms it to a collection of joint clusters. The algorithm orders the
clusters of P as follows: a) each term t is given a term chunks sup-

port tcs(t); i.e., the number of term chunks in clusters of P where
t appears; b) the terms in term chunks are ordered in descending
order of their tcs; and c) clusters are ordered by comparing lexico-
graphically their term chunks. After the first iteration, joint clusters
are introduced in P . To each joint cluster J , we add a virtual term

Algorithm: REFINE

Input : A set P of km-anonymous clusters
Output : A refinement of P

1 repeat

2 Add to every joint cluster a virtual term chunk as the union of the
term chunks of its simple clusters;

3 Order (joint) clusters in P according to the contents of their
(virtual) term chunks;

4 Modify P by joining adjacent pairs of clusters (simple or joint)
based on Equation 1;

5 until there are no modifications in P ;
6 return P

chunk, which is the union of the term chunks of its simple clusters,
and we use it in the ordering step. REFINE modifies P by merging
adjacent pairs of clusters and repeats the process until P does not
change. The merging is done only if the criterion of Equation 1 is
satisfied, and produces a joint cluster as defined in Section 3.

Correctness of the algorithm. Disassociation performs the parti-
tioning (vertical and horizontal) and refining steps detailed in the
previous sections. The proposed method is correct; it succeeds for
any input and it always produces a disassociated km-anonymous
dataset. It is not hard to verify that the algorithm terminates and
produces a disassociated result. The proof that a disassociated
dataset is km-anonymous is provided in Section 5. In a nutshell
notice that (a) horizontal partitioning does not alter the original
dataset and always produces clusters, (b) vertical partitioning cre-
ates km-anonymous clusters since Algorithm VERPART will put
every term that has support over k to the record chunks (Lines 10-
17) and the rest of the terms in the term chunk (Lines 6 and 18) and
(c) refining has the trivial solution of not merging any clusters and
if a joint cluster is created (i.e., if shared chunks are added), then
km-anonymity is preserved as we prove in Section 5.

Complexity. The most expensive part of disassociation is the hor-
izontal partitioning that has a worst case complexity of O(|D|2)
time. The horizontal partitioning can be seen as a version of quick-
sort, which instead of a pivot uses the most frequent term to split
each partition; in the worst case it will do |D| partitionings and at
each partitioning it has to re-order |D| records. The complexity of
vertical partitioning depends on the domain TP of the input clus-
ter P , and not on the characteristics of the complete dataset. The
most expensive operation in the vertical partitioning is to establish
whether a clunk is km-anonymous or not. This task requires ex-

amining
(

|TP |
m

)

combinations, thus it takes O(|TP |!) time. Since
we regulate the size of clusters, the behavior of the overall algo-
rithm, as the dataset size grows, is dominated by the behavior of the
horizontal partitioning. Finally, the refining algorithm has again a
O(|D|2) time complexity, since in the worst case it will perform as
many passes over the clusters as the number of the clusters. Note
that this a worst case analysis; in practice, the behavior of our algo-
rithm is significantly better; this is also verified by the experimental
evaluation of Section 7, which shows a linear increase of the com-
putational cost with the input dataset size |D|.

5. ANONYMIZATION PROPERTIES
In Section 3, we described our disassociation transformation tech-

nique, which is implemented by the algorithm presented in Section
4. In this section, we prove how the disassociated result can guar-
antee km-anonymity, by showing how the transformed data can be
used to reconstruct a possible initial dataset that contains k times
any combination of m terms. In this proof we define two additional
properties that must be preserved in a disassociated dataset.

Cluster anonymity. First, we prove that each disassociated cluster
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Figure 4: Illustration of Example 1, Original cluster size = 5

is km-anonymous, by constructing an initial cluster that contains k
times any m terms of the disassociated cluster.

Let P be an arbitrary cluster of the anonymized dataset which is
vertically partitioned into km anonymous record chunks C1, . . . , Cv

and a term chunk CT . Then the following Lemma holds:

LEMMA 1. For any m terms S = t1, . . . , tm that appear in P ,

at least k distinct records that contain S can be reconstructed by

combining subrecords from the chunks C1, . . . , Cv and terms from

CT , or no record can be reconstructed that contains S.

PROOF. We first prove that Lemma 1 holds if all m terms fall
inside the record chunks. In this case the m terms S = t1, . . . , tm
are scattered in n, (n ≤ m,n ≤ v) record chunks C1, . . . , Cn. Let
S1, . . . , Sn be the subsets of S that appear in each of C1, . . . , Cn.
Since each chunk is km anonymous, Si will appear in the respec-
tive record chunk Ci at least k times together or none at all. The
latter case happens if the Si terms exist in disjoint groups of sub-
records inside Ci. If there is even one of S1, . . . , Sn whose terms
do not appear together at all in the respective chunk, then the S
terms cannot appear together in any reconstructed record. If ev-
ery set of S1, . . . , Sn appears together in the respective chunk,
then it has to appear in at least k subrecords in each chunk. Let
SR1, . . . , SRn be these sets of subrecords, one from each record
chunk. We can then create a record by combining 1 subrecord from
each of SR1, . . . , SRn, i.e., r = sr1 ∪ · · · ∪ srn, where sri is
a subrecord, sri ∈ SRi. Since each SRi contains at least k sub-
records, we remove the used subrecord and repeat the process at
least k − 1 more times. This results to at least k distinct records
that contain all S terms. Assume now that only g, g < m terms fall
inside the record chunks and m − g terms fall in the term chunk.
The previous proof holds for the g terms too, since g < m, thus
k records can be reconstructed from the record chunks that contain
the g items. We can then directly pad these k records with the rest
of m−g terms from the term chunk. We are free to do so, since the
multiplicity and the correlations of these terms are not disclosed in
the disassociated cluster.

Lemma 1 shows that k records can be constructed from a disassoci-
ated cluster; still, this is not sufficient for providing km-anonymity
as defined in Guarantee 1 as the following example illustrates.

EXAMPLE 1. Let us consider the dataset of Figure 4a. Assume

that we want to publish it as 32-anonymous and that we create two

record chunks C1 and C2 with domains T1 = {a}, T2 = {b,c} and

TT = ∅, as illustrated in Figure 4b. It is not hard to verify that all

chunks are 32-anonymous and that Lemma 1 holds.

Let us now consider an adversary A that knows: (a) the anony-

mized dataset of Figure 4b, (b) that the size of the original cluster

is 5 and (c) that a user had used terms a and b, i.e., {a, b} is a

subrecord of the original dataset. Adversary A also knows that the

original dataset is composed by a combination of the records stored

in chunks C1 and C2.

While the subrecords from C1 and C2 can be combined to create

k = 3 records that contain a and b, these records cannot appear in

any original dataset, which must contain 5 records. It is not hard

to verify that the only combination that results in a dataset with 5

records is the one presented in Figure 4a. Thus, no dataset that

contains {a,b} 3 times can be the initial dataset of the example of

Figure 4a. This way, the user’s record {a,b,c} is revealed.

Example 1 demonstrates that Lemma 1 is not sufficient to guar-
antee km-anonymity. Lemma 1 guarantees that k records that con-
tain any m terms can be constructed, but it does not guarantee that
these records can appear in a valid dataset of a predefined size. The
sparsity of the original data, often leads to empty subrecords inside
different chunks. Since there cannot be empty records, a record that
is created as a result of combining empty subrecords is not valid.
An initial dataset that contains an empty record is also not valid,
thus and adversary can discard it. To enforce Guarantee 1, we must
require not only that Lemma 1 holds, but also that these records
can appear in a valid initial dataset. Fortunately, we do no need
to reconstruct all possible original datasets to see if this condition
is satisfied. It suffices to enforce the condition of the following
lemma.

LEMMA 2. Let C1, . . . , Cv be the record chunks that corre-

spond to the anonymization of a cluster P with size s. If (a) chunks

C1, . . . , Cv are km-anonymous and (b) the total number of sub-

records in all chunks
∑

(|Ci|) is greater than or equal to s + k ·
(h − 1), h = min(m, v) or the term chunk is not empty, then

Guarantee 1 holds.

PROOF. To prove this lemma, it suffices to show that for every
different combination of m items: (a) no record that contains the
m terms can be constructed or (b) a valid initial cluster Pr of size s
where the m terms appear in at least k records can be reconstructed.

Assume m random terms t1, . . . , tm from TP . According to
Lemma 1, given a disassociated cluster Pa, no record that contains
these m terms can be created or at least k records can be recon-
structed. In the former case, the km anonymity trivially holds (this
case corresponds to a combination of m terms that did not appear
in the initial dataset1) and it covers case (a). In the latter case, to
prove (b) we need to show that these k records can appear in at
least one valid reconstruction of the disassociated cluster Pa. A
valid reconstruction of cluster Pa is a possible initial cluster that
has s non-empty records. We construct a cluster that contains s
records in total, where at least k of them contain t1, . . . , tm as fol-
lows. We first construct the k records, denoted as Rk that contain
the m terms as described in Lemma 1. If the m terms are scattered
in h chunks, then to construct each of these records we need h sub-
records; one form each chunk, thus k · h subrecords. To create a
valid initial dataset of size s that contains the Rk records we only
need to populate it with s − k additional records Ro that are valid
i.e., non-empty. If the term chunk is non-empty then the s − k
records can be populated by randomly combining terms from the
term chunk. If the term chunk is empty, we can create such records
by assigning 1 subrecord that has not been used in the construction
of Rk, from any of the C1, . . . , Cv chunks,. The total number of
subrecords needed is h · k + s − k = s + k · (h − 1). The worst
case, i.e., the maximum number of subrecords that are required for
constructing a valid cluster, is when we need to combine one dif-
ferent subrecord for each of t1, . . . , tm to create a record of Rk. In
this case, h = m or if the cluster has less than m record chunks
h = v. Thus, having s + k · (h − 1), h = min(m, v) subrecords
is sufficient to create a valid initial cluster.

1
If a combination of terms cannot be created by combining subrecords, it

holds that it did not appear in the original data. The reverse is not true; if a
combination can be created, it does not mean that it existed in the original
data.



Joint cluster anonymity. An example which demonstrates that
careless creation of shared chunks can lead to cases where combi-
nations of m terms might not appear k times in any reconstructed
dataset is depicted in Figure 5a. Although every chunk (i.e., verti-
cal partition) in the illustrated dataset is 32-anonymous, the overall
dataset is not. Since each record has set semantics, an adversary
can discard initial datasets that contain records with two identical
terms. An attacker A knowing that a user U asked for terms x

and o can only find one matching record in every possible origi-
nal dataset using the following reasoning. Term x appears only in
the 1st cluster (always together with a) and o appears in the shared
chunk. Thus, to construct U ’s record, A has to combine {a,x} with
any of {a,x}, {a} and {o}; but, by the semantics of shared chunks,
the only allowed combination is {a,x,o} which appears just once.
In order to avoid these conflicts we enforce the following property.

PROPERTY 1. Let J be a joint cluster and T r be the set of

terms that appear in the record and shared chunks of the clusters

(joint or not) forming J . A shared chunk of J that does not con-

tain terms from T r must be km-anonymous; if it does, it must be

k-anonymous.

For example in Figure 5a, Property 1 does not hold since T r =
{a,b,c,d,e,f,x}, term a appears on the shared chunk, a ∈ T r and the
shared chunk is not k-anonymous. On the other hand, the property
holds for Figure 5b. T r contains all terms that appear in J except
those that are placed in term chunks and those that appear only in
J’s shared chunks (only o in the previous example). Let us now
consider the following lemma.

LEMMA 3. A joint cluster for which Property 1 holds, is km-

anonymous.

PROOF. We will prove the Lemma by induction. Lemma 2
shows that simple clusters are km-anonymous. It is also easy to
see why joint clusters who contain only simple clusters are km-
anonymous, since no conflicts between the terms of the record and
shared chunks appear there. In the following we will prove the
inductive step; a joint cluster J that is formed by existing km-
anonymous joint clusters is km-anonymous too.

Let J be a joint cluster with domain T J , the km-anonymous
joint clusters J1, . . . , Jq be its children and the simple clusters km-
anonymous P1, . . . , Pw be its leaves. Let SC be the set of the
shared chunks of J that all satisfy Property 1. Moreover, let T r

be the set of terms that appear in the record and shared chunks of
J1, . . . , Jq . Since J1, . . . , Jq are km anonymous we only have to
check how the introduction of the shared chunks SC affects ano-
nymity. Because Lemma 2 holds for each cluster independently,
there is no need to set a new bound for the number of subrecords
contained in SC. We only have to show that the addition of SC al-
lows the creation of k records (or no record at all) that contain any
m-sized combination of terms from T J .

Assume a random combination of m terms t1, . . . , tm from T J

where terms t1, . . . , ti appear in J1, . . . , Jq (in either record or
term chunks) and ti+1, . . . , tm appear in the shared chunks SC.
If i = m, i.e., all terms belong to J1, . . . , Jq , then km anonym-
ity holds since we assumed that J1, . . . , Jq are km-anonymous. If
i = 0, i.e., all terms belong to the shared chunks, then by following
the same constructive proof as we did in Lemma 1 we can cre-
ate k records that contain t1, . . . , tm. This is sufficient for proving
km-anonymity since there is no requirement for the number of sub-
records in the shared chunks. Finally, if some of the m terms cannot
appear together by any combination of subrecords, i.e., they did not
appear together in the original data at all, then the km-anonymity

trivially holds. It remains to prove that J is km-anonymous for
0 < i < m.

Let SC1, . . . , SCn, n ≤ m , with domains T 1, . . . , Tn be the
shared chunks of SC that contain ti+1, . . . , tm. Using the recon-
structed clusters of J1, . . . , Jq we partially reconstruct a joint clus-
ter Jr that contains at least k records with the terms t1, . . . , ti.
Let PR be the partially reconstructed records of J that contain
t1, . . . , ti, |PR| ≥ k. We expand the PR with subrecords from
each SCi of SC1, . . . , SCn to create records that contain all m
terms. For each of SCi with domain T i we have two cases:

T r ∩ T i = ∅ holds: In this case, SCi is km-anonymous and no
term from SCi appears in any of the PR records. We can then
select k subrecords that contain the terms from ti+1, . . . , tm that
fall in T i and concatenate them to k records of PR.

T r ∩ T i 6= ∅ holds: In this case, SCi is k-anonymous. Let SRi

be the records of SCi that contain the terms of t1, . . . , tm that fall
in T i, |SRi| ≥ k. We want to append k subrecords from SRi to
k records of PR to create records that contain all m terms. Still,
not all combinations of PR × SRi are valid due to conflicts. The
conflicts are caused by terms that appear both in the subrecords
of SCi and the records of Jr that have partially been constructed
until now. Assume that the conflict is based on a term a. a is in-
dependent of t1, . . . , tm. Assume that a appears in the record or
shared chunks of the simple or joint clusters Ja, which are descen-
dants of J . The existence of a in these record chunks means that
SRa did not exist in any of Ja, thus the records of SRa cannot be
combined with any of the records of Ja. Let JRa be the partially
reconstructed records of Ja. Because of the conflict, the adversary
knows that if any record of PR belongs to JRa too, then it cannot
be combined with SRa to create the k records we need. To guar-
antee km anonymity, we must be able to combine at least k records
from PR′ = PR \ JRa and SR′

i = SRi \ SRa or none at all.
We will prove this by showing that either all records of PR′ and
all subrecords of SR′

i are disqualified, or that at least k remain in
each set. Since each joint cluster is anonymized independently, it
contributes at least k records to PR. Any conflict with even one
record of a cluster from Ja disqualifies all the records from the
same cluster, thus JRa will be equal to PR or they will differ at
least by k records, i.e., all the records contributed by a cluster that
has no conflict. Thus |PR′| = 0∨ |PR′| ≥ k. Moreover, since we
required that Si is k-anonymous, there will be at least k duplicates
of each record. A conflict over term a will disqualify at least k
records, and if records without a exist in SR′ there will be at least
k of them. So, after eliminating conflicts, |SR′| = 0 ∨ |SR′| ≥ k.
Since both PR′ and SR′ will have either more than k records or
none after eliminating conflicting records, we can either create k
records that contain all t1, . . . , tm or no such record.

The proof is similar for conflicts based on more than one item.
Since a disassociated dataset consists of either joint or simple

clusters, Lemmas 2 and 3 are sufficient to prove that the whole
dataset is km-anonymous. We only have to show that the properties
required by the previous Lemmas can be guaranteed by the algo-
rithm of Section 4. To guarantee the property required by Lemma
2 we only need to add a check at the end of VERPART that verifies
that the cluster contains enough subrecords. If the size limit is not
met, then by moving the least frequent item of the record chunks
to the term chunk, we guarantee that the conditions set by Lemma
2 are satisfied. This solution is always feasible; at least one term
will exist to populate the term chunk in each cluster. To satisfy
Lemma 3 the refining algorithm has to check in the creation of a
shared chunk, if any of its terms appears in the record chunk of
any descendant joint or simple cluster. If this holds, then the chunk
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Figure 5: Unsafe (a) vs. safe (b) creation of a shared chunk

must be k-anonymous, else it can be km-anonymous. Since there
is always the trivial solution of a record chunk that contains only 1
term, which is both k-anonymous and km-anonymous, the refining
algorithm always produces a km-anonymous dataset.

Protection against stronger adversaries. km-anonymity is a con-
ditional guarantee and the protection it offers is reduced against
adversaries with background knowledge that exceeds the attack
model assumptions. The most common case is to have adversaries
that have more knowledge than m terms about a user or adver-
saries that have background knowledge about all users that contain
certain m terms. In both cases, the adversary’s background knowl-
edge consists of enough information to accurately associate some
records to a known group of users U . This allows the adversary
to remove these records from the groups of candidate records that
match her background knowledge for any user who does not be-
long to U . Still, this attack does not lead automatically to complete
re-identification of the additional users, but reduces the number of
candidates according to their overlap with the records that are as-
sociated with U . This type of attacks has been studied in other con-
texts [2, 32] and their effect on disassociation and generalization
based methods is similar. Disassociation has an additional weak-
ness that is related to Lemma 2; if a record of a user is identified
and the remaining terms violate Lemma 2, then the probability of
identifying additional records might be reduced to less than k-1.

Diversity. So far we have discussed an anonymization framework
offering protection against identity disclosure. In this section, we
discuss how the proposed framework may also offer protection against
attribute disclosure and achieve l-diversity.

Former works that guarantee l-diversity, separate sensitive at-
tributes from quasi identifiers [11, 18, 30]. Following the same
idea, we can enforce l-diversity in our framework by (a) ignoring
all sensitive values in the horizontal partitioning and (b) placing all
sensitive values in the term chunk at the vertical partitioning stage.
In the resulting data, all sensitive values will reside at the term
chunk and no association between them and any other subrecord
or value can be done with probability over than 1/|C|, where |C|
is the size of the cluster. By adjusting the size of the clusters, the
anonymization method achieves the desired degree of l-diversity.

The proposed anonymization framework offers protection against
both identity and attribute disclosure. We focus on the former be-
cause to the best of our knowledge there is no other work that em-
ploys a similar to disassociation transformation to guarantee pro-
tection against identity disclosure (works enforcing l-diversity do
not consider re-identification dangers [11, 18, 30]). We expect that
in practice both protection against identity and attribute disclosure
(for the recognized sensitive values) are needed.

6. INFORMATION LOSS
By definition, disassociation incurs a different information loss

compared to classic anonymization methods. The disassociated
dataset preserves all the initial terms and many of the initial item-
sets. An analyst can work directly on the disassociated dataset or
reconstruct a possible initial one. In the former case, the analyst
can compute lower bounds of the supports of all terms and item-
sets. These bounds can be computed by counting all the appear-
ances of terms and itemsets in the record chunks of the simple and
joint clusters and by adding one to the support of each term that
appears in a term chunk. Moreover, the analyst can employ models
for answering queries in probabilistic databases to directly query
the anonymization result [9]. Using such a model, one can assume
that the contents of each record chunk are possible assignments to
every record of the cluster with probability (1/|P |). Still, existing
work on uncertain data management is not tailored to the disasso-
ciated dataset and does not take advantage of the constraints in the
reconstruction procedure that we detailed in Section 3 to increase
the quality of the estimations. Moreover, working directly on the
disassociated dataset requires adjusting existing tools and models
for analyzing data. Because of this, we believe that it is easier to
apply most analysis tasks on a reconstructed dataset. During hori-
zontal partitioning, clusters are created by bringing similar records
together; thus, the statistical properties of a reconstructed dataset
are quite close to the original one. A way to further increase the
accuracy of the analysis on reconstructed data is to create more
than one reconstructed datasets and average the query results on
them. We experimentally evaluate the similarity between the re-
constructed datasets and the original one in Section 7.

Disassociation hides infrequent term combinations, therefore the
incurred information loss is related to term combinations that exist
in the original dataset but are lost in the disassociated dataset. To
assess the impact of the information loss, we examine the behav-
ior of common mining and querying operations on the transformed
data. We employ metrics that are generic and can be used as a
comparison basis with anonymization methods that employ differ-
ent data transformations (such as generalization, suppression and
differential privacy). More specifically, we examine how many of
the frequent itemsets that exist in the original data are preserved in
the published data, and we also measure the relative error in the
estimation of the supports of pairs of items.

Top-K deviation (tKd). The tKd metric measures how the top-
K frequent itemsets of the original dataset change in the published
anonymized data. Let FI (respectively, FI ′) be the top-K fre-
quent itemsets in the original dataset (respectively, the anonymized
dataset); tKd is defined as follows:

tKd = 1−
|FI ∩ FI ′|

|FI|
(2)

Intuitively, tKd expresses the ratio of the top-K frequent itemsets
of the original dataset that appear in the top-K frequent itemsets of
the anonymized data.

To compare disassociation with generalization-based methods,
we define an appropriate version of tKd, called the top-k multiple

level mining loss tKd-ML2, which is based on the ML2 metric
defined in [27]. Mining a dataset at multiple levels of a general-
ization hierarchy is an established technique [12], which allows de-
tecting frequent association rules and frequent itemsets that might
not appear in the most detailed level of the data. If a generalization
hierarchy that allows the anonymization of the data exists, then we
can assume that the same hierarchy can be used to mine frequent
itemsets from the published (and the original) data at different lev-



Dataset |D| |T | max rec. size avg rec. size

POS 515,597 1,657 164 6.5

WV1 59,602 497 267 2.5

WV2 77,512 3,340 161 5.0

Figure 6: Experimental datasets

els of abstraction. tKd-ML2 is given again by Equation 2, but in
this case FI and FI ′ are the sets of generalized frequent itemsets
that can be traced in the original and anonymized data, respectively.
In the case of generalized datasets, a generalized frequent itemset is
lost if it contains terms that have been generalized at a higher level
during the anonymization process. Reconstructed datasets do not
contain any generalized items, but given a generalization hierarchy
generalized frequent itemsets can be mined.

Relative error (re). This metric (used also in [6]) is used to mea-
sure the relative error in the support of term combinations in the
published data. Since there is a huge number of possible combi-
nations, we limit ourselves to combinations of size two as an in-
dication of the dataset quality. Larger combinations are usually
infrequent, and the case of very frequent ones is already covered
by tKd. The relative error is defined as follows:

re =
|so(a, b)− sp(a, b)|

AV G(so(a, b), sp(a, b))
, (3)

where so(a, b) and sp(a, b) is the support of the combination of
terms (a, b) in the original and in the published data, respectively.
Reconstructing anonymized datasets might introduce new item com-
binations in the published data, which did not exist in the original
data. In order to take them into account in the definition of the rel-
ative error, we use the average of the two supports as denominator,
instead of using the original support so(a, b). The average has a
smoothing effect on the metric, since it normalizes re to [0, 2], and
avoids divisions by 0.

7. EXPERIMENTAL EVALUATION
The goal of the experimental evaluation is to demonstrate the ad-

vantages that disassociation in preserving data quality and to show
that disassociation has a robust behavior in different settings.

7.1 Experimental Settings

Datasets. In the experiments, we use the 3 real datasets described
in Figure 6, which were introduced in [33]. Dataset POS is a trans-
action log from an electronics retailer. Datasets WV1 and WV2
contain click-stream data from two e-commerce web sites, col-
lected over a period of several months. Synthetic datasets were
created with IBM’s Quest market-basket synthetic data generator
(http://www.almaden.ibm.com/cs/quest/syndata.html). Unless oth-
erwise stated, the default characteristics for the synthetic datasets
are 1M records, 5k term domain and 10 average record length.

Evaluation metrics. We measure the information loss incurred by
our method with respect to the following: (a) the tKd, tKd-ML2,
and re measures defined in Section 6 and (b) the percentage of
terms tlost that have support more than k in the original dataset
D but they are placed in term chunks by our method. We report
tKd and re for the disassociated datasets calculated in two differ-
ent ways: (a) one on a single random reconstructed dataset, labeled
as tKd and re, and (b) one calculated only by taking into account
the subrecords that appear inside the record and shared chunks, la-
beled as tKd-a and re-a. In the latter case, we do not take into
account the probability that an itemset can be created by combin-
ing subrecords. tKd-a and re-a trace the itemsets that would exist
in any reconstructed dataset, thus they are based on lower bounds

of itemset supports in the original dataset. tKd and tKd-ML2 are
measured for the 1000 most frequent itemsets. Finally, computing
an average re on all combinations of size 2 is not very informative
in cases of skewed distributions and large domains. The major-
ity of combinations would be rare or would not exist at all in the
original data, but they would dominate the result. To avoid this, we
ordered the domain of each dataset by descending term support and
we used a small range of consecutive terms to trace their re. After
some testing we chose the 200th-220th most frequent terms. re in
this case is an indicator of how well less frequent but not utterly
rare combinations are preserved in the anonymized dataset.

Evaluation parameters. We compared performance by varying
the following parameters: (a) k, (b) the size of the dataset, (c) the
size of the dataset’s domain, (d) the average size of the records,
(e) the terms we use to calculate re and (f) the number of recon-
structed datasets we use to calculate re and tKd. We do not present
a detailed evaluation for m, because in all the available datasets its
effect for values m > 2 is negligible. The explanation for this
is that most record clusters are km-anonymous for any m either
because they have gathered very frequent terms or because they
contain small subrecords. The experiments are all performed with
k = 5, m = 2 unless explicitly stated otherwise.

Comparison to state-of-the-art. Comparing disassociation to other
methods is not straightforward; no other method offers the same
privacy guarantee while introducing the same type of information
loss. We chose to compare disassociation to the generalization-
based Apriori approach [27], since it offers the same privacy guar-
antee and it is the most closely related method. This comparison
allows us to see how the different data transformations, generaliza-
tion and disassociation, affect the quality of the anonymized dataset
in a similar privacy framework. Furthermore, we compare disas-
sociation to DiffPart [6], which offers differential privacy for set-
valued data by suppressing infrequent terms and adding noise. The
comparison with DiffPart demonstrates the gains disassociation of-
fers in terms of information quality, when a more relaxed guarantee
like km-anonymity is chosen over differential privacy. All methods
were implemented in C++ (g++ 4.3.2).

7.2 Experimental Results
The first experiment (Figures 7a-d) investigates the information

loss by our method on the real datasets. In Figure 7a, we see the
result of disassociation in the quality of all datasets and in Figures
7b-d just for the POS dataset. The tKd-a in Figure 7a is similar for
all datasets, showing that the most frequent combinations are pre-
served for different data characteristics. Still, when we trace tKd
on the reconstructed datasets, the results significantly improve only
for the POS dataset, which is the largest of the 3 and its records have
the longest average length. This reflects the fact that disassociation
managed to create multiple record chunks for POS. The combina-
tions of their contents results to a significantly better reconstructed
dataset. Disassociation produces significantly different results for
the 3 datasets, when looking to the re and re-a metrics. The sup-
ports of the combinations traced by re are preserved better when
the ratio of the dataset size to the dataset domain is high. This ratio
is higher for POS and WV1, where re has significantly superior re-
sults to re-a. This indicates the gains from combining terms from
different record chunks in the reconstructed datasets. Finally, the
same ratio affects how many terms are placed in the record chunk,
as reported by tlost, but to a lesser degree. In Figures 7b and 7c, we
see how information loss escalates as the power of the guarantee,
expressed by the k parameter, grows. The measures that depend
on the most frequent items and itemsets are only slightly affected
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Figure 7: Information loss on real data (a-d)
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Figure 8: Information loss on synthetic data (a-d)
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Figure 9: Performance on real data (a-b)
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Figure 10: Performance on synthetic data (a-b)
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Figure 11: Comparison with other methods (a-c)

(Figure 7b), since the disassociation algorithm preserves them in
record chunks. On the other hand, re, which does not depend on
the most frequent items, increases linearly with k, but with a low
rate (Figure 7c). In Figure 7d we explore the gain in information
quality by creating several reconstructed datasets and averaging the
itemset supports on them. We created 10 random reconstructions of
the anonymized POS dataset, and we traced re taking this time into
account the average supports of the itemsets in 2 (re-r2), 5 (re-r5)
and 10 (re-r5) of the reconstructed datasets. We do not report re-
sults for tKd since they were already close to 0 and did not benefit
substantially from multiple reconstructions. We measure the re on
the combinations of the 0-20, 100-120, 200-220, 300-320 and 400-
420 most frequent terms in POS. In the x-axis of Figure 7d, we
depict the frequency order of the terms; e.g. a point over 100 refers
to the re of the combinations of the 100th-120th most frequent
terms in POS. When the terms are frequent, the support of their
combinations is reported accurately in any reconstructed dataset,
so taking the average does not provide any benefit. As the com-
binations become less frequent, using more than one reconstructed
datasets allows for more accurate estimations. In the previous ex-

periments we also examined separately how frequent itemsets of
size less or equal to m and of size greater than m (m = 2) are pre-
served. We did not notice any systematic behavior; depending on
the dataset, any of the aforementioned frequent itemset classes may
be preserved better. For example, frequent itemsets smaller than m
were preserved better in POS and in WV2 and worse in WV1. We
do not report detailed results due to space limitations.

In the experiments of Figure 8 we used synthetic data to see how
the information loss is affected, when the dataset characteristics
variate. Since the anonymization is applied independently on each
cluster, the database size does not have a significant effect on the
quality of the results as demonstrated in Figures 8a and 8b. Only
the re and re-a are positively affected, because the terms it traces
become more frequent and they end up in record chunks more of-
ten. Moreover, in Figure 8c we see that increasing the domain when
the distribution is skewed, basically affects the tail of the distribu-
tion, thus it does not have a significant effect on frequent combi-
nations of terms traced by tKd, whereas re slightly deteriorates.
The effect of record length is depicted in Figure 8d. Having larger
records results in more record chunks and more rare terms in each



cluster, thus tKd-a and tlost increase. On the other hand, when we
keep the dataset and domain size constant and we only increase the
record size, the support of the terms in the dataset increases and this
explains how re benefits from larger records. Finally, tKd remains
close to 0 for all record sizes, since the multiple record chunks re-
construct most of the frequent itemsets in the reconstructed dataset.

Figures 9 and 10 illustrate the performance of the proposed al-
gorithm in terms of CPU time (results in seconds). Disassociation
is not significantly affected by the value of k, and at the same time
it scales linearly to the dataset and the domain size.

Figure 11 shows how disassociation performs compared to Diff-

Part and the Apriori algorithm. The graphs illustrate the impact of
all algorithms on the quality of the anonymized dataset for k = 5
and m = 2 (DiffPart is unaffected by this parameter). For the Diff-

Part algorithm we used privacy budgets ranging from 0.5 to 1.25,
using a step 0.25 with the same parameters as in [6] and we report
the best results. In Figure 11a we see how disassociation compares
to DiffPart in terms of tKd. Since in both cases the anonymized
datasets contain only original terms (the differential private one has
only a subset of them) tKd is computed in exactly the same way.
The trade-off for using a stronger privacy guarantee like differential
privacy is quite important; in the best case 75% of the top frequent
items have been lost, whereas disassociation loses only 5% in the
same experiment. In Figure 11b we see how disassociation com-
pares to Apriori in terms of tKd-ML2, since no original frequent
itemset appears in the generalized dataset. Disassociation performs
again significantly better than Apriori especially for POS which is
the largest dataset and has more frequent terms than WV1 and WV2.
A problem of Apriori is that few uncommon terms cause the gener-
alization of several common ones. Finally, Figure 11c shows how
all algorithms compare in terms of re. re in the generalized dataset
is calculated by uniformly dividing the support of a generalized
term to the original terms that map to it. DiffPart has suppressed
all the 200-220th most frequent terms in POS (less that 100 of the
original 1657 terms are left), so in order to make the comparison
meaningful we report the re for the (0-20th) most frequent terms.
The re for both DiffPart and Apriori is over 1, which indicates that
the supports of the term combinations have limited usefulness for
analysis, whereas disassociation provides 0.18 re in the worst case.

In summary, the experiments on both real and synthetic datasets
demonstrate that disassociation offers an anonymized dataset of
significantly superior quality compared to other state-of-the-art meth-
ods. Moreover, the information loss does not increase aggressively
as k increases. Finally, disassociation is not computationally ex-
pensive and it is practical for large datasets.

8. RELATED WORK
Privacy preservation was first studied in the relational context

and focused on protection against identity disclosure. In [25, 26]
the authors introduce k-anonymity and use generalization and sup-
pression as their two basic tools for anonymizing a dataset. Incog-

nito [15] and Mondrian [16] are two well known algorithms that
guarantee k-anonymity for a relation table by transforming the orig-
inal data using global (full-domain) and local recoding, respec-
tively. [21] demonstrates that the information loss, when providing
k-anonymity, can be reduced by using natural domain generaliza-
tion hierarchies (as opposed to user-defined ones).

To address the problem of attribute disclosure, where a person
can be associated with a sensitive value, the concept of ℓ-diversity
[20] was introduced. Anatomy [30] provides ℓ-diversity and lies
closer to our work, in the sense that it does not generalize or sup-
press the data, but instead it disassociates them by publishing them
separately. Still, the anonymization approach is restricted to rela-

tional data and it does not protect against identity disclosure. Slic-

ing, a more flexible version of Anatomy appears in [18]. Slicing

guarantees l-diversity as Anatomy, but instead of completely sep-
arating sensitive attributes from quasi-identifies, it might publish
some quasi-identifiers without disassociating them from sensitive
values, if the diversity guarantee is not violated. Moreover, Slicing,
disassociates quasi-identifiers to increase protection from member-
ship disclosure. By disassociating quasi identifiers, an adversary
is faced with several options for reconstructing each record, thus
she cannot be certain that a specific record existed in the origi-
nal data. The data transformation is similar to the approach of our
work, but there are significant differences: a) there is no protection
against identity disclosure and b) the disassociation between quasi-
identifiers does not provide any privacy guarantee, and it takes
place only if the impact on information loss is limited. Protection
against membership disclosure is facilitated, but not guaranteed; it
is roughly estimated using the number of attribute combinations,
and not guaranteed by considering the possible initial datasets as
in our work. The issues of empty and duplicate records are not
addressed. Our work differs from Slicing mainly because it uses
the disassociation of quasi-identifiers to provide a guarantee against
identity, and because it addresses sparse multidimensional values.2.

A similar idea, the vertical fragmentation of relational tables,
is employed in a different context to guarantee user anonymity in
[7]. The proposed technique distributes a relational table to dif-
ferent servers. In each server, only a subset of the relation’s at-
tributes are available unencrypted. The subsets that are available
without encryption are chosen so that sensitive associations be-
tween attributes, captured by confidentiality constraints, are bro-
ken. Fragmentation is similar to the basic idea in our work and
in [30, 18], but the anonymization model is very different since
it focuses on known confidentiality constraints; attacks based on
background knowledge are not considered.

More recently, a stronger privacy preservation paradigm, differ-
ential privacy, has been proposed [10]. Differential privacy is in-
dependent of adversary’s background knowledge and it roughly re-
quires that the existence of every single record in the data does not
have a significant impact in any query. Finally, the work of [8], al-
though focusing at the protection of associations in sparse bipartite
graphs, is related to our work because of the way they define their
semantics. The anonymization technique of [8] replaces each node
of the graph with a safe group of labels, allowing in this way the
anonymized graph to be matched to multiple possible initial graphs.

Privacy on set-valued data. The works that lie closer to this paper
are those for privacy on set-valued data. Most works that provide
protection against identity disclosure rely on generalization. An ef-
ficient algorithm for classical k-anonymity in a set-value context
appears in [13]. [27, 28] introduce the km anonymity guarantee,
which is used and extended in this paper. The authors provide al-
gorithms for anonymizing the data that, unlike our approach, are
based on generalization, employing both local and global recod-
ing. In [4] an algorithm for providing km-anonymity using only
suppression is proposed. The authors have a similar motivation to
our work and focus on web search query logs, which they anony-
mize by removing terms that violate km-anonymity. The proposed
method preserves original terms, but due to the large tail of the term
support distribution in such logs, it removes 90% of the terms even
for low k and m values. In a different setting, [22] studied multire-

2
In [18] there is an application of Slicing to the Netflix data [23], which

are sparse. This is achieved by padding all null values with the average of
the corresponding attribute values. This technique works only for specific
types of data processing and cannot address of sparse data in general.



lational k-anonymity, which can be translated to a problem similar
to the one studied here, but the anonymization procedure still relies
on generalization. [31] provide protection both against identity and
attribute disclosure by relying on suppression.

Protection against attribute disclosure is provided both by gen-
eralization and disassociation transformations. The work of [11]
extends [30] to provide ℓ-diversity for transactional datasets with a
large number of items per transaction, but it does not depart from
the anonymization framework of [30]; it still has a separate set of
quasi-identifiers and sensitive values. The basic idea of [11] is to
create equivalence classes where the quasi-identifiers are published
separately from the sensitive values and their supports. [5] provides
a more elaborate ℓ-diversity guarantee for sparse multidimensional
data, termed ρ-uncertainty, where sensitive items can act as quasi-
identifiers too. Still, unlike our approach, generalization and sup-
pression are employed to anonymize the data.

There have been few works that investigate the publication of
set-valued data under differential privacy guaranties. [14] focuses
on the anonymization of web search logs, using the AOL data [3].
The proposed method that guarantees differential privacy but it only
publishes query terms and not records. Moreover, the anonymiza-
tion procedure completely hides all terms that are infrequent, which
are the majority of terms in AOL data. In [6] a method for publish-
ing itemsets instead of isolated terms from a set-valued collection
of data is proposed. The DiffPart algorithm follows a top down ap-
proach, which starts from the unification of the whole domain and
refines it by partitioning it to subdomains, if the item combinations
can be published without breaching differential privacy.

Our work lies closer to [11, 30, 18] in the sense that it does not
suppress or generalize the data but instead it severs the links be-
tween values attributed to the same entity. Unlike [11, 30, 18] we
focus on identity protection, and not simply on separating sensitive
values from quasi-identifiers. The work of [18] has the most sim-
ilar data transformation, but it solves a different problem and does
not address the peculiarities of sparse multidimensional data. Our
privacy guarantee comes from [27], but we follow a completely dif-
ferent path with respect to the data transformation and the type of
targeted data utility.

9. CONCLUSIONS
In this paper, we proposed a novel anonymization method for

sparse multidimensional data. Our method guarantees km-anonymity,
for the published dataset using a novel data transformation called
disassociation. Instead of eliminating identifying information by
not publishing many original terms, either by suppressing or gen-
eralizing them, we partition the records so that the existence of cer-
tain terms in a record is obscured. This transformation introduces
a different type of information loss from existing methods, making
it a valuable alternative when the original terms are important.
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Abstract. Publishing datasets about individuals that contain both re-
lational and transaction (i.e., set-valued) attributes is essential to sup-
port many applications, ranging from healthcare to marketing. However,
preserving the privacy and utility of these datasets is challenging, as it
requires (i) guarding against attackers, whose knowledge spans both at-
tribute types, and (ii) minimizing the overall information loss. Existing
anonymization techniques are not applicable to such datasets, and the
problem cannot be tackled based on popular, multi-objective optimiza-
tion strategies. This work proposes the first approach to address this
problem. Based on this approach, we develop two frameworks to offer
privacy, with bounded information loss in one attribute type and mini-
mal information loss in the other. To realize each framework, we propose
privacy algorithms that effectively preserve data utility, as verified by
extensive experiments.

1 Introduction

Privacy-preserving data mining has emerged to address privacy concerns related
to the collection, analysis, and sharing of data and aims at preventing the disclo-
sure of individuals’ private and sensitive information from the published data.
Publishing datasets containing both relational and transaction attributes, RT-
datasets for short, is essential in many real-world applications. Several marketing
studies, for example, need to find product combinations that appeal to specific
types of customers. Consider the RT -dataset in Fig. 1a, where each record cor-
responds to a customer. Age, Origin and Gender are relational attributes, whereas
Purchased-products is a transaction attribute that contains a set of items, repre-
senting commercial transactions. Such studies may require finding all customers
below 30 years old who purchased products E and F. Another application is in
healthcare, where several medical studies require analyzing patient demographics
and diagnosis information together. In such RT -datasets, patients features (e.g.,
demographics) are modeled as relational attributes and diagnosis as a transac-
tion attribute. In all these applications, the privacy protection of data needs
to performed without adding fake or removing truthful information [5,16]. This
precludes the application of ǫ-differential privacy [3], which only allows releasing
noisy answers to user queries or noisy summary statistics, as well as suppression
[19], which deletes values prior to data release.



Relational attributes Transaction attribute
Id Name Age Origin Gender Purchased-products

0 John 19 France Male E F B G
1 Steve 22 Greece Male E F D H
2 Mary 28 Germany Female B C E G
3 Zoe 39 Spain Female F D H
4 Ann 70 Algeria Female E G
5 Jim 55 Nigeria Male A F H

(a)

Relational attributes Transaction attribute
Id Age Origin Gender Purchased-products

0 [19:22] Europe Male E F (A,B,C,D) G
1 [19:22] Europe Male E F (A,B,C,D) H
2 [28:39] Europe Female E (A B,C D) G
3 [28:39] Europe Female F (A,B,C,D) H
4 [55:70] Africa All E G
5 [55:70] Africa All F (A,B,C,D) H

(b)

Fig. 1: (a) An RT -dataset with patient demographics and IDs of purchased products,
and (b) a 2-anonymous dataset with respect to relational attributes and 22-anonymous
with respect to the transaction attribute. Identifiers Id and Name are not published.

A plethora of methods can be used to preserve the privacy of datasets con-
taining only relational or only transaction attributes [9,12,15,18]. However, there
are currently no methods for anonymizing RT -datasets, and simply anonymizing
each attribute type separately, using existing methods (e.g., [9,12,15,18]), is not
enough. This is because information concerning both relational and transaction
attributes may lead to identity disclosure (i.e., the association of an individ-
ual to their record) [15]. Consider, for example, the dataset in Fig. 1a which
is anonymized by applying the methods of [18] and [8] to the relational and
transaction attributes, as shown in Fig. 1b. An attacker, who knows that Jim is
a 55-year-old Male from Nigeria who purchased F, can associate Jim with record
5 in Fig. 1b. Thwarting identity disclosure is essential to comply with legisla-
tion, e.g., HIPAA, and to help future data collection. At the same time, many
applications require preventing attribute disclosure (i.e., the association of an
individual with sensitive information). In medical data publishing, for example,
this ensures that patients are not associated with sensitive diagnoses [17].

Furthermore, anonymized RT -datasets need to have minimal information
loss in relational and in transaction attributes. However, these two requirements
are conflicting, and the problem is difficult to address using multi-objective op-
timization strategies [4]. In fact, these strategies are either inapplicable or incur
excessive information loss, as we show in Section 3.

Contributions. Our work makes the following specific contributions:

– We introduce the problem of anonymizing RT -datasets and propose the first
approach to tackle it. Our privacy model prevents an attacker, who knows
the set of an individual’s values in the relational attributes and up tom items
in the transaction attribute, from linking the individual to their record.

– We develop an approach for producing (k, km)-anonymous RT -datasets with
bounded information loss in one attribute type and minimal information loss
in the other. Following this approach, we propose two frameworks which em-
ploy generalization [15] and are based on a three-phase process: (i) creating
k-anonymous clusters with respect to the relational attributes, (ii) merging
these clusters in a way that helps anonymizing RT -datasets with low infor-
mation loss, and (iii) enforcing (k, km)-anonymity to each merged cluster.

– We propose a family of algorithms to implement the second phase in each
framework. These algorithms operate by building clusters, which can be
made (k, km)-anonymous with minimal information loss, and preserve dif-
ferent aspects of data utility.



Relational attributes Transaction attribute
Id Age Origin Gender Purchased-products

0 [19:22] Europe Male D E (B,D) G
1 [19:22] Europe Male E E (B,D) H

2 [28:39] Europe Female (B,C,F) (D,E) G
3 [28:39] Europe Female (B,C,F) (D,E) H

4 [55:70) Africa All (A,E,F) G
5 [55:70) Africa All (A,E,F) H

(a)

Relational attributes Transaction attribute
Id Age Origin Gender Purchased-products

0 [19:70] All All E F (A,B,C,D) G
1 [19:70] All All E F (A,B,C,D) H
2 [19:70] All All E (A,B,C,D) G
3 [19:70] All All F (A,B,C,D) H
4 [19:70] All All E G
5 [19:70] All All F (A,B,C,D) H

(b)

Relational attributes Transaction attribute
Id Age Origin Gender Purchased-products

0 [19:39] Europe All E F (B,C,D) G
1 [19:39] Europe All E F (B,C,D) H
2 [19:39] Europe All E (B,C,D) G
3 [19:39] Europe All F (B,C,D) H

4 [55:70) Africa All (A,E,F) G
5 [55:70) Africa All (A,E,F) H

(c)

Relational attributes Transaction attribute
Id Age Origin Gender Purchased-products

0 [19:70] All All E F (A,B,D) G
1 [19:70] All All E F (A,B,D) H
4 [19:70] All All E G
5 [19:70] All All F (A,B,D) H

2 [28:39] Europe Female (B,C,F) (D,E) G
3 [28:39] Europe Female (B,C,F) (D,E) H

(d)

Fig. 2: The (2, 22)-anonymous datasets from applying (a) Rfirst, and (b) Tfirst to
the dataset of Fig. 1a, and (c) RmergeR, and (d) RmergeT , to the clusters of Fig. 2a

– We investigate the effectiveness of our approach by conducting experiments
on two real-world RT -datasets. Our results verify that the proposed ap-
proach is effective at preserving data utility.

Paper organization. Section 2 defines concepts used in this work. Section 3
clarifies why popular multi-objective optimization strategies are unsuited for en-
forcing (k, km)-anonymity and formulates the target problems. Sections 4 and 5
present our approach and an instance of it. Sections 6 and 7 present experiments
and discuss related work, and Section 8 concludes the paper.

2 RT -datasets and their anonymity

RT -datasets. An RT-dataset D consists of records containing relational at-
tributes R1, . . . , Rv, which are single-valued, and a transaction attribute T ,
which is set-valued. For convenience, we consider that: (i) identifiers have been
removed from D, and (ii) a single transaction attribute T is contained in D1.

(k, km)-anonymity. We propose (k, km)-anonymity to guard against identity
disclosure. To prevent both identity and attribute disclosure, (k, km)-anonymity
can be extended, as we explain in Section 5.

Before defining (k, km)-anonymity, we associate each record r in an RT -
dataset D with a group of records G(r), as shown below.

Definition 1. For a record r ∈ D, its group G(r) is a set of records that con-
tains r and each record q ∈ D, such that q[R1, . . . , Rv] = r[R1, . . . , Rv] and q[T ]∩
I = r[T ] ∩ I, where I is any set of m or fewer items of r[T ]2.

Group G(r) contains r and all records that are indistinguishable from r to an
attacker, who knows the values of r in relational attributes and up to m items

1 Multiple transaction attributes T1, . . . , Tu can be transformed to a single transaction
attribute T , whose domain contains every item in the domain of T1, . . . , Tu, preceded
by the domain name, i.e., dom(T ) = {d.t | d = Ti and t ∈ dom(Ti), i ∈ [1, u]}.

2 Expression r[A] is a shortcut for the projection πA(r).



in the transaction attribute. The size of G(r), denoted with |G(r)|, represents
the risk of associating an individual with a record r. Thus, to provide privacy,
we may lower-bound |G(r)|. This idea is captured by (k, km)-anonymity.

Definition 2. A group of records G(r) is (k, km)-anonymous, if and only if
|G(r)| ≥ k, for each record r in G(r). An RT-dataset D is (k, km)-anonymous,
if and only if the group G(r) of each record r ∈ D is (k, km)-anonymous.

For example, in Fig. 2a groups {0,1} (=G(0)=G(1)), {2,3} (=G(2)=G(3)) and
{4,5} (=G(4)=G(5)) are (2, 22)-anonymous, rendering the whole dataset (2, 22)-
anonymous. Note that in each group, all records have the same values in the
relational attributes, as required by Definition 1, but do not necessarily have the
same items in the transaction attribute Purchased-products (see Fig. 2b).

The notion of (k, km)-anonymity for RT -datasets extends and combines re-
lational k-anonymity [15] and transactional km-anonymity [17].

Proposition 1. Let D[R1, . . . , Rv] and D[T ] be the relational and transaction
part of an RT-dataset D, respectively. If D is (k, km)-anonymous, then D[R1, . . . ,

Rv] is k-anonymous and D[T ] is km-anonymous.

Proposition 1 shows that (k, km)-anonymity provides the same protection
as k-anonymity [15], for relational attributes, and as km-anonymity [17], for
transaction attributes. Unfortunately, the inverse does not hold. That is, an
RT -dataset may be k and km but not (k, km)-anonymous. For instance, let
D be the dataset of Fig. 1b. Note that D[Age,Origin,Gender] is 2-anonymous and
D[Purchased-products] is 22-anonymous, but D is not (2, 22)-anonymous.

Generalization. We employ the generalization functions defined below.

Definition 3. A relational generalization function R maps a value v in a re-
lational attribute R to a generalized value ṽ, which is a range of values, if R is
numerical, or a collection of values, if R is categorical.

Definition 4. A transaction generalization function T maps an item u in the
transaction attribute T to a generalized item ũ. The generalized item ũ is a
non-empty subset of items in T that contains u.

The way relational values and transactional items are generalized is funda-
mentally different, as they have different semantics [19]. Specifically, a general-
ized value bears atomic semantics and is interpreted as a single value in a range
or a collection of values, whereas a generalized item bears set semantics and is
interpreted as any non-empty subset of the items mapped to it [12]. For instance,
the generalized value [19:22] in Age, in the record 0 in Fig. 2a, means that the ac-
tual Age is in [19, 22]. Contrary, the generalized item (B, D) in Purchased-products

means that B, or D, or both products were bought. Given a record r, the func-
tion R is applied to a single value v ∈ R, and all records in the k-anonymous
group G(r) must have the same generalized value in R. On the other hand, the
function T is applied to one of the potentially many items in T , and the records
in the km-anonymous G(r) may not have the same generalized items.



Data utility measures. In this work, we consider two general data utility mea-
sures; Rum, for relational attributes, and Tum, for the transaction attribute.
These measures satisfy Properties 1, 2 and 3.

Property 1. Lower values in Rum and Tum imply better data utility.

Property 2. Rum is monotonic to subset relationships. More formally, given
two groups G and G′ having at least k records, and a relational generalization
function R, it holds that Rum(R(G) ∪R(G′)) ≤ Rum(R(G ∪G′)).

Property 2 suggests that data utility is preserved better, when we generalize
the relational values of small groups, and is consistent with prior work on re-
lational data anonymization [2,6]. Intuitively, this is because the group G ∪ G′

contains more distinct values in a relational attribute R than G or G′, and thus
more generalization is needed to make its values indistinguishable.

A broad class of measures, such asNCP, the measures expressed as Minkowski
norms [6], Discernability [1], and the Normalized average equivalence class size
metric [9], satisfy Property 2 [6], and can be used as Rum.

Property 3. Tum is anti-monotonic to subset relationships. More formally, given
two groups G and G′ having at least k records, and a transaction generalization
function T that satisfies Definition 4 and (i) maps each item in the group it is
applied to a generalized item that is not necessarily unique, and (ii) constructs
the mapping with the minimum Tum, it holds that Tum(T (G) ∪ T (G′)) ≥
Tum(T (G ∪G′)).

Property 3 suggests that generalizing large groups can preserve transaction
data utility better, and is consistent with earlier works [12,17]. Intuitively, this
is because, all mappings between items and generalized items constructed by
T when applied to G and G′ separately (Case I) can also be constructed when
T is applied to G ∪ G′ (Case II), but there can be mappings that can only be
considered in Case II. Thus, the mapping with the minimum Tum in Case I
cannot have lower Tum than the corresponding mapping in Case II.

3 Challenges of enforcing (k, km)-anonymity

Lack of optimal solution. Constructing a (k, km)-anonymous RT -dataset
D with minimum information loss is far from trivial. Lemma 1 follows from
Theorem 1 and shows that there is no (k, km)-anonymous version of D with
minimum (i.e., optimal) Rum and Tum, for any D of realistic size.

Theorem 1. Let DR and DT be the optimal (k, km)-anonymous version of an
RT-dataset D with respect to Rum and Tum, respectively. Then, no group in
DR contains more than 2k − 1 records, and DT is comprised of a single group.

Proof. (Sketch) The proof that no group in DR contains more than 2k−1 records
is based on Property 2, and has been given in [6]. The proof that DT is comprised
of a single group is similar and, it is based on Property 3.



Lemma 1. There is no optimal (k, km)-anonymous version D of an RT-dataset
D with respect to both Rum and Tum, unless |D| ∈ [k, 2k − 1].

Inadequacy of popular optimization strategies. Constructing useful
(k, km)-anonymous RT -datasets requires minimizing information loss with re-
spect to both Rum and Tum. Such multi-objective optimization problems are
typically solved using the lexicographical, the conventional weighted-formula, or
the Pareto optimal approach [4]. We will highlight why these approaches are not
adequate for our problem.

Lexicographical. In this approach, the optimization objectives are ranked and
optimized in order of priority. In our case, we can prioritize the lowering of
information loss in (i) the relational attributes (i.e., minimal Rum), or (ii) the
transaction attribute (i.e., minimal Tum).

Given an RT -dataset D and anonymization parameters k and m, an algo-
rithm that implements strategy (i) is Rfirst. This algorithm partitions D into
a set of k-anonymous groups C, with respect to the relational attributes (e.g.,
using [18]), and applies T to generalize items in each group of records in C, sepa-
rately (e.g., using [17]). Symmetrically, to implement strategy (ii), we may use an
algorithm Tfirst, which first partitions D into a set of km-anonymous groups
(e.g., using the LRA algorithm [17]), and then applies a relational generalization
function (see Definition 3) to each relational attribute, in each group.

Both Rfirst and Tfirst enforce (k, km)-anonymity, but produce vastly
different results. For instance, Figs. 2a and 2b show (2, 22)-anonymous versions
of the dataset in Fig. 1a, produced by Rfirst and Tfirst, repectively. Observe
that Rfirst did not generalize the relational attributes as heavily as Tfirst

but applied more generalization to the transaction attribute. This is because,
Rfirst constructs small groups, and does not control the grouping of items.
Contrary, the groups created by Tfirst contain records, whose items are not
heavily generalized, unlike their values in the relational attributes. In either
case, the purpose of producing anonymized RT -datasets that allow meaningful
analysis of relational and transaction attributes together, is defeated.

Conventional weighted-formula. In this approach, all objectives are combined
into a single one, using a weighted formula. The combined objective is then op-
timized by a single-objective optimization algorithm. For example, a clustering-
based algorithm [13] would aim to minimize the weighted sum of Rum and
Tum. However, this approach works only for commensurable objectives [4]. This
is not the case for Rum and Tum, which are fundamentally different and have
different properties (see Section 2). Therefore, this approach is not suitable.

Pareto optimal. This approach finds a set of solutions that are non-dominated
[4], from which the most appropriate solution is selected by the data publisher,
according to their preferences. However, the very large number of non-dominated
solutions that can be constructed by flexible generalization functions, such as
those in Definitions 3 and 4, render this approach impractical.

Problem formulation. To construct a (k, km)-anonymous version of an RT -
dataset, we either upper-bound the information loss in relational attributes and



Algorithm: Rum-bound

// Initial cluster formation
1 {C1, . . . , Cn} := ClusterFormation(D, k)
2 D := {C1, . . . , Cn}
3 if Rum(D) > δ then return false

// Cluster merging
4 D := Rmerge(D, T , δ)

// (k, km)-anonymization
5 for each cluster C ∈ D do

6 D := (D \ C) ∪ T (C)

7 return D

Algorithm: Tum-bound

// Initial cluster formation
1 {C1, . . . , Cn} := ClusterFormation(D, k)
2 D := {C1, · · · , Cn}
3 if Tum(T (D)) ≤ δ then return D

// Cluster merging
4 D := Tmerge(D, T , δ)

// (k, km)-anonymization
5 for each cluster C ∈ D do

6 D := (D \ C) ∪ T (C)

7 if Tum(D) > δ then return false

8 return D

seek to minimize the information loss in the transaction attribute (Problem 1),
or upper-bound the information loss in the transaction attribute and seek to
minimize the information loss in relational attributes (Problem 2).

Problem 1. Given an RT -dataset D, data utility measures Rum and Tum, pa-
rameters k and m, and a threshold δ, construct a (k, km)-anonymous version D
of D, such that Rum(D) ≤ δ and Tum(D) is minimized.

Problem 2. Given an RT -dataset D, data utility measures Rum and Tum, pa-
rameters k and m, and a threshold δ, construct a (k, km)-anonymous version D
of D, such that Tum(D) ≤ δ and Rum(D) is minimized.

Threshold δ must be specified by data publishers, as in [6]. Thus, constructing
D might be infeasible for an arbitrary δ. Solving Problem 1 or Problem 2 ensures
that D preserves privacy and utility, but it is NP-hard (proof follows from [12]).

4 Anonymization approach

We propose an approach that overcomes the deficiencies of the aforementioned
optimization approaches and works in three phases:

Initial cluster formation: k-anonymous clusters with respect to relational at-
tributes, which incur low information loss, are formed.

Cluster merging : Clusters are merged until the conditions set by Problems 1 or
2 are met.

(k, km)-anonymization: Each cluster becomes (k, km)-anonymous, by generaliz-
ing the its items with low Tum.

Based on our approach, we developed two anonymization frameworks, Rum-

bound and Tum-bound, which address Problems 1 and 2, respectively. Rum-

bound seeks to produce a dataset with minimal Tum and acceptable Rum,
and implements the phases of our approach, as follows.

Initial cluster formation (Steps 1–3): Algorithm Rum-bound clusters D, using
a function ClusterFormation, which can be implemented by any generaliza-
tion-based k-anonymity algorithm [9,18,2]. This function produces a set of k-



anonymous clusters C1, . . . , Cn, from which a dataset D containing C1, . . . , Cn,
is created (Step 2). The dataset D must have a lower Rum than δ, since sub-
sequent steps of the algorithm cannot decrease Rum (see Property 2). If the
dataset D does not satisfy this condition, it cannot be a solution to Problem 1,
and false is returned (Step 3).

Cluster merging (Step 4): This phase is the crux of our framework. It is performed
by a function Rmerge, which merges the clusters of D to produce a version
that can be (k, km)-anonymized with minimal Tum and without violating δ. To
implementRmerge we propose three algorithms, namely RmergeR,RmergeT
and RmergeRT , which aim at minimizing Tum using different heuristics.

(k, km)-anonymization (Steps 5–7): In this phase, D is made (k, km)-anonymous,
by applying a transaction generalization function T to each of its clusters.

Tum-bound, on the other hand, focuses on Problem 2 and aims at creating
a dataset with minimal Rum and acceptable Tum. This framework has the
following major differences from Rum-bound.

• At Step 3, after the formation of D, Tum-bound checks if D has lower Tum
than the threshold δ. In such case, D is a solution to Problem 2.

• At Step 4, function Tmerge merges clusters until the Tum threshold is
reached, or no more merging is possible. To implement Tmerge we propose
three algorithms: TmergeR, TmergeR and TmergeRT , which aim at min-
imizing Rum using different heuristics.

• At Step 7, Tum-bound checks if Tum(D) > δ; in this case, we cannot satisfy
Problem 2 conditions and, thus, return false.

Cluster-merging algorithms. We now present three algorithms that imple-
ment function Rmerge, which is responsible for the merging phase of Rum-

bound (Step 4). Our algorithms are based on different merging heuristics. Specif-
ically, RmergeR merges clusters with similar relational values, RmergeT with
similar transaction items and RmergeRT takes a middle line between these
two algorithms. In all cases, relational generalization is performed by a set of
functions G = {L1, . . . ,Lv}, one for each relational attribute (Definition 3) and
transaction generalization is performed by function T (Definition 4).

RmergeR selects the cluster C with the minimum Rum(C) as a seed (Step
2). Cluster C contains relational values that are not highly generalized and is
expected to be merged with a low relational utility loss. The algorithm locates the
cluster C ′ with the most similar relational values to C (Step 3) and constructs a
temporary dataset Dtmp that reflects the merging of C and C ′ (Step 4). If Dtmp

does not violate the Rum threshold, it is assigned to D (Step 5).

RmergeT starts by selecting the same seed C as RmergeR (Step 2) and
seeks a cluster C ′ that contains similar transaction items to C and, when merged
with C, results in a dataset with Rum no higher than δ. To this end, RmergeT
merges C with every other cluster Ci inD\C and orders the clusters by increasing
Tum(T (C ∪ Ci)) (Step 3). This allows efficiently finding the best merging for
minimizing Tum that does not violate Rum(D) ≤ δ. The algorithm considers



Algorithm: RmergeR

1 while D changes do

2 Select, as a seed, the cluster C ∈ D
with minimum Rum(C)

3 Find the cluster C′ ∈ D that

minimizes Rum(G(C ∪ C′)) .
4 Dtmp := ((D \ C) \ C′) ∪ G(C ∪ C′)
5 if Rum(Dtmp) ≤ δ then

D := Dtmp

6 return D

Algorithm: RmergeT

1 while D changes do

2 Select, as a seed, the cluster C ∈ D with
minimum Rum(C)
// Find the appropriate cluster C′ to be

merged with C
3 Let {C1, . . . , Ct} be the set of clusters in

D \ C ordered by increasing
Tum(T (C ∪ Ci)), i ∈ [1, t)

4 for i := 1 to t do // Test if C′ = Ci

5 Dtmp := ((D \ C) \ Ci) ∪ G(C ∪ Ci)

6 if Rum(Dtmp) ≤ δ then // C′ is Ci

7 D := Dtmp

8 exit the for loop

9 return D
Algorithm: RmergeRT

1 while D changes do

2 Select, as a seed, the cluster C ∈ D with minimum Rum(C)

3 Let {C1, . . . , Ct} (resp. {Ĉ1, . . . , Ĉt}) be the set of clusters in D \ C ordered by

increasing Rum(G(C ∪ Ci)) (resp. Tum(T (C ∪ Ĉi))), i ∈ [1, t)
// Find the appropriate cluster C′ to be merged with C

4 for i := 1 to t do

5 Find cluster C′, that has the i-th minimum sum of indices u + v s.t.

Cu ∈ {C1, . . . , Ct} and Cv ∈ {Ĉ1, . . . , Ĉt}
6 Dtmp := ((D \ C) \ Ci) ∪ G(C ∪ Ci)
7 if Rum(Dtmp) ≤ δ then

8 D := Dtmp

9 exit the for loop

10 return D

the clusters with increasing Tum(T (C ∪Ci)) scores. The first cluster that gives
a dataset with acceptable Rum is used for merging (Steps 4–5).

RmergeRT combines the benefits of RmergeR andRmergeT . It selects the
same seed cluster C as RmergeT , and constructs two orderings, which sort the
generalized merged clusters in ascending order of Rum and Tum, respectively
(Step 3). Then, a cluster C ′ that is as close as possible to C, based on both
orderings (i.e., it has the i-th minimum sum (u + v), where u and v are the
indices of C ′ in the {C1, . . . , Ct} and orderings {Ĉ1, . . . , Ĉt} repsectively), is
found (Step 5). The next steps of RmergeRT are the same as in RmergeT .

We now discussTmergeR,TmergeR, andTmergeRT , used inTum-bound.
These algorithms perform cluster merging, until D satisfies the Tum threshold,
or all possible mergings have been considered. The pseudocode of RmergeR is
the same as that of TmergeR, except that Step 5 in RmergeR is replaced by
the following steps. Note that D is returned if it satisfies the Tum threshold,
because Rum cannot be improved by further cluster merging (Property 2).

5 if Tum(Dtmp) ≤ δ then

6� D := Dtmp

7� return D

The pseudocode of TmergeR and TmergeRT can be derived by replacing
the same steps with Steps 5 and 7 in TmergeR and TmergeRT , respectively.
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Fig. 3: Hierarchies for the dataset of Fig. 1a

The runtime cost of anonymization is O(F + |C|2·(KR + KT )), where F is
the cost for initial cluster formation, |C| the number of clusters in D, and KR
and KT the cost of generalizing the relational and transaction part of a cluster.

5 Instantiating and extending the frameworks

Our frameworks can be parameterized by generalization functions, data utility
measures, and initial cluster formation algorithms. This section presents such
instantiations and strategies to improve their efficiency, as well as extensions of
our frameworks to prevent both identity and attribute disclosure.

Generalization functions. We employ the local recoding [18] and set-based
generalization [8,12]. As an example, the dataset in Fig. 1b has been created by
applying these functions to the dataset in Fig. 1a, using the hierarchies in Fig. 3.

Data utility measures. To measure data utility in relational and transac-
tion attributes, we used Normalized Certainty Penalty (NCP) [18] and Utility
Loss (UL) [12], respectively. The NCP for a generalized value ṽ, a record r,

and an RT -dataset D, is defined as: NCPR(ṽ) =
{

0, |ṽ| = 1
|ṽ|/|R|, otherwise ,NCP(r) =

∑

i∈[1,v]

wi·NCPRi
(r[Ri]) andNCP(D) =

∑
r∈D

NCP(r)

|D| resp., where |R| denotes the

number of leaves in the hierarchy for a categorical attribute R (or domain size for
a numerical attribute R), |ṽ| denotes the number of leaves of the subtree rooted
at ṽ in the hierarchy for a categorical R (or the length of the range for a numer-
ical R), and wi ∈ [0, 1] is a weight that measures the importance of an attribute.
The UL for a generalized item ũ, a record r, and an RT -dataset D, is defined as:

UL(ũ) = (2|ũ|− 1) ·w(ũ), UL(r) =
∑
∀ũ∈r

UL(ũ)

2σ(r)−1
and UL(D) =

∑
∀r∈D

UL(r)

|D| resp.,

where |ũ| is the number of items mapped to ũ, w(ũ) ∈ [0, 1] a weight reflecting
the importance of ũ [12], and σ(r) the sum of sizes of all generalized items in r.

Initial cluster formation with Cluster. The initial cluster formation
phase should be implemented using algorithms that create many small clusters,
with low Rum, because this increases the chance of constructing a (k, km)-
anonymous dataset with good data utility. Thus, we employ Cluster, an algo-
rithm that is instantiated with NCP and local recoding, and it is inspired by

the algorithm in [2]. The time complexity of Cluster is O( |D|
2

k · log(|D|)).

Efficiency optimization strategies. To improve the efficiency of cluster-
merging algorithms, we compute Rum(Dtmp) incrementally, thereby avoiding
to access all records in Dtmp, after a cluster merging. This can be performed for
all measures in Section 2, but we illustrate it for NCP . We use a list λ of tuples
<|C|,NCP(rc))>, for each cluster C in Dtmp and any record rc in C, which is

initialized based on D. Observe that NCP(Dtmp) =

∑
∀C∈Dtmp

(|C|·NCP(rc))

|D| , and



Algorithm: Cluster

1 C := ∅
// Create clusters of size k

2 while |D| ≥ k do

3 Select, as a seed, a random record s from D
4 Add s and each record r ∈ D having one of the lowest k−1 values in NCP(G({s, r})) to

cluster C
5 Add cluster C to C and remove its records from D

// Accommodate the remaining |D| mod k records
6 for each record r ∈ D do

7 Add r to the cluster C ∈ C that minimizes NCP(G(C ∪ r))

8 Apply G to the relational values of each cluster in C
// Extend clusters

9 for each cluster C ∈ C do

10 Let S be the set of clusters in C with the same values in relational attributes as C.
11 Extend C with the records of S and remove each cluster in S from C.

12 return C

it can be updated, after C and C ′ are merged, by adding: (|C|+|C′|)·NCP(rc∪c′ )
|D| −

|C|·NCP(rc)−|C
′|·NCP(rc′ )

|D| . This requires accessing only the records in C ∪ C ′.

The efficiency of RmergeT , RmergeRT , TmergeR, and TmergeRT can
be further improved by avoiding computing Tum(T (C ∪C1)), . . . ,Tum(T (C ∪
Ct)). For this purpose, we merge clusters using Bit-vector Transaction Distance

(BTD). The BTD for records r1, r2 is defined as BTD(r1, r2) = ones(b1⊻b2)+1
ones(b1∧b2)+1 ·

ones(b1 ∨ b2), where b1 and b2 are the bit-vector based representations of r1[T ]
and r2[T ], ⊻, ∧ and ∨ are the Boolean operators, for XOR, AND, and OR, and
the function ones counts the number of 1 bits in a bit-vector. The BTD of a
cluster C is defined as BTD(C) = max{BTD(r1, r2)| for all r1, r2 ∈ C}. BTD
helps enforcing (k, km)-anonymity with minimal Tum, as it favors the grouping
of records with a small number of items, many of which are common.

Preventing both identity and attribute disclosure. To prevent both
types of disclosure, we propose the concept of (k, ℓm)-diversity, defined below.

Let G(r) be a group of records and G(r′) be a group with the same records
as G(r) projected over {R1, . . . , Rv, T

′}, where T ′ contains only the nonsensitive
items in T . G(r) is (k, ℓm)-diverse, if and only if G(r′) is (k, km)-anonymous,
and an attacker, who knows up to m nonsensitive items about an individual,
cannot associate any record in G(r) to any combination of sensitive items, with
a probability greater than 1

ℓ . An RT -dataset D is (k, ℓm)-diverse, if and only if
the group G(r) of each record r ∈ D is (k, ℓm)-diverse.

(k, ℓm)-diversity forestalls identity disclosure, and, additionally, the inference
of any combination of sensitive items, based on ℓm-diversity [17]. Extending
our anonymization frameworks to enforce (k, ℓm)-diversity requires: (i) applying
Tum to nonsensitive items, and (ii) replacing the transaction generalization
function T , which enforces km-anonymity to each cluster, with one that applies
ℓm-diversity. The ℓm-diversity version of AA [17] was used as such a function.

6 Experimental evaluation

In this section, we evaluate our algorithms in terms of data utility and efficiency,
and demonstrate the benefit of choices made in their design.



Dataset |D| Rel. att. |dom(T )| Max, Avg # items/record

Informs 36553 5 619 17, 4.27

YouTube 131780 6 936 37, 6.51

Table 1: Description of the datasets

Experimental setup. We implemented all algorithms in C++ and applied
them to Informs (https://sites.google.com/site/informsdataminingcontest)
and YouTube (http://netsg.cs.sfu.ca/youtubedata) datasets, whose charac-
teristics are shown in Table 14. The default parameters were k=25, m=2, and
δ=0.65, and hierarchies were created as in [17]. Our algorithms are referred to
in abbreviated form (e.g., RmR for RmergeR) and were not compared against
prior works, since they cannot (k, km)-anonymize RT -datasets. The algorithms
that enforce (k, ℓm)-diversity are named after those based on (k, km)-anonymity.
All experiments ran on an Intel i5 at 2.7 GHz with 8 GB of RAM.

Data utility. We evaluated data utility on Informs and YouTube using
k=25 and k=100, respectively, and varied δ in [X, 1), where X is the NCP

of the dataset produced by Cluster, for Rum-bound, or the UL, for Tum-

bound. Data utility is captured using ARE [9,12,16], which is invariant of the
way our algorithms work and reflects the average number of records that are re-
trieved incorrectly, as part of query answers. We used workloads of 100 queries,
involving relational, transaction, or both attribute types, which retrieve random
values and/or sets of 2 items by default [9,12]. Low ARE scores imply that ano-
nymized data can be used to accurately estimate the number of co-occurrences
of relational values and items. This statistic is an important building block of
several data mining models.

Figs. 4a to 4g demonstrate the conflicting objectives of minimizing informa-
tion loss in relational and transaction attributes, and that Rum-bound can
produce useful data. By comparing Fig. 4a with 4c, and Fig. 4d with 4g, it can
be seen that a small δ forces all algorithms to incur low information loss in the
relational attributes, whereas a large δ favors the transaction attribute. Also,
NCP is at most δ, in all tested cases, and data remain useful for queries in-
volving both attribute types (see Figs. 4b, 4e, and 4f). We performed the same
experiments for the Tum-bound and present a subset of them in Fig. 4h. Note
that, increasing δ (i.e., the bound for UL), favors relational data, and that the
information loss in the transaction attribute is low. Similar observations can be
made for the (k, lm)-diversity algorithms (see Fig. 5).

Next, we compared RmR, RmT , and RmRT . As shown in Fig. 4, RmR in-
curred the lowest information loss in the transaction attribute, and the highest in
the relational attributes, andRmT had opposite trends.RmRT allows more accu-
rate query answering than RmR, in relational attributes, and than RmT , in the
transaction attribute, as it merges clusters, based on both attribute types. Simi-
lar results were obtained for YouTube (see Figs. 4d-4g), from comparing TmT ,

4 Informs contains the relational attributes {month of birth, year of birth, race, years
of education, income}, and the transaction attribute diagnosis codes. YouTube con-
tains the relational attributes {age, category, length, rate, #ratings, #comments},
and the transaction attribute related videos.
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Fig. 4: ARE for queries involving (x, y) relational values and items. Figs. (a)-(c) are for
Informs; (d)-(g) for YouTube (Rum-bound). Fig. (h) is for Informs (Tum-bound)

TmR, and TmRT (see e.g., Fig. 4h), and from comparing the (k, lm)-diversity al-
gorithms (see Figs. 5). Figs. 6a and 6b show the size of the largest cluster created
by RmR, RmT , and RmRT , for varying δ. RmR created the largest clusters, as it
merges many clusters with similar relational values. These clusters have low UL,
as shown in Figs. 6c and 6d. Furthermore, Figs. 6a and 6c, show that RmRT cre-
ated slightly larger clusters than RmT , which have lower UL scores. The results
for TmT , TmR, and TmRT and the (k, lm)-diversity algorithms were similar.

Efficiency. We studied the impact of dataset size using random subsets of
Informs, whose records were contained in all larger sets. As can be seen in
Fig. 7a, RmT outperformed RmR and RmRT , and it was more scalable, due
to the use of the BTD measure. RmRT was the slowest, because it computes
two cluster orderings. TmT , TmR, and TmR perform similarly to RmR, RmT ,
and RmRT (their results were omitted). Fig. 7a shows the cost of Cl. We also
studied the impact of k using the largest dataset of the previous experiment.
Fig. 7b shows that the runtime of RmR, RmT , and RmRT improves with k, as
fewer clusters are merged. RmT was up to 2.2 times more efficient than RmR

and RmRT was the least efficient. Fig. 7b shows that the runtime of Cl improves
with k. The cost of the (k, lm)-diverse algorithms was similar (omitted).

Benefits of algorithmic choices. To show that BTD helps efficiency with-
out degrading data utility, we developed the baseline algorithmsRmTUL,RmTUL,
TmTUL, and TmRTUL, which do not perform the optimization of Section 5. Due
to their high runtime, a subset of Informs with 4K records was used. Observe
in Figs. 7c and 7e that RmT and RmRT have the same UL scores with their
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corresponding baseline algorithms, but are at least 10 times more efficient and
scalable with respect to δ. Similar observations can be made from Figs. 7d and
7f, for TmR and TmRT . Last, we show that UL decreases monotonically, as our
algorithms merge clusters. Figs. 7g-7h show the results with δ = 1 for the dataset
used in the previous experiment. The fact that UL never increases shows that
avoiding to compute UL(T (Dtmp)) after a cluster merge does not impact data
utility but helps efficiency. The (k, lm)-diversity algorithms performed similarly.

7 Related work
Preventing identity disclosure is crucial in many real-world applications [5,11]
and can be achieved through k-anonymity [15]. This privacy principle can be
enforced through various generalization-based algorithms (see [5] for a survey).
Thwarting attribute disclosure may additionally be needed [14,19,17], and this
can be achieved by applying other privacy models, such as l-diversity [14], to-
gether with k-anonymity.

Privacy-preserving transaction data publishing requires new privacy models
and algorithms, due to the high dimensionality and sparsity of transaction data
[19,7,17]. km-anonymity is a model for protecting transaction data against at-
tackers, who know up to m items about an individual [17]. Under this condition,
which is often satisfied in applications [17,16,11], an individual cannot be asso-
ciated with fewer than k records in the dataset. km-anonymity can be enforced
using several algorithms [17,12,8], which can be incorporated into our frame-
works. However, km-anonymity does not guarantee protection against stronger
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attackers, who know that an individual is associated with exactly certain items
[17,16]. This is because, by excluding records that have exactly these items from
consideration, the attackers may be able to increase the probability of associat-
ing an individual with their record to greater than 1

k (although not necessarily
1). A recent method [20] can guard against such attackers while preserving data
utility based on a nonreciprocal recoding anonymization scheme. To thwart both
identity and attribute disclosure in transaction data publishing, [17] proposes
ℓm-diversity, which we also employ in our frameworks.

Our frameworks employ generalization, which incurs lower information loss
than suppression [17] and helps preventing identity disclosure, contrary to buck-
etization [7]. Also, we seek to publish record-level and truthful data. Thus, we
do not employ ǫ-differential privacy [3], nor disassociation [16]. However, the
relationship between (k, km)-anonymization and relaxed differential privacy def-
initions is worth investigating to strengthen protection. For instance, Li et al.
[10] proved that safe k-anonymization algorithms, which perform data group-
ing and recoding in a differentially private way, can satisfy a relaxed version of
differential privacy when preceded by a random sampling step.

8 Conclusions

In this paper, we introduced the problem of anonymizing RT -datasets and pro-
posed the first approach to protect such datasets, along with two frameworks for
enforcing it. Three cluster-merging algorithms were developed, for each frame-
work, which preserve different aspects of data utility. Last, we showed how our
approach can be extended to prevent both identity and attribute disclosure.



Acknowledgements

G. Poulis is supported by the Research Funding Program: Heraclitus II. G.
Loukides is partly supported by a Research Fellowship from the Royal Academy
of Engineering. S. Skiadopoulos is partially supported by EU/Greece the Re-
search Funding Program: Thales.

References

1. R.J. Bayardo and R. Agrawal. Data privacy through optimal k-anonymization. In
ICDE, pages 217–228, 2005.

2. J-W. Byun, A. Kamra, E. Bertino, and N. Li. Efficient k-anonymization using
clustering techniques. In DASFAA, pages 188–200, 2007.

3. C. Dwork. Differential privacy. In ICALP, pages 1–12, 2006.
4. A.A. Freitas. A critical review of multi-objective optimization in data mining: a

position paper. SIGKDD Explorations, 6(2):77–86, 2004.
5. B.C.M. Fung, K. Wang, R. Chen, and P.S. Yu. Privacy-preserving data publishing:

A survey on recent developments. ACM Comput. Surv., 42, 2010.
6. G. Ghinita, P. Karras, P. Kalnis, and N. Mamoulis. A framework for efficient data

anonymization under privacy and accuracy constraints. TODS, 34(2), 2009.
7. G. Ghinita, Y. Tao, and P. Kalnis. On the anonymization of sparse high-

dimensional data. In ICDE, pages 715–724, 2008.
8. A. Gkoulalas-Divanis and G. Loukides. Utility-guided clustering-based transaction

data anonymization. Trans. on Data Privacy, 5(1):223–251, 2012.
9. K. LeFevre, D.J. DeWitt, and R. Ramakrishnan. Mondrian multidimensional k-

anonymity. In ICDE, page 25, 2006.
10. N. Lii, W. Qardaji, and D. Su. On sampling, anonymization, and differential

privacy or, k-anonymization meets differential privacy. In ASIACCS, pages 32–33,
2012.

11. G. Loukides, A. Gkoulalas-Divanis, and B. Malin. Anonymization of electronic
medical records for validating genome-wide association studies. Proceedings of the
National Academy of Sciences, 17:7898–7903, 2010.

12. G. Loukides, A. Gkoulalas-Divanis, and B. Malin. COAT: Constraint-based ano-
nymization of transactions. Knowledge and Information Systems, 28(2):251–282,
2011.

13. G. Loukides and J. Shao. Clustering-based k-anonymisation algorithms. In DEXA,
pages 761–771, 2007.

14. A. Machanavajjhala, J. Gehrke, D. Kifer, and M. Venkitasubramaniam. l-diversity:
Privacy beyond k-anonymity. In ICDE, page 24, 2006.

15. P. Samarati and L. Sweeney. Generalizing data to provide anonymity when dis-
closing information (abstract). In PODS, page 188, 1998.

16. M. Terrovitis, J. Liagouris, N. Mamoulis, and S. Skiadopoulos. Privacy preservation
by disassociation. PVLDB, 5(10):944–955, 2012.

17. M. Terrovitis, N. Mamoulis, and P. Kalnis. Local and global recoding methods for
anonymizing set-valued data. VLDB J., 20(1):83–106, 2011.

18. J. Xu, W. Wang, J. Pei, X. Wang, B. Shi, and A.W-C. Fu. Utility-based anony-
mization using local recoding. In KDD, pages 785–790, 2006.

19. Y. Xu, K. Wang, A.W-C. Fu, and P.S. Yu. Anonymizing transaction databases for
publication. In KDD, pages 767–775, 2008.
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Abstract. The proliferation of GPS-enabled devices (e.g., smartphones and tablets) and location-
based social networks has resulted in the abundance of trajectory data. The publication of such
data opens up new directions in analyzing, studying and understanding human behavior. However,
it should be performed in a privacy-preserving way, because the identities of individuals, whose
movement is recorded in trajectories, can be disclosed even after removing identifying information.
Existing trajectory data anonymization approaches offer privacy but at a high data utility cost, since
they either do not produce truthful data (an important requirement of several applications), or are
limited in their privacy specification component. In this work, we propose a novel approach that
overcomes these shortcomings by adapting km-anonymity to trajectory data. To realize our approach,
we develop three efficient and effective anonymization algorithms that are based on the apriori prin-
ciple. These algorithms aim at preserving different data characteristics, including location distance
and semantic similarity, as well as user-specified utility requirements, which must be satisfied to en-
sure that the released data can be meaningfully analyzed. Our extensive experiments using synthetic
and real datasets verify that the proposed algorithms are efficient and effective at preserving data
utility.

Keywords. privacy, anonymity, trajectories, spatial data, km-anonymity, utility constraints

1 Introduction

The widespread adoption of GPS-enabled smartphones and location-based social network-
ing applications, such as Foursquare (https://foursquare.com), opens up new op-
portunities in understanding human behaviour through the analysis of collected mobility
data. However, the publication of these data, which correspond to trajectories of personal
movement (i.e., ordered lists of locations visited by individuals), can lead to identity disclo-
sure, even if directly identifying information, such as names or SSN of individuals, is not
published [33].

The values that, in combination, may lead to identity disclosure are called quasi-identifiers
(QI) [32, 34]. For example, let us assume that a location-based social network service pub-
lishes the movement of users during a day in the form of checkins in various locations. An
example of these data is shown in Figure 1a. If Mary’s colleague, John, knows that Mary
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id trajectory
t1 (d, a, c, e)
t2 (b, a, e, c)
t3 (a, d, e)
t4 (b, d, e, c)
t5 (d, c)
t6 (d, e)

(a)

a

b
c

d

e

t2t1

(b)

Figure 1: (a) the original database T (b) visual representation of trajectories t1 and t2

checked in at locations a and d, he cannot associate Mary with her record (trajectory), as
both trajectories t1 and t3 include the locations a and d. But if John knew that Mary first
checked in at location d and then at a, he can uniquely associate Mary with the trajectory
t1.

This example highlights not only the need to transform a set of user trajectories T to
prevent identity disclosure based on partial location knowledge held by attackers, but also
the difference from well-studied set-valued data anonymity models, like km-anonymity
[36] and privacy-constrained anonymization [18, 24]. In these models, value ordering is
not significant; thus, records are represented as unordered sets of items. For instance, if
an attacker knows that someone checked in first at the location c and then at e, they could
uniquely associate this individual with the record t1 (Figure 1b). On the other hand, if T
was a set-valued dataset, three records, namely t1, t2 and t4, would have the items c and e.
Thus, the individual’s identity is “hidden” among 3 records. Consequently, for any set of n
items in a trajectory, there are n! possible quasi-identifiers.

This difference makes preventing identity disclosure in trajectory data publishing more
challenging, as the number of potential quasi-identifiers is drastically increased. Exist-
ing methods operate either by anonymizing (i) each trajectory as a whole, thereby not
assuming any specific background knowledge of attackers [1, 2, 26, 29], or (ii) parts of
trajectories, thereby considering attackers who aim to re-identify individuals based on spe-
cific locations [35, 39]. The first category of methods are based on clustering and pertur-
bation [1, 2, 29], while the second category employs generalization and suppression of quasi-
identifiers [27, 39, 28, 35]. The main drawback of clustering-based methods is that they may
lose information about the direction of movement of co-clustered trajectories and cause ex-
cessive information loss, due to space translation. Moreover, applying perturbation may
create data that are not truthful and cannot be used in several applications [14]. Similarly,
existing generalization-and-suppression based methods [27, 39, 28, 35] have the following
limitations. First, they assume that quasi-identifiers are known to the data publisher prior
to anonymization [35, 39], or that any combination of locations can act as a quasi-identifier
[27]. Second, they require a location taxonomy to be specified by data publishers [28] based
on location semantics. However, such a taxonomy may not exist, or may not accurately re-
flect the distance between locations. In both cases, the anonymized data will be highly
distorted. Last, some approaches assume that each location can be classified as either sen-
sitive or non-sensitive [28]. In practice, however, this assumption may not hold, as location
sensitivity usually depends on context (e.g., visiting a hospital may be considered as sensi-
tive for a patient, but not for a doctor).

Recently, another class of approaches that aims at limiting the amount of information
about the presence or absence of any individual trajectory has been proposed [5, 7, 9].
These approaches enforce a well-established privacy model, called differential privacy [12],
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by employing perturbation. Specifically, they release a noisy summary of the original data
that can be used in specific analytic tasks, such as frequent sequential pattern mining [3].
While being able to offer strong privacy guarantees, these approaches do not preserve data
truthfulness, since they rely on perturbation.

1.1 Contributions

In this work, we propose a novel approach for publishing trajectory data, in a way that pre-
vents identity disclosure, and three effective and efficient algorithms to realize it. Specifi-
cally, our work makes the following contributions.

First, we adapt km-anonymity [35, 36] to trajectory data. km-anonymity is a privacy model
that was proposed to limit the probability of identity disclosure in transaction data pub-
lishing. The benefit of this model is that it does not require detailed knowledge of quasi-
identifiers, or a distinction between sensitive and non-sensitive information, prior to data
publishing.

Second, we develop three algorithms for enforcing km-anonymity on trajectory data. These
algorithms generalize data in an apriori-like fashion (i.e., apply generalization to increas-
ingly larger parts of trajectories) and aim at preserving different aspects of data utility. Our
first algorithm, called SEQANON, applies distance-based generalization, effectively creating
generalized trajectories with locations that are close in proximity. For instance, SEQANON

would favor generalizing a together with b, because b is the closest location to a, as can be
seen in Fig. 1b. SEQANON does not require a location taxonomy and aims at preserving
the distance between original locations. Thus, it should be used when accurate semantic
information about locations is not available1. Clearly, however, the presence of accurate, se-
mantic location information should also be exploited, as it can help the preservation of data
utility. For example, assume that a and c represent the locations of restaurants, whereas b
represents the location of a coffee shop. In this case, generalizing a together with c would
be preferred, because c is a restaurant that is also not very far from a. To take into ac-
count both the distance and the semantic similarity of locations, we propose an algorithm,
called SD-SEQANON. This algorithm produces generalized trajectories, whose locations
are typically slightly more distant but much more semantically similar than those created
by SEQANON. Both SEQANON and SD-SEQANON allow generalizing any locations to-
gether, as they aim to minimize information loss. In several applications, however, data
publishers have specific utility requirements, which dictate how locations must be general-
ized to ensure that the anonymized dataset is practically useful [24]. For instance, assume
that the anonymized version of the dataset in Fig. 1a needs to be used to enable the ac-
curate counting of the number of restaurants, in which individuals checked in. To satisfy
this requirement, generalizing together a and b must be prohibited, because the resultant
generalized location {a, b} can be interpreted as either a restaurant or a coffee shop. On the
other hand, the generalization of a together with any other restaurant is allowable, and the
generalization that incurs the minimum information loss should be preferred. To account
for such utility requirements, we propose a third algorithm, called U-SEQANON. This al-
gorithm aims at satisfying utility constraints and uses both generalization and suppression.
Third, we investigate the effectiveness and efficiency of our approach through experi-

ments on a synthetic dataset, generated using the Brinkhoff’s generator [6], and on a real
dataset, derived from a location-based social networking website [10]. The results of these

1A preliminary version of this work that discusses the SEQANON algorithm appeared in the PriSMO work-
shop, which was held in conjunction with IEEE MDM 2013.
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experiments verify that our approach is able to anonymize trajectory data, under various
privacy and utility requirements, with a low level of information loss. In addition, they
show that our algorithms are fast and scalable, due to the use of the apriori principle.

1.2 Organization

The rest of the paper is organized as follows. Section 2 discusses related work. Section
3 presents some preliminary concepts related to trajectory data anonymization, as well as
the privacy and utility objectives of our algorithms. Section 4 presents our anonymization
algorithms, and Section 5 an experimental evaluation of them. Last, we conclude the paper
in Section 6.

2 Related work

Privacy-preserving trajectory data publishing has attracted significant attention, due to the
pervasive use of location-aware devices and location-based social networks, which led to
a tremendous increase in the volume of collected data about individuals [4]. One of the
main concerns in trajectory data publishing is the prevention of identity disclosure, which
is the objective of the k-anonymity privacy model [33, 34]. k-anonymity prevents identity
disclosure by requiring at least k records of a dataset to have the same values over QI.
Thus, a k-anonymous dataset upperbounds the probability of associating an individual
with their record by 1

k
. To enforce k-anonymity most works [15, 20, 21, 23, 32] employ

generalization, which replaces a QI value with a more general but semantically consistent
value, or suppression, which removes QI values prior to data publishing.
k-anonymity has been considered in the context of publishing user trajectories, leading to

several trajectory anonymization methods [4]. As mentioned in Section 1, these methods
operate by anonymizing either entire trajectories [1, 2, 26], or parts of trajectories (i.e., se-
quences of locations) that may lead to identity disclosure [35, 39]. In the following, we dis-
cuss the main categories of trajectory anonymization works, as well as how our approach
differs from them.

2.1 Clustering and perturbation

Methods based on clustering and perturbation are applied to time-stamped trajectories.
They operate by grouping original trajectories into clusters (cylindrical tubes) of at least k
trajectories, in a way that each trajectory within a cluster becomes indistinguishable from
the other trajectories in the cluster. One such method, called NWA [1], enforces (k, δ)-
anonymity to anonymize user trajectories by generating cylindrical volumes of radius δ
that contain at least k trajectories. Each trajectory that belongs to an anonymity group
(cylinder), generated by NWA, is protected from identity disclosure, due to the other tra-
jectories that appear in the same group. To produce the cylindrical volumes, the algorithm
in [1] identifies trajectories that lie close to each other in time and employs space transla-
tion. Trujillo-Rasua and Domingo-Ferrer [37] performed a rigorous analysis of the (k, δ)-
anonymity model, which shows that this model is not able to hide an original trajectory
within a set of k-indistinguishable, anonymized trajectories. Thus, the algorithms in [1, 2]
may not provide meaningful privacy guarantees, in practice. An effective algorithm for
enforcing k-anonymity on trajectory data was recently proposed by Domingo-Ferrer et al.
[11]. The algorithm, called SwapLocations, creates trajectory clusters using microaggregation
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and then permutes the locations in each cluster to enforce privacy. The experimental eval-
uation in [11] demonstrates that SwapLocations is significantly more effective at preserving
data utility than NWA [1]. Finally, Lin et al. [22] guarantees k-anonymity of published data,
under the assumption that road-network data are public information. Their method uses
clustering-based anonymization, protecting from identity disclosure.

Contrary to the methods of [1, 2, 11, 22], our work (a) does not consider time-stamped
trajectories, and (b) applies generalization to derive an anonymized dataset.

2.2 Generalization and suppression

Differently to the methods of Section 2.1, this category of methods considers attackers with
background knowledge on ordered sequences of places of interest (POIs) visited by specific
individuals. Terrovitis et al. [35] proposed an approach to prohibit multiple attackers, each
knowing a different set of POIs, from associating these POIs to fewer than k individuals in
the published dataset. To achieve this, the authors developed a suppression-based method
that aims at removing the least number of POIs from user trajectories, so that the remaining
trajectories are k-anonymous with respect to the knowledge of each attacker.

Yarovoy et al. [39] proposed a k-anonymity based approach for publishing user trajecto-
ries by considering time as a quasi-identifier and supporting privacy personalization. Un-
like previous approaches that assumed that all users share a common quasi-identifier, [39]
assumes that each user has a different set of POIs and times requiring protection, thereby
enabling each trajectory to be protected differently. To achieve k-anonymity, this approach
uses generalization and creates anonymization groups that are not necessarily disjoint.

A recent approach, proposed by Monreale et al. [27], extends the l-diversity principle to
trajectories by assuming that each location is either nonsensitive (acting as a QI) or sensi-
tive. This approach applies c-safety to prevent attackers from linking sensitive locations to
trajectories with a probability greater than c. To enforce c-safety, the proposed algorithm
applies generalization to replace original POIs with generalized ones based on a location
taxonomy. If generalization alone cannot enforce c-safety, suppression is used.
Assuming that each record in a dataset is comprised of a user’s trajectory and user’s sensi-

tive attributes, Chen et al. [8] propose the (K,C)L-privacy model. This model protects from
identity and attribute linkage by employing local suppression. In this paper, the authors
assume that an adversary knows at most L locations of a user’s trajectory. Their model
guarantees that a user is indistinguishable from at least K − 1 users, while the probability
of linking a user to his/her sensitive values is at most C.

Contrary to the methods of [8, 27, 35, 39], our work (a) assumes that an attacker may know
up to m user locations, which is a realistic assumption in many applications, and (b) does
not classify locations as sensitive or nonsensitive, which may be difficult in some domains
[36].

2.3 Differential privacy

Recently, methods for enforcing differential privacy [12] on trajectory data have been pro-
posed [5, 7, 9]. The objective of these methods is to release noisy data summaries that are
effective at supporting specific data analytic tasks, such as count query answering [7, 9] and
frequent pattern mining [5]. To achieve this, the method in [9] uses a context-free, taxonomy
tree, for identifying the set of counting queries that should be supported by the noisy sum-
mary, while the method in [5] employs a prefix-tree to generate candidate patterns, used in
the construction of the data summary.
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The method proposed in [7] was shown to be able to generate summaries that permit
highly accurate count query answering. This method, referred to as NGRAMS, works in
three steps. First, it truncates the original trajectory dataset by keeping only the first ℓmax

locations of each trajectory, where ℓmax is a parameter specified by data publishers. Larger
ℓmax values improve efficiency but deteriorate the quality of the frequencies, calculated
during the next step. Second, it uses the truncated dataset to compute the frequency of
n-grams (i.e., all possible contiguous parts of trajectories that are comprised of 1, or 2, ... ,
or n locations). Third, this method constructs a differentially private summary by inserting
calibrated Laplace noise [12] to the frequencies of n-grams.

Contrary to the methods of [5, 7, 9], our work publishes truthful data at a record (individ-
ual user) level, which is required by many data analysis tasks [24]. That is, our work retains
the number of locations in each published trajectory and the number of published trajec-
tories in the anonymized dataset. Furthermore, our method is able to preserve data utility
significantly better than these methods, as shown in our extensive experiments. Thus, our
approach can be used to offer a better privacy/utility trade-off than the methods of [5, 7, 9].

3 Privacy and utility objectives

In this section, we first define some preliminary concepts that are necessary to present
our approach, and then discuss the privacy and utility objectives of our anonymization
algorithms.

3.1 Preliminaries

Let L be a set of locations (e.g., points of interest, touristic sites, shops). A trajectory rep-
resents one or more locations in L and the order in which these locations are visited by a
moving object (e.g., individual, bus, taxi), as explained in the following definition.

Definition 1. A trajectory t is an ordered list of locations (l1, . . . , ln), where li ∈ L, 1 ≤ i ≤ n.
The size of the trajectory t = (l1, . . . , ln), denoted by |t|, is the number of its locations, i.e., |t| = n.

Note that, in our setting, a location may model points in space. A part of a trajectory,
which is formed by removing some locations while maintaining the order of the remaining
locations, is a subtrajectory of the trajectory, as explained below.

Definition 2. A trajectory s = (λ1, . . . , λν) is a subtrajectory of or is contained in trajectory
t = (l1, . . . , ln), denoted by s ⊑ t, if and only if |s| ≤ |t| and there is a mapping f such that
λ1 = lf(1), . . . , λν = lf(ν) and f(1) < · · · < f(ν).

For instance, the trajectory (a, e) is a subtrajectory of (or contained in) the trajectory t1 =
(d, a, c, e) in Figure 1. Clearly, (a, e) can be obtained from t1 by removing d and c.

Definition 3. Given a set of trajectories T , the support of a subtrajectory s, denoted by sup(s, T ),
is defined as the number of distinct trajectories in T that contain s.

In other words, the support of a subtrajectory s measures the number of trajectories in a
dataset that s is contained in. For example, for the dataset in Figure 1a, we have sup((a, e), T ) =
3. Note that the support does not increase when a subtrajectory is contained multiple times
in a trajectory. For instance, sup((a, e), {(a, e, b, a, e)}) = 1. Naturally, by considering loca-
tions as unary trajectories, the support can also be measured for the locations of a dataset.

In this work, we adapt the notion of km-anonymity [35, 36] to trajectory data, as explained
below.
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Definition 4. A set of trajectories T is km-anonymous if and only if every subtrajectory s of
every trajectory t ∈ T , which contains m or fewer locations (i.e., |s| ≤ m), is contained in at least
k distinct trajectories of T .

Definition 4 ensures that an attacker who knows any subtrajectory s of size m of an indi-
vidual, cannot associate the individual to fewer than k trajectories (i.e., the probability of
identity disclosure, based on s, is at most 1

k
). The privacy parameters k and m are specified

by data publishers, according to their expectations about adversarial background knowl-
edge, or certain data privacy policies [18, 35, 36].

The following example illustrates a dataset that satisfies km-anonymity.

Example 1. Consider the trajectory dataset that is shown in Figure 1a. This dataset is 21-anony-
mous, because every location (i.e., subtrajectory of size 1) appears at least 2 times in it. This dataset
is also 13-anonymous, because every subtrajectory of size 3 appears only once in it. However, the
dataset is not 22-anonymous, as the subtrajectory (d, a) is contained only in the trajectory t1.

Note that, unlike k-anonymity, the km-anonymity model assumes that an attacker pos-
sesses background knowledge about subtrajectories, which are comprised of at most m
locations. That is, an attacker knows at most m locations that are visited by an individual,
in a certain order. Clearly, m can be set to any integer in [0,max{|t|

∣

∣ t ∈ T }]. Setting m
to 0 corresponds to the trivial case, in which an attacker has no background knowledge.
On the other hand, setting m to max{|t|

∣

∣ t ∈ T }, can be used to guard against an attacker
who knows the maximum possible subtrajectory about an individual (i.e., that an indi-
vidual has visited all the locations in their trajectory, and the order in which they visited
these locations). In this case, km-anonymity “approximates” k-anonymity, but it does not
provide the same protection guarantees against identity disclosure. This is because km-
anonymity does not guarantee protection from attackers who know that an individual has
visited exactly the locations, contained in a subtrajectory of size m. For example, assume
that a dataset is comprised of the trajectories {(a, d, e), (a, d, e), (a, d)}. The dataset satisfies
23-anonymity, hence it prevents an attacker from associating an individual with any of the
subtrajectories (a, d), (a, e), and (d, e). However, the dataset is not 2-anonymous, hence
an attacker who knows that an individual has visited exactly the locations a and d, in this
order, can uniquely associate the individual with the trajectory (a, d).
The km-anonymity model is practical in several applications, in which it is extremely

difficult for attackers to learn a very large number of user locations [35]. However, km-
anonymity does not guarantee that all possible attacks, based on background knowledge,
will be prevented. For example, km-anonymity is not designed to prevent collaborative at-
tacks, in which (i) two or more attackers combine their knowledge in order to re-identify
an individual, or (ii) an attacker possesses background knowledge about multiple trajec-
tories in T . Such powerful attack schemes can only be handled within stronger privacy
principles, such as differential privacy (see Section 2). However, applying these principles
usually results in significantly lower data utility, compared to the output of our algorithms,
as shown in our experiments. In addition, as we do not deal with time-stamped trajectories,
time information is not part of our privacy model. In the case of time-stamped trajectory
data publishing, time information can be used by attackers to perform identity disclosure,
and privacy models to prevent this are the focus of [8, 39]. For the same reason, we do
not deal with attacks that are based on both time and road-network information (e.g., the
inference route problem [22]). These attacks can be thwarted using privacy models, such as
strict k-anonymity [22].

To explain the way we generalize trajectories, we define the notion of generalized location,
as explained below.
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Definition 5. A generalized location {l1, . . . , lv} is defined as a set of at least two locations
l1, . . . , lv ∈ L.

Thus, a generalized location is the result of replacing at least two locations in Lwith their
set. A generalized location is interpreted as exactly one of the locations mapped to it. For
example, the generalized location {a, b} may be used to replace the locations a and b in
Figure 1a. This generalized location will be interpreted as a or b. Therefore, if a trajectory
t′ in an anonymized version T ′ of T contains a generalized location {l1, . . . , lv}, then the
trajectory t in T contains exactly one of the locations l1, . . . , lv .

To enforce km-anonymity, we either replace a location l with a generalized location that
contains l, or leave l intact. Thus, a generalized trajectory t′ is an ordered list of locations
and/or generalized locations. The size of t′, denoted by |t′|, is the number of elements of
t′. For instance, a generalized trajectory t′ = ({a, b}, c) is comprised of one generalized
location {a, b} and a location c, and it has a size of 2.

We are interested in generalization transformations that produce a transformed dataset
T ′ by distorting the original dataset T as little as possible, A common way to measure
the distortion of a transformation is to measure the distance between the original and the
transformed dataset [29, 35, 39]. In our case, the distance between the original and the
anonymized dataset is defined as the average of the distances of their corresponding trajec-
tories. In turn, the distance between the initial and the anonymized trajectory is defined as
the average of the distance between their corresponding locations.

The following definition illustrates how the distance between locations, trajectories, and
datasets T and T ′ can be computed.

Definition 6. Let l be a location that will be generalized to the generalized location {l1, . . . , lv}.
The location distance between l and {l1, . . . , lv}, denoted by Dloc(l, {l1, . . . , lv}), is defined as:

Dloc(l, {l1, . . . , lv}) = avg
{

d(l, li) | 1 ≤ i ≤ v
}

where d is the Euclidean distance. The trajectory distance between t = (l1, . . . , ln) and its gener-
alized counterpart t′ = (l′1, . . . , l

′
n), denoted by Dtraj (t, t

′), is defined as:

Dtraj (t, t
′) = avg

{

Dloc(li, l
′
i) | 1 ≤ i ≤ n

}

Finally, the trajectory dataset distance between T = {t1, . . . , tu} and its generalized counterpart
T ′ = {t′1, . . . , t

′
u} (where the trajectory ti is generalized to trajectory t′i, 1 ≤ i ≤ u), denoted by

D(T , T ′), is defined as:

D(T , T ′) = avg
{

Dtraj (ti, t
′
i) | 1 ≤ i ≤ u

}

For example, let a, a1, a2 and b be locations and let d(a, a1) = 1 and d(a, a2) = 2. If location
a is generalized to the generalized location {a, a1, a2} the location distanceDloc(a, {a, a1, a2}) =
(0 + 1 + 2)/3 = 1. Also, if trajectory (a, b) is generalized to ({a, a1, a2}, b) the trajectory dis-
tance Dtraj ((a, b), ({a, a1, a2}, b)) = (1 + 0)/2 = 1/2.
Note that the distances in Definition 6 can be normalized by dividing each of them with

the maximum distance between locations in T .

3.2 Problem statement

As discussed in Introduction, the objective of our approach is to enforce km-anonymity
to a trajectory dataset, while preserving data utility. However, there are different aspects
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of data utility that data publishers may want to preserve. To account for this, we have
developed three anonymization algorithms, namely SEQANON, SD-SEQANON, and U-
SEQANON, which generalize locations in different ways.

The SEQANON algorithm aims at generalizing together locations that are close in proxim-
ity. The distance between locations, in this case, is expressed based on Definition 6. Thus,
the problem that SEQANON aims to solve can be formalized as follows.

Problem 1. Given an original trajectory dataset T , construct a km-anonymous version T ′ of T
such that D(T , T ′) is minimized.

Note that Problem 1 is NP-hard (the proof follows easily from observing that Problem 1
contains the NP-hard problem in [35] as a special case), and that SD-SEQANON is a heuris-
tic algorithm that may not find an optimal solution to this problem.

The SD-SEQANON algorithm considers both the distance and the semantic similarity of
locations, when constructing generalized locations. Thus, it exploits the availability of se-
mantic information about locations to better preserve data utility. Following [27], we as-
sume that the semantic information of locations is provided by data publishers, using a
location taxonomy. The leaf-level nodes in the taxonomy correspond to each of the loca-
tions of the original dataset, while the non-leaf nodes represent more general (abstract)
location information.

Given a location taxonomy, we define the notion of semantic dissimilarity for a generalized
location, as explained in the following definition. A similar notion of semantic dissimilarity,
for relational values, was proposed in [38].

Definition 7. Let l′ = {l1, . . . , lv} be a generalized location and H be a location taxonomy. The
semantic dissimilarity for l′ is defined as:

SD(l′) =
CCA({l1, . . . , lv})

|H|

where CCA({l1, . . . , lj}) is the number of leaf-level nodes in the subtree rooted at the closest com-
mon ancestor of the locations {l1, . . . , lv} in the location taxonomy H, and |H| is the total number
of leaf-level nodes inH.

Thus, locations that belong to subtrees with a small number of leaves are more semanti-
cally similar. Clearly, the SD scores for generalized locations that contain more semanti-
cally similar locations are lower.

Example 2. An example location taxonomy is illustrated in Figure 2. The leaf-level nodes a to e
represent the locations (i.e., specific restaurants and coffee houses), while the non-leaf nodes represent
the general concepts Restaurants and Coffee shops. We also have CCA({a, c, e}) = 3, as the
subtree rooted at Restaurants has three leaf-level nodes, and |H| = 5, as the taxonomy in Figure 2
has 5 leaf-level nodes. Thus, the semantic dissimilarity for the generalized location {a, c, e}, denoted
with SD({a, c, e}), is 3

5 = 0.6. Similarly, we can compute SD({a, d}) = 5
5 = 1, which is greater

than SD({a, c, e}) because a and d are more semantically dissimilar (i.e., restaurants and coffee
shops, instead of just restaurants).

We now define the criteria that are used by the SD-SEQANON algorithm to capture both
the distance and semantic similarity between locations, trajectories, and datasets T and T ′.
The computation of these criteria is similar to those in Definition 6.
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Figure 2: A location taxonomy

Definition 8. Let l be a location that will be generalized to l′ = {l1, . . . , lv}. The combined
location distance between l and l′, denoted by Cloc(l, l

′), is defined as:

Cloc(l, l
′) = avg

{

d(l, li) · SD(l′) | 1 ≤ i ≤ v
}

,where SD(l′) takes values in (0, 1]

where d is the Euclidean distance and SD is the semantic dissimilarity. Note that the above for-
mula is a conventional weighted-formula, where similarity and distance are combined into the
Cloc(l, l

′). Thus, the combined objective is then optimized by the single-objective optimization met-
ric Cloc(l, l

′). Using conventional weighted-formulas is an effective approach for addressing multi-
objective optimization problems, as discussed in [13]. The combined trajectory distance between
t = (l1, . . . , ln) and its generalized counterpart t′ = (l′1, . . . , l

′
n), denoted by Ctraj (t, t

′), is defined
as:

Ctraj (t, t
′) = avg

{

Cloc(li, l
′
i) | 1 ≤ i ≤ n

}

Finally, the combined trajectory dataset distance between T = {t1, . . . , tu} and its generalized
counterpart T ′ = {t′1, . . . , t

′
u} (where the trajectory ti is generalized to trajectory t′i, 1 ≤ i ≤ u),

denoted by C(T , T ′), is defined as:

C(T , T ′) = avg
{

Ctraj (ti, t
′
i) | 1 ≤ i ≤ u

}

We now define the problem that the SD-SEQANON algorithm aims to solve, as follows.

Problem 2. Given an original trajectory dataset T , construct a km-anonymous version T ′ of T
such that C(T , T ′) is minimized.

Note that Problem 2 can be restricted to Problem 1, by allowing only instances where
SD(l′) = 1, for each generalized location l′ that is contained in a trajectory of T ′. Thus,
Problem 2 is also NP-hard. The SD-SEQANON algorithm aims to derive a (possibly sub-
optimal) solution to Problem 2 by taking into account both the distance and the semantic
similarity of locations, when constructing generalized locations.

However, in several applications, there are specific utility requirements that must be taken
into account to ensure that the published dataset is practically useful. In what follows, we
explain our notion of utility constraints, which is used to capture the utility requirements
of data publishers, and explain when the utility constraints are satisfied. Subsequently, we
discuss the practical importance of utility constraints in applications. Our definitions are
similar to those proposed in [24] for transaction data.
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utility constraints locations
u1 {b, c}
u2 {a, d, e}

(a)

id trajectory
t′1 (d, {a, b, c}, {a, b, c}, e)
t′2 ({a, b, c}, {a, b, c}, e, {a, b, c})
t′3 ({a, b, c}, d, e)
t′4 ({a, b, c}, d, e, {a, b, c})
t′5 (d, {a, b, c})
t′6 (d, e)

(b)
id trajectory
t′1 ({a, d, e}, {a, d, e}, {b, c}, {a, d, e})
t′2 ({b, c}, {a, d, e}, {a, d, e}, {b, c})
t′3 ({a, d, e}, {a, d, e}, {a, d, e})
t′4 ({b, c}, {a, d, e}, {a, d, e}, {b, c})
t′5 ({a, d, e}, {b, c})
t′6 ({a, d, e}, {a, d, e})

(c)

Figure 3: (a) An example utility constraint set U . (b) A 22-anonymous dataset T ′ that does
not satisfy the utility constraint set U . (c) A 22-anonymous dataset T ′ that satisfies U .

Definition 9. A utility constraint u is a set of locations {l1, . . . , lv}, specified by data publishers.
A utility constraint set U = {u1, . . . , up} is a partition of the set of locations L, which contains
all the specified utility constraints u1, . . . , up.

Definition 10. Given a utility constraint set U = {u1, . . . , up}, a generalized dataset T ′ that
contains a set of generalized locations {l′1, . . . , l

′
n}, and a parameter δ, U is satisfied if and only if

(i) for each generalized location l′ ∈ {l′1, . . . , l
′
n}, and for each utility constraint u ∈ U , l′ ⊆ u or

l′ ∩ u = ∅, and (ii) at most δ% of the locations in L have been suppressed to produce T ′, where δ is
a parameter specified by data publishers.

The first condition of Definition 10 limits the maximum amount of generalization each lo-
cation is allowed to receive, by prohibiting the construction of generalized locations whose
elements (locations) span multiple utility constraints. The second condition ensures that
the number of suppressed locations is controlled by a threshold. When both of these con-
ditions hold, the utility constraint set U is satisfied. Note that we assume that the utility
constraint set is provided by data publishers, e.g., using the method in [24]. The example
below illustrates Definitions 9 and 10.

Example 3. Consider the utility constraint set U = {u1, u2}, shown in Figure 3a, and assume that
δ = 5. The dataset, shown in Figure 3b, does not satisfy U , because the locations in the generalized
location {a, b, c} are contained in both u1 and u2. On the other hand, the dataset in Figure 3c
satisfies U , because the locations of every generalized location are all contained in u1.

In the following, we provide two examples of real-life applications to justify the impor-
tance of utility constraints. The first example comes from the business domain, and it is
related to the Octopus card, used for payment at various sites (e.g., at convenience stores
and service stations) in Hong Kong. Data published by the Octopus card company must
preserve privacy and, at the same time, allow meaningful analysis by data recipients, such
as owners of specific shops or certain public authorities [35]. The analysis of data recipi-
ents often involves counting the number of trajectories that are associated with a particular
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type of locations, such as coffee shops and bus stations when data recipients are coffee shops
owners and public transport authorities, respectively. The second example comes from the
healthcare domain, and it is related to publishing the locations (e.g., healthcare institutions,
clinics, and pharmacies) visited by patients [25]. To support medical research studies, it is
important that the published data permit data recipients to accurately count the number of
trajectories (or equivalently the number of patients) that are associated with specific loca-
tions, or types of locations.

Observe that the number of trajectories that contain a generalized location l′ = (l1, . . . , ln),
in the generalized dataset T ′, is equal to the number of trajectories that contain at least one
of the locations l1, . . . , ln, in the original dataset T . This is because a trajectory t ∈ T that
contains at least one of these locations corresponds to a trajectory t′ ∈ T ′ that contains
l′. Thus, the number of trajectories in T that contain any location in a utility constraint
u ∈ U can be accurately computed from the generalized dataset T ′, when U is satisfied,
as no other location will be generalized together with the locations in u. Therefore, the
generalized data that satisfy U will be practically useful in the aforementioned applications.

We now define the problem that U-SEQANON aims to solve, as follows.

Problem 3. Given an original trajectory dataset T , a utility constraint set U , and parameters k,
m and δ, construct a km-anonymous version T ′ of T such that D(T , T ′) is minimized and U is
satisfied with at most δ% of the locations of T being suppressed.

Thus, a solution to Problem 3 needs to satisfy the specified utility constraints, without
suppressing more than δ% of locations, and additionally incur minimum information loss.
Note that Problem 3 is NP-hard (it can be restricted to Problem 1, by allowing only instances
where U contains an single utility constrained with all locations in L and δ = 100) and that
U-SEQANON is a heuristic algorithm that may not solve Problem 3 optimally.

4 Anonymization algorithms

In this section, we present our SEQANON, SD-SEQANON, and U-SEQANON anonymiza-
tion algorithms, which aim at solving Problems 1, 2, and 3, respectively.

4.1 The SEQANON algorithm

The pseudocode of the SEQANON algorithm is illustrated in Algorithm SEQANON. The
algorithm takes as input a trajectory dataset T , and the anonymization parameters k and
m, and returns the km-anonymous counterpart T ′ of T . The algorithm employs the apri-
ori principle and works in a bottom up fashion. Initially, it considers and generalizes the
subtrajectories of size 1 (i.e., single locations) in T which have low support. Then, the
algorithm continues by progressively increasing the size of the subtrajectories it considers.
In more detail, SEQANON proceeds as follows. First, it initializes T ′ (Step 1). Then, in

Steps 2 – 8, it considers subtrajectories of size up to m, iteratively. Specifically, in Step 3, it
computes the set S , which contains all subtrajectories in T that have size i (i.e., that have
i locations) and support lower than k (i.e., sup(s, T ′) < k). SEQANON considers the sub-
trajectories of S that have lower support first. This heuristic improves both the efficiency
and the effectiveness of the algorithm. This is because remedying such subtrajectories does
not require a large amount of generalization, while it contributes to protecting trajectories
with higher support. Continuing, for every such trajectory s ∈ S , the algorithm finds the
location l1 of s with the minimum support (Step 6). SEQANON considers locations with
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Algorithm: SEQANON

Input: A dataset T and anonymization parameters k and m

Output: A km-anonymous dataset T ′ corresponding to T

1 T ′ := T // Initialize output

2 for i := 1 to m do
3 Let S be the set of subtrajectories s of T with size i such that sup(s, T ′) < k sorted by

increasing support
4 for each s ∈ S do
5 while sup(s, T ′) < k do
6 Find the location l1 of s with the minimum support in T ′

7 Find the location l2 6= l1 with the minimum d(l1, l2)
8 Replace all occurrences of l1 and l2 in T ′ and s with {l1, l2}

9 return T ′

low support first, as they can be generalized with low information loss. Then, in Step 7,
the algorithm searches the locations of T to detect the location l2 that has the minimum
Euclidean distance from l1. Finally, SEQANON generalizes l1 and l2 by constructing the
generalized location {l1, l2} and replaces every occurrence of l1 and l2 with the general-
ized location {l1, l2} (Step 8). The algorithm repeats Steps 6 – 8, until the support of the
subtrajectory s exceeds the value of the anonymization parameter k.

The following is an example of SEQANON in operation.

Example 4. We will demonstrate the operation of SEQANON using dataset T of Figure 1a and
k = m = 2. The intermediate steps are illustrated in Figure 4. The first iteration of the for loop
(Steps 2 – 8) considers the subtrajectories of size i = 1. It is not hard to verify that all size 1
locations have support greater (or equal) than k = 2, thus the algorithm proceeds to i = 2. For this
case, Step 3 computes the set of subtrajectories S (illustrated in Figure 4a). SEQANON considers
subtrajectory s = (d, a), which is the first subtrajectory in S . Then, the algorithm sets l1 = a,
because a is the location with the lowest support in (d, a) (Step 6), and l2 = b, because d(a, b) is
minimum, according to Figure 1b (Step 7). Finally, in Step 8 SEQANON replaces a and b with the
generalized location {a, b} in s and in all the trajectories of T ′. After these replacements, we have
s = (d, {a, b}) and the resultant T ′ shown in Figure 4b. Since, we still have sup(s, T ′) < k, the
while loop (Steps 5 – 8) is executed again. This time, l1 = {a, b} and l2 = c, and the algorithm
constructs the generalized dataset T ′, shown in Figure 4c. The remaining steps of the algorithm
SEQANON do not change T ′. Thus, the final output of SEQANON is shown in Figure 4c.

Time complexity analysis. We first compute the time needed by SEQANON to execute
the for loop (Steps 2 – 8). For each iteration of this loop, the set S is constructed, sorted,
and explored. The cost of creating and sorting this set is O(|L|i) and O(|L|i · log(|L|i)),
respectively, where |L| is the size of the location set used in T and i is the loop counter.
These bounds are very crude approximations, which correspond to the case in which all
size i subtrajectories have support lower than k. In practice, however, the number of the
subtrajectories s with sup(s, T ′) < k is a small fraction of O(|L|i), which depends heavily
on the dataset T and the value of the anonymization parameter k. The cost of exploring the
set S (Steps 4 – 8) isO(|L|i · (|L|+ |T ′|)) because, for each element of S , the algorithm needs
to consider at most O(|L|) locations and access all trajectories in T ′. Thus, each iteration
of the for loop, in Steps 2 – 8, takes O(|L|i · (log(|L|i) + |L| + |T ′|)) time, and the time

TRANSACTIONS ON DATA PRIVACY 7 (2014)



178 Giorgos Poulis, Spiros Skiadopoulos, Grigorios Loukides, Aris Gkoulalas-Divanis

subT. sup
(d, a) 1
(c, e) 1
(b, a) 1
(a, d) 1
(b, d) 1

(a)

id trajectory
t′1 (d, {a, b}, c, e)
t′2 ({a, b}, {a, b}, e, c)
t′3 ({a, b}, d, e)
t′4 ({a, b}, d, e, c)
t′5 (d, c)
t′6 (d, e)

(b)

id trajectory
t′1 (d, {a, b, c}, {a, b, c}, e)
t′2 ({a, b, c}, {a, b, c}, e, {a, b, c})
t′3 ({a, b, c}, d, e)
t′4 ({a, b, c}, d, e, {a, b, c})
t′5 (d, {a, b, c})
t′6 (d, e)

(c)

Figure 4: (a) Set S for subtrajectories of size i = 2 and the respective supports, (b) Trans-
formed dataset T ′ after SEQANON has processed the subtrajectory (d, a), and (c) The final
22-anonymous result T ′, produced by SEQANON.

complexity of SEQANON is O
(

m
∑

i=1

(|L|i · (log(|L|i) + |L|+ |T ′|))).

4.2 The SD-SEQANON algorithm

SD-SEQANON takes as input an original trajectory dataset T , the anonymization parame-
ters k and m, and a location taxonomy, and returns the km-anonymous counterpart T ′ of T .
The algorithm operates similarly to SEQANON, but it takes into account both the Euclidean
distance and the semantic similarity of locations, when it applies generalization to them.

The pseudocode of SD-SEQANON is provided in Algorithm SD-SEQANON. Notice that
SD-SEQANON and SEQANON differ in Step 7. This is because SD-SEQANON calculates
the product of the Euclidean distance for the locations l1 and l2, and the SD measure for
the generalized location {l1, l2} (see Definition 7). Thus, it aims at creating a generalized
location, which consists of locations that are close in proximity and are semantically sim-
ilar. The time complexity of SD-SEQANON is the same as that of SEQANON, because the
computation in Step 7 does not affect the complexity.

Algorithm: SD-SEQANON

Input: A dataset T , a locations hierarchy and anonymization parameters k and m

Output: A km-anonymous dataset T ′ corresponding to T

1 T ′ := T // Initialize output

2 for i := 1 to m do
3 Let S be the set of subtrajectories s of T with size i such that sup(s, T ′) < k sorted by

increasing support
4 for each s ∈ S do
5 while sup(s, T ′) < k do
6 Find the location l1 of s with the minimum support in T ′

7 Find the location l2 6= l1 with the minimum d(l1, l2) · SD({l1, l2})
8 Replace all occurrences of l1 and l2 in T ′ and s with {l1, l2}

9 return T ′
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4.3 The U-SEQANON algorithm

The U-SEQANON algorithm takes as input an original trajectory dataset T , anonymization
parameters k, m and δ, as well as a utility constraint set U . The algorithm differs from
SEQANON and SD-SEQANON along two dimensions. First, the km-anonymous dataset
it produces satisfies U , hence it meets the data publishers’ utility requirements. Second, it
additionally employs suppression (i.e., removes locations from the resultant dataset), when
generalization alone is not sufficient to enforce km-anonymity.

Algorithm: U-SEQANON

Input: A dataset T , utility constraint set U , and anonymization parameters k, m, and δ

Output: A km-anonymous dataset T ′ corresponding to T

1 T ′ := T // Initialize output

2 for i := 1 to m do
3 Let S be the set of subtrajectories s of T with size i such that sup(s, T ′) < k sorted by

increasing support
4 for each s ∈ S do
5 while sup(s, T ′) > 0 or sup(s, T ′) < k do
6 Find the location l1 of s with the minimum support in T ′

7 Find the utility constraint u ∈ U that contains the location l1
8 Find the location l2 6= l1, l2 ∈ u with the minimum d(l1, l2)
9 if Cannot find location l2 then

10 Suppress location l1 from T ′

11 if More than δ% of locations have been suppressed then
12 Exit: U is not satisfied

13 else
14 Replace all occurrences of l1 and l2 in T ′ and s with {l1, l2}

15 return T ′

The pseudocode of U-SEQANON is provided in Algorithm U-SEQANON. As can be seen,
the algorithm initializes T ′ (Step 1) and then follows the apriori principle (Steps 2 – 14).
After constructing and sorting S , U-SEQANON iterates over each subtrajectory in S and
applies generalization and/or suppression, until its support is either at least k or 0 (Steps
3 – 5). Notice that sup(s, T ′) = 0 corresponds to an empty subtrajectory s (i.e., the result of
suppressing all locations in s), which does not require protection. Next, U-SEQANON finds
the location l1 with the minimum support in T ′ and the utility constraint that contains it
(Steps 6 – 7). Then, the algorithm finds a different location l2, which also belongs to u and
is as close to l1 as possible, according to the Euclidean distance (Step 8). In case such a
location cannot be found (i.e., when there is a single generalized location that contains all
locations in u), U-SEQANON suppresses l2 from T ′ (Steps 9 – 10). If more than δ% of loca-
tions have been suppressed, U cannot be satisfied and the algorithm terminates (Steps 11 –
12). Otherwise, U-SEQANON generalizes l1 and l2 together and replaces every occurrence
of either of these locations with the generalized location {l1, l2} (Step 14). The algorithm
repeats Steps 2 – 14 as long as the size of the considered subtrajectories does not exceed m.
After considering the subtrajectories of size m, U-SEQANON returns the km-anonymous
dataset T ′ that satisfies U , in Step 15.

The following is an example of U-SEQANON in operation.

Example 5. We will demonstrate the operation of U-SEQANON with input the original dataset
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# UC
1 {b, c}
2 {a, d, e}

(a)

id trajectory
t′1 ({a, d}, {a, d}, c, e)
t′2 (b, {a, d}, e, c)
t′3 ({a, d}, {a, d}, e)
t′4 (b, {a, d}, e, c)
t′5 ({a, d}, c)
t′6 ({a, d}, e)

(b)

id trajectory
t′1 ({a, d, e}, {a, d, e}, {b, c}, {a, d, e})
t′2 ({b, c}, {a, d, e}, {a, d, e}, {b, c})
t′3 ({a, d, e}, {a, d, e}, {a, d, e})
t′4 ({b, c}, {a, d, e}, {a, d, e}, {b, c})
t′5 ({a, d, e}, {b, c})
t′6 ({a, d, e}, {a, d, e})

(c)

Figure 5: (a) Set of Utility Constraints (b) Transformed dataset T ′ after the processing of
subtrajectory (d, a), and (c) The final 22-anonymous result T ′ meeting the provided set of
UC

T , shown in Figure 1a, the utility constraint set in Figure 5a, k = m = 2, and δ = 5%. During
the first iteration of the for loop (Steps 2 – 14), U-SEQANON considers the subtrajectories of size
i = 1, which all have a support of at least 2. Thus, the algorithm considers subtrajectories of size
i = 2, and constructs the set S shown in Figure 4a (Steps 4 – 3). Then, U-SEQANON considers
the subtrajectory s = (d, a) in S , which has the lowest support in T ′ (Step 6). Next, in Steps 6
– 8, the algorithm finds the location l1 = a, which has the lowest support in T ′, and the location
l2 = d, which belongs to the same utility constraint as a and is the closest to it – see also the map in
Figure 1b. After that, the algorithm replaces a and d with the generalized location {a, d} in s and
all the trajectories of T ′ (Step 14). After these replacements, s = ({a, d}, {a, d}) and the trajectory
dataset T ′ is as shown in Figure 4b. Since the support of s in T ′ is at least k, the while loop in
Step 5 terminates and the algorithm checks the next problematic subtrajectory, s = (c, e). After
considering all problematic subtrajectories of size 2, U-SEQANON produces the 22-anonymous
dataset in Figure 5c, which satisfies U .

The time complexity of U-SEQANON is the same as that of SEQANON, in the worst case
when U is comprised of a single utility constraint that contains all locations in L, S contains
O(|L|i) subtrajectories with support in (0, k), and δ = 100. Note that the cost of suppressing
a location l1 is O(|T ′|) (i.e., the same as that of replacing the locations l1 and l2 with the
generalized location (l1, l2) in all trajectories in T ′).

5 Experimental evaluation

In this section, we provide a thorough experimental evaluation of our approach, in terms
of data utility and efficiency.

Experimental setup. We implemented our algorithms in C++ and tested them on an Intel
Core i7 at 2.2 GHz with 6 GB of RAM. In our experiments, we used both synthetic and
real datasets. The synthetic dataset, referred to as Oldenburg, was generated using the
Brinkhoff’s data generator [6] and contains synthetic trajectories of objects moving on the
Oldenburg city map. This setting has been used by many works [1, 29, 35, 39]. We normal-
ized the trajectories, so that all coordinates take values in a 103×103 map, and simulated
trajectories corresponding to these routes, as follows. The map was divided into 100 re-
gions using a uniform grid. A moving object visits a sequence of regions in a certain order.
The centroids of the visited regions model the locations in the trajectories of T . The Olden-
burg dataset contains 18, 143 trajectories, whose average length is 4.72, and 100 locations.
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In addition, we used a dataset that has been derived from the Gowalla location-based social
networking website and contains the check-ins (locations) of users between February 2009
and October 2010 [10]. In our experiments, we used aggregate locations of 86, 061 users, in
the state of New York and nearby areas. This dataset is referred to as Gowalla and contains
86, 061 trajectories, whose average length is 3.92, and 662 locations.

To study the effectiveness of our approach, we compare it against the NGRAMS method
[7], discussed in Section 2, using the implementation provided by the authors of [7]. Con-
trary to [5], the NGRAMS method was developed for count query answering. Thus, a com-
parison between the NGRAMS method and ours allows us to evaluate the effectiveness of
our approach with respect to count query answering. For this comparison, we set the pa-
rameters lmax, nmax, and e to the values 20, 5, and 0.1, respectively, which were suggested
in [7]. Unless otherwise stated, k is set to 5 and m is set to 2. The location taxonomies
were created as in [35]. Specifically, each non-leaf node in the taxonomy for the Oldenburg
(respectively, Gowalla) dataset has 5 (respectively, 6) descendants.

Measures. To measure data utility we used the Average Relative Error (ARE) measure [21],
which has become a defacto data utility indicator [24, 31]. ARE estimates the average num-
ber of trajectories that are retrieved incorrectly, as part of the answers to a workload of
COUNT queries. Low ARE scores imply that anonymized data can be used to accurately
estimate the number of co-occurrences of locations. We used workloads of 100 COUNT
queries, involving randomly selected subtrajectories with size in [1, 2], because the output
of the NGRAMS method contained very few longer trajectories (see Figure 10b).
In addition, we used Kullback–Leibler divergence (KL-divergence), an information-theoretic

measure that quantifies information loss and is used widely in the anonymization literature
[16, 19]. In our context, KL-divergence measures support estimation accuracy based on
the difference between the distribution of the support of a set of subtrajectories S, in the
original and in the anonymized data2. Let PS (respectively, QS) be the distribution of the
support of the subtrajectories in S in the dataset T (respectively, generalized dataset T ′).
The KL-divergence between PS and QS is defined as:

DKL(PS ‖ QS) =
∑

s∈S

PS ln

(

PS

QS

)

Clearly, low values in KL-divergence are preferred, as they imply that a small amount of
information loss was incurred to generalize the subtrajectories in S. Furthermore, we used
statistics on the number, size, and distance, for the locations in generalized data.

To evaluate the extent to which SD-SEQANON generalizes semantically close locations
together, we compute a semantic similarity penalty P for the generalized dataset, as follows:

P(T ′) =

∑

t′∈T ′

(

1

|t′|
·
∑

l′∈t′

SD(l′)

)

|T ′|

where t′ is a trajectory in the generalized dataset T ′, with size |t′|, and |T ′| is the number of
trajectories in T ′. P reflects how semantically dissimilar are (on average) the locations in
the trajectories in the generalized dataset. The values in P(T ′) are in [0, 1] and lower values
imply that the generalized locations in T ′ contain more semantically similar locations.

2The support of a subtrajectory s ∈ S in T ′ is computed as the support of its generalized counterpart (i.e., the
subtrajectory induced by the generalized locations of each location in s).
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To evaluate the ability of the SEQANON and NGRAMS algorithms to permit sequential
pattern mining, we employ a testing framework similar to that of Gionis et al. [17]. In
more detail, we construct random projections of the datasets produced by our algorithms,
by replacing every generalized location in it with a random location, selected from that
generalized location. Then, we use Prefixspan [30], to obtain the frequent sequential pat-
terns (i.e., the sequential patterns having support larger than a threshold) in the original,
the output of NGRAMS and the projected datasets. Next, we calculate the percentage of
the frequent sequential patterns of the original dataset that are preserved in the output of
NGRAMS and in the projected datasets. We also calculate the percentage of the frequent
sequential patterns in the output of NGRAMS and in the projected datasets that are not fre-
quent in the original dataset. Clearly, an anonymized dataset (produced by either NGRAMS

or by our algorithms) allows accurate mining, when: (i) a high percentage of its frequent
sequential patterns are frequent in the original dataset, and (ii) a low percentage of its fre-
quent sequential are not frequent in the original dataset.

5.1 Data utility

In this section, we evaluate the effectiveness of the SEQANON, SD-SEQANON, and U-
SEQANON algorithms at preserving data utility.

SEQANON. We begin by evaluating the data utility offered by the SEQANON algorithm,
using some general statistics, computed for the output of this algorithm on the Oldenburg
dataset. Specifically, we measured the number of the locations that were released intact
(referred to as original locations) and the number of the locations that were generalized.
For the generalized locations, we also measured their average size and distance. Initially,
we varied the anonymization parameter k in [2, 100]. Our results are summarized in Fig-
ures 6a-7a.

In Figure 6a, we present the number of the original locations, as a function of k. As ex-
pected, increasing k led to fewer original locations. In Figure 6b, we report the number
of generalized locations. When k increases, more locations are grouped together to ensure
km-anonymity, leading to fewer generalized locations. As an immediate result, the average
number of locations in a generalized location increased, as shown in Figure 6c. In addition,
we report the average Euclidean distance of all locations contained in each generalized lo-
cation. We normalize this distance as a percentage of the maximum possible distance (i.e.,
the distance between the two furthermost points). This percentage quantifies the distortion
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Figure 6: number of (a) original (non generalized) locations published, (b) generalized lo-
cations published and (c) average generalized location size
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in a generalized location. In Figure 7a, we illustrate the distance percentage as a function of
k. When k increases, more locations are grouped together in the same generalized location,
leading to more distortion. As SEQANON focuses on minimizing the Euclidean distance of
locations in each generalized location, the distortion is relatively low and increases slowly.

To show the impact of m on data utility, we set k = 5 and varied m in [1,4]. Since our
dataset has an average of 4.72 locations per trajectory, m = 3 (respectively, m = 4) means
that the adversary knows approximately 65% (respectively, 85%) of a user’s locations. So,
for m = 3 and m = 4, we expect significant information loss. On the contrary, for m =
1, all locations have support greater than k = 5, so no generalization is performed and
no generalized locations are created. As m increases, more generalizations are performed
in order to eliminate subtrajectories with low support. This leads to fewer generalized
locations with larger sizes. These results are shown in Figures 7b-8b.

Also, we evaluated the impact of dataset size on data utility, using various random subsets
of the original dataset, containing 2, 000, 5, 000, 10, 000, and 15, 000 records. In Figure 8c,
we illustrate the number of original locations for variable dataset sizes. For larger datasets,
this number increases, as the support of single locations is higher. Consequently, the sup-
port of subtrajectories increases, and fewer locations are generalized. This leads to more
generalized locations, with lower average size, and lower distance, as can be seen in Fig-
ures 9a-9c.
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Figure 7: number of (a) average percent of distance in generalized locations, (b) original
(non generalized) locations published and (c) generalized locations published
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Figure 9: (a) number of generalized locations published, (b) average generalized location
size and (c) average percent of distances in generalized locations

SEQANON vs. NGRAMS. In this section, we report the count of the subtrajectories of dif-
ferent sizes that are created by the NGRAMS method. In addition, we report the ARE and
KL-divergence scores for the SEQANON and NGRAMS methods. Finally, we report the per-
centage of the frequent sequential patterns of the original dataset that are preserved in the
anonymous dataset and the percentage of frequent sequential patterns of the anonymous
dataset that are not frequent on the original dataset. The results of comparing NGRAMS to
SD-SEQANON and to U-SEQANON were quantitatively similar (omitted for brevity).

Fig. 10a reports the number of subtrajectories of different sizes that are contained in the
Oldenburg dataset, denoted with T , and the output of NGRAMS, denoted with T ′

SEQANON
.

As can be seen, the output of NGRAMS contains noisy versions of only a small percent-
age (0.29%) of short subtrajectories. Thus, the information of the subtrajectories of length
greater than 4, which correspond to 72.62% of the subtrajectories in the dataset, is lost. The
results of the same experiment on the Gowalla dataset, reported in Fig. 10b, are quantita-
tively similar. That is, NGRAMS created noisy versions of 0.11% of the subtrajectories with
3 or fewer locations, and the information of all longer subtrajectories, which correspond to
98.1% of the subtrajectories in the dataset, is lost. On the other hand, SEQANON employs
generalization, which preserves the information of all subtrajectories, although in a more
aggregate form.

Figure 11a reports the ARE scores for SEQANON and NGRAMS, as a function of k, for the
Oldenburg dataset and for 100 queries involving subtrajectories of sizes in [1, 2]. In this
experiment, we set m to 3, assuming that an attacker knows about 75% of the locations
visited by a user. As can be seen, the ARE scores for SEQANON are at least 4.45 and up
to 7.3 times lower (better) than those of NGRAMS. Furthermore, the ARE scores for our
method increase with k, which is expected due to the utility/privacy trade-off. On the
contrary, the ARE scores for NGRAMS remained the same, as this method does not use the
parameter k. Next, we studied the impact of m on ARE, by varying this parameter in [1, 4]
(recall that m = 4 implies that the attacker knows almost all of the locations, visited by a
user). Figure 11b reports the result for k = 5, on the Oldenburg dataset. The ARE scores for
our algorithm were at least 6.3 and up to 11.9 times better than those of NGRAMS. Also,
it can be seen that the ARE scores for SEQANON increase with m, as the algorithm has to
incur more generalization to protect from stronger attackers. The ARE scores for NGRAMS

are not affected by m, as this method does not use this parameter. We also studied the
impact of k and m on ARE, using the Gowalla dataset, and obtained similar results, which
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size # in T # in T ′
NGRAMS

1 100 73
2 6955 220
3 48268 222
4 124070 2
5 177054 −
6 158684 −
7 93479 −
8 36328 −
9 8989 −

≥ 10 1366 −

(a)

size # in T # in T ′
NGRAMS

1 662 427
2 107811 577
3 803093 6
4 1757607 −
5 2959148 −
6 4478016 −
7 6033559 −
8 7138181 −
9 7336036 −

≥ 10 17281056 −

(b)

Figure 10: Number of distinct subtrajectories of different sizes, for (a) the Oldenburg, and
(b) the Gowalla dataset.

are reported in Figures 11c and 11d.

The results with respect to KL-divergence, as a function of m, are shown in Figure 14.
Specifically, Figure 14a reports the result for the set S of all subtrajectories with size 1 (i.e.,
all locations) in the Oldenburg dataset, and for k = 5. As can be seen, the information loss
for SEQANON was significantly lower than that of NGRAMS, particularly for smaller val-
ues of m. Increasing m led to fewer, larger generalized locations. Thus, the KL-divergence
scores of SEQANON increase with m, while those of NGRAMS are not affected by m, for the
reason explained before. Figure 14b (respectively, Figure 14c) reports the KL-divergence
scores for 100 randomly selected locations (respectively, subtrajectories with size 2) in the
Gowalla dataset. As noted previously, we did not consider longer subtrajectories, as all but
6 of the subtrajectories in the output of NGRAMS have size at most 2. Again, SEQANON out-
performed NGRAMS by a large margin, which demonstrates that our method can preserve
the distribution of the support of subtrajectories better. Specifically, the KL-divergence
scores for our method were at least 20% and up to 4.3 times lower (better) than those for
NGRAMS. Similar results were obtained for larger k values (omitted for brevity).

Next, we present the results of experiments, in which we evaluated the ability of the algo-
rithms to support frequent sequential pattern mining. Specifically, we report the percentage
of the frequent sequential patterns of the original dataset that are preserved in the anony-
mous dataset and the percentage of frequent sequential patterns of the anonymous dataset
that are not frequent on the original dataset. In order to get a more accurate statistical dis-
tribution we used 2000 randomly projected anonymous datasets3. In our experiments, we
mined the Oldenburg and Gowalla dataset, using a support threshold of 0.83% and 0.14%,
respectively.

Figures 12a and 12b present the median and standard deviation of the percentage of fre-
quent sequential patterns that were preserved in the anonymous dataset, when SEQANON

was applied with a k in [2, 100] and NGRAMS with the default parameters, on Oldenburg
and Gowalla datasets respectively. The results for SEQANON are significantly better than
those of NGRAMS. Specifically, SEQANON reported at least 48% and up to 192% more fre-
quent patterns than NGRAMS. Note also that SEQANON performs better when k is smaller,
because it applies a lower amount of generalization.

3Creating more projected datasets allows estimating the dataset quality more accurately. However, the increase in the
accuracy of estimation was negligible, when we used more than 2000 projected datasets, in our experiments.
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Figure 11: ARE for queries involving 100 randomly selected subtrajectories (a) with size in
[1, 2], in the Oldenburg dataset (varying k), (b) with size in [1, 2], in the Oldenburg dataset
(varying m), (c) with size 1, in the Gowalla dataset (varying k), and (d) with size 2 in the
Gowalla dataset (varying k).

Figures 12c and 12d report the median and standard deviation of the percentage of fre-
quent sequential patterns of the anonymous dataset that are not frequent on the original
dataset, when SEQANON was applied with a k in [2, 100] and NGRAMS with the default
parameters, on Oldenburg and Gowalla datasets respectively. Again, the results for SE-
QANON are better than those of NGRAMS. In more detail, the percentage of patterns that
are not frequent in the original dataset but are frequent in the anonymized dataset was
up to 1.2 times lower (on average 45% lower) for SEQANON compared to NGRAMS. Note
that as k increases, the percentage of such patterns for SEQANON decreases, because fewer
patterns are frequent in the anonymized dataset.

Figures 13a and 13b report the percentage of frequent sequential patterns preserved in
anonymous dataset and the percentage of frequent sequential patterns of the anonymous
dataset that are not frequent on the original dataset. We set k = 5 and vary m in [1, 4] for
SEQANON, while NGRAMS was executed with the default parameters. Larger values of
m result in more generalization. Thus, SEQANON preserves at least 20% and up to 650%
more frequent patterns frequent than NGRAMS, while the percentage of patterns that are
incorrectly identified as frequent is lower by at least 50% and up to 500% compared to that
for NGRAMS. The corresponding results for Gowalla were qualitatively similar (omitted
for brevity).

In summary, our results show that the SEQANON algorithm permits more effective query
answering, more accurate pattern mining, and incurs lower information loss than NGRAMS.
Thus, it offers a different trade-off between utility and privacy, which is important in ap-
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Figure 12: Percentage of frequent sequential patterns preserved in anonymous dataset (me-
dian) for varying k on (a) Oldenburg dataset, (b) Gowalla dataset, and percentage of fre-
quent sequential patterns of the anonymous dataset that are not frequent on the original
(median) for varying k on (c) Oldenburg dataset and (d) Gowalla dataset.
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Figure 13: (a) Percentage of frequent sequential patterns preserved in anonymous dataset
(median) and (b) percentage of frequent sequential patterns of the anonymous dataset that
are not frequent on the original (median) on Oldenburg dataset for varying m.

plications that require preserving data truthfulness.

SD-SEQANON. In this section, we evaluate the data utility offered by SD-SEQANON, us-
ing statistics computed for the output of this algorithm. Figure 15a (respectively, 15b) re-
ports the average distance of all locations that are mapped to each generalized location,
as a function of k, for the Oldenburg (respectively, the Gowalla) dataset. Increasing k
leads SD-SEQANON to create more, larger generalized locations, which results in larger
average location distance. Note that the results for SD-SEQANON are slightly worse than
those of SEQANON and may also decrease as k gets larger. This is expected because SD-

TRANSACTIONS ON DATA PRIVACY 7 (2014)



188 Giorgos Poulis, Spiros Skiadopoulos, Grigorios Loukides, Aris Gkoulalas-Divanis

0

100

200

300

400

500

1 2 3 4

K
L

-d
iv

er
g

en
ce

m

NGRAMS
SEQANON

(a)

0

200

400

600

850

1 2 3 4

m

NGRAMS
SEQANON

(b)

0

2

4

6

8

1 2 3 4

m

NGRAMS
SEQANON

(c)

Figure 14: KL-divergence for the distribution of the support of (a) all locations in the Old-
enburg dataset, (b) 100 randomly selected locations in the Gowalla dataset, and (c) 100
randomly selected subtrajectories of size 2 in the Gowalla dataset.
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Figure 15: Average percent of distance in generalized locations for (a) Oldenburg and (b)
Gowalla dataset.
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Figure 16: Semantic similarity penalty P(T ′) for (a) Oldenburg and (b) Gowalla dataset.

SEQANON takes into account not only the distance but also the semantic similarity of lo-
cations, when performing generalization. Thus, as can be seen in Figures 16a and 16b,
the SD-SEQANON algorithm performs much better than SEQANON with respect to the se-
mantic similarity penalty (the scores for SD-SEQANON are at least 2.5 and up to 4.6 times
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better than those for SEQANON). This demonstrates that SD-SEQANON generalizes more
semantically close locations together.

Figure 17 presents the average size of generalized locations, the average percent of dis-
tance in generalized locations, and the semantic similarity penalty P , as a function of m.
In these experiments k was set to 50. As can be seen, increasing m leads the algorithms to
construct fewer, larger generalized locations, which are comprised of more distant and less
semantically close locations. As expected, SEQANON generalized together locations that
are closer in proximity (see Figure 17b) but more semantically distant (see Figure 17c).
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Figure 17: (a) average generalized location size, (b) average percent of distance in gener-
alized locations and (c) average percent of similarity in generalized locations for k = 50
(Gowalla dataset).

U-SEQANON. This section reports results for the U-SEQANON algorithm, which was con-
figured with three different utility constraint sets, namely U1, U2 and U3, and a suppression
threshold δ = 10. The utility constraints in each of these sets contain a certain number of
semantically close locations (i.e., sibling nodes in the location taxonomy), as shown in Fig-
ure 18. Note that U3 is more difficult to satisfy than U1, as the number of allowable ways to
generalize locations is smaller.

U1 U2 U3
|u1| = 50 |u1| = 25 |u1| = 20
|u2| = 50 |u2| = 25 |u2| = 14

|u3| = 25 |u3| = 16
|u4| = 25 |u4| = 14

|u5| = 18
|u6| = 18

Figure 18: The size of the utility constraints in each utility constraint set U1, U2, and U3.

Figure 19a reports the average size of generalized locations, for various values of k in
[2, 100]. Note that all configurations of U-SEQANON created smaller generalized loca-
tions than those constructed by SEQANON, and the smallest generalized locations were
created when U3 was used. This is because the presence of utility constraints that contain
a small number of locations reduces the number of available generalizations. For this rea-
son, all configurations of U-SEQANON generalized together more distant locations than
SEQANON, as can be seen in Figure 19b. Also, observe that the use of less restrictive utility
constraints (e.g., those in U1) leads U-SEQANON to generalize together locations that are
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close in proximity.

4.7

7

10

13

16.3

2 10 25 50 75 100

#

k

SEQANON

U1

U2

U3

(a)

7

9.8

15

20

27.2

2 10 25 50 75 100

%

k

SEQANON
U1

U2

U3

(b)

Figure 19: (a) average generalized location size and (b) average percent of distance in gen-
eralized locations, for the Oldenburg dataset.

5.2 Efficiency

In this section, we evaluate the impact of the anonymization parameters k and m, the
dataset size, and the location size, on the efficiency of our approach.

SEQANON. To highlight the benefit of employing the apriori principle on efficiency, we cre-
ated a version of SEQANON, called SEQANON F, which does not use the apriori principle.
In this version, we removed the for loop from Step 2 of SEQANON and set i = m. In other
words, SEQANON F tries to deal directly with subtrajectories of size m. First, we studied
the impact of the anonymization parameter k on efficiency. As illustrated in Figure 20a, the
execution time of both algorithms increases with k. This is expected because there are more
subtrajectories with a lower support than k, when k is larger. However, SEQANON is signif-
icantly more efficient and scalable than SEQANON F. Specifically, the SEQANON algorithm
was at least 6.5 and up to 10.85 times more efficient than SEQANON F. Then, we studied the
impact of m on efficiency and report the results in Figure 20b. As can be seen, the use of the
apriori principle by SEQANON enables it to scale much better than SEQANON F, as m gets
larger. In addition, we studied the effect of dataset size on the execution time of SEQANON.
The results in Figure 20c demonstrate that the SEQANON outperforms SEQANON F, being
up to 20 times more efficient. We then studied the impact of m, dataset size, and number of
locations on the larger Gowalla dataset, and report the results in Figure 21. Due to the fact
that this dataset is more sparse than the Oldenburg dataset and contains a larger number
of distinct locations, SEQANON needed more time to anonymize it. Again, SEQANON was
more efficient than SEQANON F, which needed more than 12 hours to anonymize the entire
dataset. Of note, SEQANON is less efficient than NGRAMS, mainly because generalization
requires accessing all trajectories in the dataset more times.

SD-SEQANON and U-SEQANON. In this section, we evaluate the impact of k on the ef-
ficiency of SD-SEQANON and U-SEQANON. In this set of experiments, we set m = 2 and
configured U-SEQANON using the utility constraint sets U1, U2, and U3, and δ = 10. Fig-
ure 22a reports the runtime of SD-SEQANON, for varying k, and for the Oldenburg dataset.
As can be seen, the runtime of SD-SEQANON is similar to that of SEQANON. The small
differences between these algorithms are attributed to the fact that they use different simi-

TRANSACTIONS ON DATA PRIVACY 7 (2014)



Apriori-based algorithms for km-anonymizing trajectory data 191

6

50

100

150

2 10 25 50 75 100

T
im

e
(i

n
se

c)

k

SEQANON F
SEQANON

(a)

0

50

100

150

200

1 2 3 4

m

SEQANON F
SEQANON

(b)

1

22

44

66

2 5 10 15 18

|T |(·103)

SEQANON F
SEQANON

(c)

Figure 20: Runtime of SEQANON and SEQANON F for the Oldenburg dataset and (a) vary-
ing k, (b) varying m, and (c) varying dataset size.
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Figure 21: Runtime of SEQANON for the Gowalla dataset and (a) varying m, (b) varying
dataset size, and (c) varying number of locations.

larity measures. Last, we report the runtime of the U-SEQANON algorithm in Figure 22b.
As expected, the use of utility constraints incurs some overhead, but it does not affect the
scalability of the algorithm.
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Figure 22: Runtime for varying k and for (a) SEQANON and SD-SEQANON (Oldenburg
dataset), (b) SEQANON and U-SEQANON (Gowalla dataset).
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6 Conclusions

In this paper, we proposed a new approach to publishing trajectory data in a way that
prevents identity disclosure. Our approach makes realistic privacy assumptions, as it
adapts km-anonymity to trajectory data, and allows the production of truthful data that
preserve important data utility characteristics. To realize our approach, we developed three
anonymization algorithms that employ the apriori principle. These algorithms aim at pre-
serving different data characteristics, including location distance and semantic similarity,
as well as user-specified utility requirements. The efficiency and effectiveness of these al-
gorithms was demonstrated through extensive experiments.
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Abstract—Advances in positioning technologies together with
the wide adoption of GPS-enabled smartphones enable accurate
and low-cost tracking of user location. This allows the collection
of large amounts of person-specific mobility data that offer
remarkable opportunities for data analysis. Yet, the sharing of
such data poses significant privacy risks. This enunciates the
need for privacy-preserving, trajectory data publishing methods.
Existing approaches are either limited in their privacy specifica-
tion component or they incur significant, and often unnecessary,
data distortion. In response, we propose a novel framework for
anonymizing trajectory data that prevents the disclosure of both
identity and sensitive location information, while retaining data
utility. Our framework involves: (i) selecting similar trajectories,
by employing Z-ordering or data projections on frequent sub-
trajectories, (ii) organizing the selected trajectories into carefully
constructed clusters, and (ii) anonymizing each cluster separately.
We develop algorithms to realize our framework, which are
effective and efficient, as verified by extensive experiments.

I. INTRODUCTION

The enormous advances in positioning technologies, such

as GPS, GSM, UMTS and RFID, along with the rapid

developments in the wireless communications industry, have

made possible the accurate tracking of user location, at a

low cost [7]. This, together with the wide adoption of GPS-

enabled smartphones, gave rise to novel applications, which

are based on user location. At the same time, the mobility data

that are collected from these applications provide a valuable

resource for understanding human behavior, as well as for

supporting various processes. The sharing, however, of person-

specific movement data, for research or other purposes, poses

significant challenges, as it may threaten individuals’ privacy.

Specifically, the publishing of person-specific trajectories

(i.e., sequences of locations visited by individuals) can lead to

identity disclosure, even when they are devoid of identifying

information [3], [21]. Identity disclosure attacks are possible,

when an individual can be associated with a sequence of

locations in the published data. Consider, for example, the

dataset in Fig. 1a, where each trajectory ti corresponds to an

individual and contains an ordered list of locations visited by

them. Observe that identity disclosure is possible, based on the

sequence of locations d and a, because this sequence appears

only in t1. A sequence of locations that may lead to iden-

tity disclosure, is called quasi-identifier (QID) [21]. Existing

approaches prevent identity disclosure by either anonymizing:

(i) each trajectory as a whole (e.g., by producing cylindri-

cal tubes that contain many trajectories [1]), or (ii) parts

id trajectory

t1 (d, a, c, e)
t2 (b, a, e, c)
t3 (a, d, e, f)
t4 (b, d, e, c)
t5 (d, g, c)
t6 (d, e)

(a)

a

b

c

d

e

{0, (0,0)} {29.5, (1,0)}

{58.5, (0,1)}

{88.5, (1,1)}

{472.1, (0,2)}

x-axis

y-axis z-value

(X,Y )

(b)

Fig. 1: (a) The original database T (b) Z-ordering

of trajectories, based on specific QIDs [21], [23]. The first

category of approaches, termed QID-blind, employ clustering

and perturbation [1], [16], while approaches that fall into the

second category, termed QID-aware, use generalization and

suppression [15], [21], [23].

QID-blind approaches are limited into their privacy speci-

fication component and may harm the utility of the published

data, unnecessarily. This is because: (i) they assume that an

attacker may know all locations visited by an individual, which

is extremely difficult, due to the high-dimensionality and

sparsity of trajectory data [21], (ii) clustering-based methods

may lose information about the direction of movement of co-

clustered trajectories, and (iii) perturbation-based approaches

may generate false associations, harming data truthfulness. On

the other hand, QID-aware approaches assume that data own-

ers possess (i) detailed knowledge of QIDs (e.g., an attacker

knows a certain sequence of locations about an individual

[21]), which is unlikely in the context of trajectory data

publishing [3], and (ii) taxonomies that organize all locations

in terms of semantic similarity, which is restrictive for real-

world trajectory data publishing applications [18].

Adapting km-anonymity [22] to trajectory data and employ-

ing a distance-based generalization model has been proposed

recently [18] to address some of these limitations. However,

the approach of [18] may risk the disclosure of sensitive

location information (e.g., the fact that an individual visited a

psychiatric clinic) and incur excessive distortion, as it applies

distance-based generalization to the entire dataset.

In this paper we propose a novel anonymization framework,

which allows preventing the disclosure of both identity and
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sensitive location information, while publishing minimally

distorted data. This is achieved by performing a series of

operations: (i) Select, which identifies similar trajectories

based on summary information about them, (ii) Organize,

which sorts the selected trajectories with respect to similarity

and groups them into clusters, and (iii) Anonymize, which

constructs clusters that prevent both types of disclosure.

Our work makes the following specific contributions:

• We develop two algorithms, called ZGA and SGA, to

realize our anonymization framework. ZGA performs Se-

lect by capturing location similarity, based on Z-ordering

[20], whereas SGA by measuring trajectory similarity

using projections of trajectories on frequent subtrajecto-

ries [2]. These algorithms subsequently organize similar

trajectories, using Gray order [19], and form clusters

which are anonymized independently.

• We design ℓm-ANON, an algorithm for anonymizing

the clusters created by ZGA or SGA. This algorithm

employs distance-based generalization to preserve privacy

and works in an apriori-like fashion.

• We experimentally demonstrate that our approach is

effective at preserving data utility and very efficient.

The rest of the paper is organized as follows. Section II for-

mulates the problem and Section III presents our framework.

Related work and experiments are presented in Sections IV

and V, respectively. Section VI concludes the paper.

II. PROBLEM FORMULATION

Let L be a set of locations visited by individuals. Each

location in L corresponds to a different region (cell) of a

two-dimensional, uniform grid, and we may use the (X,Y )-
coordinates of the cell to refer to its associated location.

Some locations in L are sensitive, as they represent places

that individuals are not willing to be associated with, such as

an oncology clinic. Following [14], we assume that sensitive

locations are specified by data owners.

A trajectory t is an ordered list of locations (l1, . . . , ln),
where li ∈ L, 1 ≤ i ≤ n. The size of the trajectory t =
(l1, . . . , ln), denoted by |t|, is the number of its locations, i.e.,

|t| = n. A trajectory s is a subtrajectory of, or is contained in,

a trajectory t = (l1, . . . , ln), when: (i) |s| ≤ |t|, and (ii) there is

a mapping f such that λ1 = lf(1), . . . , λν = lf(ν) and f(1) <
· · · < f(ν). Thus, s is formed by removing some locations

from t, while maintaining the order of all other locations.

Given a set of trajectories T , the support of a subtrajectory

s, denoted by sup(s, T ), is defined as the number of distinct

trajectories in T that contain s. These trajectories are referred

to as the supporting trajectories of s, and their set is denoted

with Ts. Given a set of trajectories T and a minimum

support threshold minSup, specified by data owners, the set

of frequent subtrajectories contains a subtrajectory s, if and

only if sup(s, T ) ≥ minSup [2].

Example 1: A trajectory dataset is shown in Fig. 1a and is

comprised of trajectories t1 to t6 (id is shown for reference

purposes only). Each trajectory contains some of the locations

in the set L = {a, b, ..., g}, and the locations f and g are

sensitive. A subtrajectory of the trajectory t1 = (d, a, c, e)
is s = (a, e), which has a support of 3. Assuming that

minSup = 3, the subtrajectories (d, c) and (d, e) are both

frequent, unlike (d, c, e) and (d, e, c).

In the following, we define the concept of trajectory key,

which is essentially a projection of the trajectory on the feature

space of an ordered set of subtrajectories.

Definition 1 (Trajectory key): Given a trajectory t in T and an

ordered set of subtrajectories S = (s1, . . . , sl), where si ∈ T ,

1 ≤ i ≤ l, the key of t, denoted as KS
t is a set of size |S|,

whose i-th element is 1, if si is contained in t, and 0 if not.

Example 2: Consider the trajectory t1 in Fig. 1a and assume

the set
(

(d, e), e, d
)

, which contains the three most frequent

subtrajectories in T ordered in decreasing support; the key for

t1 is (111), as all three of them are subtrajectories of t1.

As mentioned before, a location in L is associated with

a distinct pair of (X,Y )-coordinates. To measure similarity

between locations, we use the Z-order (or Morton order),

a function that maps locations to numbers, called z-values.

The z-value for a location is calculated by interleaving the

binary representations of the location’s (X,Y ) coordinates

[20], and the mapping preserves the locality of locations. That

is, locations with “similar” coordinates are mapped to numbers

whose difference is “small”. Based on this function, we obtain

the Z-ordering of locations, as explained below.

Definition 2 (Z-ordering of locations): Given a set of locations

in L and their corresponding z-values, Z-ordering is defined

as the ordering obtained by sorting the locations in ascending

order of their z-values.

The Z-ordering of all nonsensitive locations in T , is shown

in Fig. 1b. To publish T in a way that prevents both the disclo-

sure of individuals’ identity and sensitive location information,

we use the km-anonymity and lm-diversity privacy principles,

which were originally developed for transaction data [22].

The following definition explains how these principles can be

adapted to trajectory data and combined together, in order to

obtain the principle of (k, ℓ)m-anonymity.

Definition 3 ((k, ℓ)m-anonymity): Given parameters k and ℓ,
which are specified by data owners, a trajectory dataset T
satisfies (k, ℓ)m-anonymity, if and only if: (i) sup(s, T ) ≥ k,

for any subtrajectory s, comprised of m nonsensitive locations

in L, and (ii) sup(s′, Ts) ≤ ℓ, where s′ is any subtrajectory

of sensitive locations that are contained in Ts.

Example 3: The dataset in Fig. 1a is (2, 2)1-anonymous,

because each nonsensitive location a to e has support of at

least 2, and none of the sensitive locations f and g co-occurs

with all the supporting trajectories of a or e. However, this

dataset is not (2, 2)2-anonymous, as the subtrajectory (a, d)
of t3 co-occurs with f , in no other trajectory.

(k, ℓ)m-anonymity guarantees that an attacker, who knows

any subtrajectory s of m nonsensitive locations about an indi-

vidual, cannot link the individual to fewer than k trajectories
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in the published dataset, nor can associate the individual with

a sensitive location with a probability that exceeds 1/ℓ.
To enforce (k, ℓ)m-anonymity, we employ the distance-

based generalization model [18], which replaces nonsensitive

locations with generalized locations. A generalized location

{l1, . . . , lv}, is a set of at least two nonsensitive locations

l1, . . . , lv in L, which is interpreted as any of the locations

l1, ..., lv . Sensitive locations are not generalized, because they

typically need to be retained intact in applications. Thus, given

a trajectory t in T , we may replace a nonsensitive location li
in t, where 1 ≤ i ≤ u, with a generalized location {l1, ..., lv}.

Clearly, generalization must avoid unnecessarily distorting

the original dataset T , thus we need to quantify distortion.

To achieve this, we adopt the location, trajectory, and trajec-

tory dataset distance measures [18], which are applicable to

distance-based generalization and are defined as follows.

Definition 4 (Distance): Given a nonsensitive location l that

is generalized to {l1, . . . , lv}, the location distance between l
and {l1, . . . , lv}, is defined as:

Dloc(l, {l1, . . . , lv}) = avg
{

EuclDist(l, li) | 1 ≤ i ≤ v
}

where EuclDist is the Euclidean distance. The trajectory dis-

tance between t = (l1, . . . , ln) and its generalized counterpart

t′ = (l′1, . . . , l
′
n) is defined as:

Dtraj (t, t
′) = avg

{

Dloc(li, l
′
i) | 1 ≤ i ≤ n

}

The trajectory dataset distance between T = {t1, . . . , tu}
and its generalized counterpart T ′ = {t′1, . . . , t

′
u}, where the

trajectory ti is generalized to trajectory t′i, 1 ≤ i ≤ u, is

defined as:

D(T , T ′) = avg
{

Dtraj (ti, t
′
i) | 1 ≤ i ≤ u

}

These measures quantify distortion, based on the distance

between the original and generalized data and apply average to

combine specific distances, as illustrated below. Normalizing

these measures is possible by dividing each of them with the

maximum distance between locations in T .

Example 4: Consider trajectory t1 of Fig. 1a and let

EuclDist(a, b) = 1, EuclDist(a, c) = 1 and EuclDist(b, c) =
2. If locations a and c of t1 are generalized to location {a, b, c},

then the location distances are Dloc(a, {a, b, c}) = (0 + 1 +
1)/3 = 2/3 and Dloc(c, {a, b, c}) = 1. Also, if trajectory

t1 = (d, a, c, e) is generalized to (d, {a, b, c}, {a, b, c}, e) the

trajectory distance Dt1 = (0 + 2/3 + 1 + 0)/4 ≈ 0.42.

The problem we consider is formulated as follows.

Problem: Given a trajectory dataset T , and parameters k, ℓ,
and m, construct a (k, ℓ)m-anonymous version T ′ of T , such

that D(T , T ′) is minimized.

III. SELECT-ORGANIZE-ANONYMIZE FRAMEWORK

This section presents our framework for enforcing (k, ℓ)m-

anonymity to a trajectory dataset T . Our framework performs

the following operations:

1) Select: This operation selects similar trajectories, based

on different properties of their keys.

2) Organize: In this operation, the selected trajectories are

sorted, based on their Gray order [19], and grouped into

carefully constructed clusters.

3) Anonymize: This operation constructs a minimally dis-

torted (k, ℓ)m-anonymous dataset, by anonymizing the

trajectories of each cluster separately.

To realize this framework, we develop two algorithms,

henceforth called ZGA (for Z-ordering, Gray-code ordering,

and Anonymize) and SGA (for Subtrajectory selection, Gray-

code ordering, and Anonymize). As is evident from their

names, these algorithms perform Select, based on different

notions of trajectory key similarity. In addition, we introduce

ℓm-ANON, an algorithm that enforces (k, ℓ)m-anonymity, us-

ing distance-based generalization. In what follows, we present

the details of the ZGA, SGA, and ℓm-ANON algorithms.

ZGA algorithm. This algorithm performs the Select oper-

ation, based on the similarity of nonsensitive locations. To

achieve this, it constructs the Z-ordering of the locations,

which preserves the locality of locations, as discussed in

Section II. Then, ZGA performs Organization by: (i) creating

a key, for each trajectory in the dataset, based on Z-ordering,

(ii) sorting trajectories, based on the Gray order of their keys,

and (iii) formulating clusters, based on the latter sorting or-

der. Thus, trajectories that contain many similar, nonsensitive

locations are organized together.

Consider, for instance, three trajectories with keys t =
(001), t′ = (011), and t′′ = (101), which are sorted in Gray

order. Note that t is more similar to t′ than to t′′, because: (i)

t and t′ differ by only one bit (the 2nd bit from left to right),

and (ii) the bit in which they differ is adjacent to the bit they

share (the 3rd bit from left to right). Thus, ZGA organizes

trajectories that share many neighboring locations, which can

be subsequently generalized with low information loss. Due

to its efficient computation and effectiveness, Gray order has

been employed as an alternative to more computationally

demanding clustering algorithms (e.g., in [10], [22]). However,

the way that Gray order is combined with Z-ordering is new, to

the best of our knowledge. Subsequently, the SGA algorithm

performs the Anonymize operation, by applying ℓm-ANON to

each cluster separately.

Algorithm ZGA takes as input a trajectory dataset T , as

well as parameters k, ℓ, m, and C, and it constructs the (k, ℓ)m-

anonymous counterpart T ′ of T . The parameter C specifies the

number of clusters, which will be created in the Organization

operation, and is set by data owners. Automated specification

of C is possible [13] but left as future work. After initialization,

ZGA constructs the Z-ordering of all nonsensitive locations

in L and stores it in a set S (Steps 1-3). Next, the algorithm

stores each trajectory t ∈ T and its key KS
t in a 2D array

D, which is then sorted according to the Gray order of the

stored trajectory keys (Steps 4-7). After that, ZGA assigns the

ordered trajectories of D into clusters (Step 8). Each cluster is

then anonymized using ℓm-ANON (to be discussed later) and

added into T ′ (Steps 9-9). Last, T ′ is returned (Step 12).

Example 5: Consider applying ZGA to the dataset in Fig. 1a,

869869



Algorithm: ZGA

Input: A dataset T , parameters k, ℓ, m, and C
Output: A (k, ℓ)m-anonymous dataset T ′

1 T ′ := ∅ // Initialize output

2 D := S := ∅ // Initialize D and S
3 S := Z-ordering of nonsensitive locations in L
4 for every trajectory t ∈ T do
5 D(t).traj := t
6 D(t).key := KS

t

7 sort D according to D.key in Gray order
8 G := set of clusters, each containing |D|/C consecutive

trajectories from D
9 for every cluster C ∈ G do

10 T̃ := ℓm-ANON(C, k, ℓ,m)

11 T ′ := T ′ ∪ T̃

12 return T ′

Algorithm: SGA

Input: A dataset T , parameters k, ℓ, m, C, and K
Output: A (k, ℓ)m-anonymous dataset T ′

1 T ′ := ∅ // Initialize output

2 D := ∅ // Initialize D
3 S:= the set of top K frequent subtrajectories, comprised of

nonsensitive locations, in descending order of support
4 for every trajectory t ∈ T do
5 D(t).traj := t
6 D(t).key := KS

t

7 sort D according to D.key in Gray order
8 G:= set of C clusters, each containing |D|/C consecutive

trajectories from D
9 for every cluster C ∈ G do

10 T̃ := ℓm-ANON(c, k, ℓ,m)

11 T ′ := T ′ ∪ T̃

12 return T ′

when all parameters are set to 2. The algorithm constructs the

Z-ordering {a, b, d, e, c} by sorting these locations in ascend-

ing order of their z-values, and populates the 2D-array D with

all trajectories and their keys. Then, ZGA sorts D based on

the Gray order of trajectory keys (Step 7). The unsorted and

sorted keys of these trajectories are shown in Figs. 2a and

2b, respectively. As C = 2, two clusters containing {t6, t3, t1}
and {t4, t2, t5} are created and anonymized separately by ℓm-

ANON (Steps 9-9). Last, the dataset T ′ in Fig. 2c is returned.

SGA algorithm. This algorithm performs the Select operation

of our framework, based on the notion of frequent subtrajec-

tories, and the Organization operation, by creating trajectory

keys from the selected subtrajectories. That is, trajectories are

projected on distinct sets of nonsensitive locations, which are

visited by most individuals in a specific order, and trajectories

with “similar” projections are brought together. In this way,

ZGA organizes trajectories that share many frequent subtra-

jectories, which can be subsequently anonymized with low

information loss. To see this, observe that a subtrajectory of

m nonsensitive locations and a support of at least k, is km-

anonymous. Then, the sorting, clustering, and anonymization

of trajectories are performed, as in the ZGA algorithm.

Algorithm: ℓm-ANON

Input: A cluster C, parameters k, ℓ, and m
Output: A (k, ℓ)m-anonymous set C′

1 C′ := C // Initialize output

2 for i := 1 to m do
3 S := ∅ // Initialize S
4 for every subtrajectory s ∈ C′ with size i do

5 compute sup(s′, C′

s)
6 if sup(s, C′) < k or sup(s′, C′

s) > ℓ then
7 S := S ∪ s // Insert s to S

8 sort S in increasing order of sup(s, C′)
9 for every subtrajectory s ∈ S do

10 while sup(s, C′) < k or sup(s′, C′

s) > ℓ do
11 find the location l1 in s with the minimum support

in C′

12 find the location l2 ∈ C′ such that l2 6= l1 and
Dloc(l1, l2) is minimum

13 replace each occurrenc of l1 and l2 in C′ with the
generalized location {l1, l2}

14 return C′

The SGA algorithm takes as input a trajectory dataset T ,

as well as parameters k, ℓ, m, C, and K, and it returns T ′,

the (k, ℓ)m-anonymous counterpart of T . The parameter K
controls the number of subtrajectories, contained in trajectory

keys. Specifically, SGA creates a key with the top K frequent

subtrajectories in T (i.e., those with the largest support). These

subtrajectories are comprised of nonsensitive locations only.

K is set by data-owners and its impact will be assessed in

Section V. After initialization, SGA finds the top K frequent

subtrajectories, using the method in [17], which is selected

due to its efficiency (Steps 1-3). Then, in Steps 7-9, SGA

performs sorting, clustering, and anonymization, and it returns

the (k, ℓ)m-anonymous dataset T ′, in Step 12.

Example 6: Consider applying SGA to the dataset in Fig. 1a,

when all parameters are set to 2. The algorithm finds the top

2 frequent subtrajectories, d and e, and stores them in S, in

descending order of support (Step 3). Then, it constructs the

2D-array D, using all trajectories in T and their keys, which

is sorted, as in Fig. 2b (Steps 4-7). Next, SGA creates the

clusters {t5, t1, t3} and {t4, t6, t2}, which are anonymized,

and produces the dataset in Fig. 3d (Steps 8-12). This dataset

differs from the output of ZGA (Fig. 2c), due to the different

notion of trajectory similarity used by SGA.

ℓm-ANON algorithm. This algorithm is used by ZGA and

SGA, to enforce (k, ℓ)m-anonymity to a cluster produced by

these algorithms, with minimal distortion. Given a cluster C,

and parameters k, ℓ and m, ℓm-ANON constructs the (k, ℓ)m-

anonymous counterpart C ′ of C. To achieve this effectively

and efficiently, it employs distance-based generalization [18]

and the apriori principle [2]. That is, it first considers general-

izing subtrajectories, containing one location, and then applies

the same procedure to increasingly larger subtrajectories, as

long as (k, ℓ)m-anonymity is not satisfied.

In more detail, ℓm-ANON initializes C ′ to the input cluster

C and iterates over all subtrajectories of size i (Steps 1-4).
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(b)
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t′
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t′
5

({a, b, d}, g, c)

(c)

Fig. 2: (a) key of T using Z-ordered locations (b) Gray ordered key, and (c) output of ZGA
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freq. subtraj.

id e d

t1 1 1
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t4 1 1
t5 0 1
t6 1 1

(b)

freq. subtraj.

id e d

t5 0 1
t1 1 1
t3 1 1
t4 1 1
t6 1 1
t2 1 0

(c)

id trajectory

t′
5

({d, a, e, c}, g, {d, a, e, c})
t′
1

({d, a, e, c}, {d, a, e, c}, {d, a, e, c}, {d, a, e, c})
t′
3

({d, a, e, c}, {d, a, e, c}, {d, a, e, c}, f)
t′
4

({a, b, d}, {a, b, d}, e, c)
t′
6

({a, b, d}, e)
t′
2

({a, b, d}, {a, b, d}, e, c)

(d)

Fig. 3: (a) ordered array F containing subtrajectories and its respective support (presenting the 5 most frequent) (b) key of T
using 2 most frequent subtrajectories (c) gray ordered key, and (d) output of Algorithm SGA

Note that i increases from 1 to m in each iteration. For each

subtrajectory of size i, it calculates the support sup(s′, C ′
s),

where C ′
s is the set of supporting trajectories of s in C ′, and s′

is the sensitive location with the largest support in C ′
s (Step 5).

Then, ℓm-ANON populates a set S with all subtrajectories that

require protection, either because they have a lower support

than k in C ′, or because they co-occur with s′ in more

than ℓ subtrajectories in C ′
s (Steps 6-7). After considering all

subtrajectories in C ′, the algorithm sorts S with respect to the

support of its members, in increasing order (Step 8). Next, it

considers each subtrajectory in S and applies distance-based

generalization to it, so that: (i) its support is at least k, and

(ii) it does not co-occur with s′ in more than ℓ subtrajectories

in C ′
s (Steps 9-13). Note that the generalization aims at

minimizing the trajectory distance measure (see Definition 4),

and it is applied to each subtrajectory in S. After that, the

algorithm proceeds to the next iteration, if i does not exceed

m. Otherwise, ℓm-ANON returns C ′, which satisfies (k, ℓ)m-

anonymity (Step 14).

Example 7: Consider applying ℓm-ANON to a cluster contain-

ing t4, t2, and t5 in Fig. 1a, when all parameters are set to

2. The algorithm starts by considering the subtrajectories of

size 1 in Fig. 4a and calculates sup(s′, C ′
s), for each of them

(Steps 2-5). Then, it adds a into S , since its support is 1<k
(Steps 6-7). No other subtrajectory satisfies the check in Step

6, so ℓm-ANON sorts S and applies generalization. Thus, the

generalized location {a, b}, which has minimum Dloc(a, b),
is constructed and replaces a and/or b, in all trajectories

of C ′ (Steps 8-13). This produces the cluster in Fig. 4b.

After that, ℓm-ANON considers the subtrajectories of size 2

in Fig. 4c and applies the same procedure. This creates the

cluster, shown in Fig. 4d, which contains {a, b, d} and satisfies

(2, 2)2-anonymity. As all subtrajectories of size 2 have been

considered, ℓm-ANON returns the cluster in Fig. 4d.

IV. RELATED WORK

Trajectory data anonymization has attracted significant at-

tention, due to the pervasive use of location-aware devices that

led to tremendous increase in the volume of collected spa-

tiotemporal data about individuals. Bonchi et al. [3] surveyed

works on trajectory data anonymization and classified them

into motion-pattern based and location based, according to the

adversarial model they adopt. Motion-pattern based methods

investigate how anonymized data may allow an attacker to

predict individuals’ locations, based on their mobility patterns

[9], [11], whereas the goal of location based methods is to

prevent the inference of individuals’ identity and/or sensitive

location information from anonymized data (e.g., [1], [14],

[16], [18], [21], [23]). Our method falls into the latter category,

and, more specifically, to the subcategory of QID-aware meth-

ods, which guard against attackers with specific background

knowledge. In what follows, we discuss QID-aware, location

based methods that are relevant to the one we propose. We

also note that there are QID-blind methods [1], [16], which

do not consider specific locations that may risk privacy.

Terrovitis et al. [21] considered multiple attackers, each

knowing a different set of places of interest (POIs), visited

by individuals. To preserve privacy in this setting, the authors

proposed limiting the probability of associating these POIs

to an individual’s record in the published trajectory dataset.

This is achieved through a suppression-based method, which

aims at removing the least number of POIs from trajectories,

so that the remaining trajectories are protected with respect

to the knowledge of each adversary. Unlike [21], our method

additionally prevents the inference of sensitive location infor-

mation, and employs generalization, which generally preserves

data utility better than suppression.

Yarovoy et al. [23] considered trajectories containing time

information, in addition to POIs, and assumed that each

individual has a different set of POIs and times that need to

be protected. To offer protection, the authors followed a k-

anonymity based approach, which protects trajectories based
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Fig. 4: (a) Support for subtrajectories of size i = 1 (b) transformed set C ′ after the processing of subtrajectory a, (c) support

for subtrajectories of size i = 2, and (d) the final (2, 2)2-anonymous result C ′

on individuals’ privacy requirements. In practice, eliciting

privacy requirements from individuals may be challenging [3],

so the use of privacy principles that provide more uniform

protection, such as (k, ℓ)m-anonymity that we adopt, is more

feasible. The authors of [23] developed two generalization-

based algorithms, which employ Hilbert curves. The algo-

rithms proposed in [23] follow a very different process of

generalizing data than that of our algorithms and may create

overlapping groups of records. This is mainly because the

algorithms in [23] adopt a different privacy model and consider

time information.

Recently, a km-anonymity-based algorithm for trajectory

data has been proposed in [18]. This algorithm, called SE-

QANON, works in an apriori-like fashion (i.e., it aims at

protecting increasingly larger combinations of individuals’

locations from identity disclosure) and applies generalization

to the entire dataset. However, SEQANON does not provide

protection against the inference of individuals’ sensitive lo-

cation information, and may heavily generalize data. This is

because it creates a large number of generalized locations

compared to our algorithms, as our experiments demonstrate.

Methods that employ differential privacy [8] have also

been proposed [5], [6]. These methods focus on specific data

analytic tasks, such as query answering or frequent pattern

mining [2], and they employ noise addition. Thus, unlike our

approach, they harm data truthfulness, which is necessary to

preserve in many applications [12].

V. EXPERIMENTAL EVALUATION

This section presents an experimental evaluation of our

algorithms, in terms of data utility and efficiency.

Experimental setup. All algorithms were evaluated using a

dataset of moving objects in the Oldenburg city. The dataset

was constructed using Brinkhoff’s data generator [4], which

is employed by many related works [1], [16], [21], [23].

The dataset consists of 18,143 trajectories, whose average

length is 4.72 and are created as in [18]. We compare our

algorithms, referred to as SGA and ZGA, respectively, with

the SEQANON algorithm [18], which is the most closely

related to them. All algorithms were implemented in C++ and

tested on an Intel Core i7 at 2.2 GHz with 6 GB of RAM.

Data utility. In this section, we evaluate the impact of

parameters k, m, ℓ, and C on data utility, whose default values

are k = 5, m = 2, ℓ = 2, and C = 5. The parameter K
in SGA is fixed to 10, because this offered a good trade off

between utility and efficiency, as we found empirically (results

omitted due to space limitations). To quantify data utility, we

measure the number of original and generalized locations in

the anonymized datasets. For the generalized locations, we also

measure their average size and distance, similarly to [18].

We first considered the effect of k, which varied in [2,

100]. Observe, in Figs. 5a and 5b, that the number of original

locations, as well as that of generalized locations, decreases

with k. This is because all algorithms create fewer and

larger generalized locations (i.e., they generalize more original

locations together), as k increases. Both SGA and ZGA retain

many more original locations than SEQANON, which helps

data utility. Specifically, ZGA and SGA retained 81% and

28% more original locations than SEQANON, on average. This

is because they are applied to each cluster separately. This re-

sult is particularly encouraging, as our algorithms prevent both

types of disclosure, unlike SEQANON. Furthermore, ZGA and

SGA created fewer generalized locations than SEQANON, by

88% and 87.8% (on average), respectively.

Fig. 5c reports the average number of locations in a general-

ized location, and Fig. 5d the average distance of all locations

contained in each generalized location, which is computed

as a percentage of the distance between the two furthest

locations in a generalized location. Both of these statistics

increase with k, as the distortion required to preserve privacy

increases. However, the algorithms behave differently. That is,

SEQANON creates generalized locations that contain a small

number of locations that are “close” to one another, whereas

the generalized locations constructed by SGA are more, and

consist of more distant original locations. This is because, the

distribution of clusters created by SGA is rather skewed (i.e., a

small number of clusters with dissimilar trajectories influence

the average statistics in Figs. 5c and 5d). We also observed that

the issue becomes evident for k > 10 and can be ameliorated

by creating signatures comprised of more subtrajectories. On

the other hand, the generalized locations constructed by ZGA

are similar in terms of distance to those created by SEQANON.

To study the impact of m on data utility, we varied this

parameter in [1, 4]. Since the dataset we use has an average

of 4.72 locations per trajectory, using m = 3 (respectively

m = 4) means that we assume that an attacker knows

approximately 65% (respectively 85%) of a user’s locations.

So, for m = 3 and m = 4, we expect that few locations will be

published intact. On the contrary, for m = 1, all locations have

support at least k, and a negligible amount of generalization

is required. This is true for all algorithms, as can be seen in

Fig. 6a. For m = 2, all algorithms create many generalized

locations containing locations that are close to one another, as

shown in Figs. 6b and 6c. Moreover, more generalization needs

to be applied to satisfy privacy, as m increases. This leads
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to generalized locations with larger sizes that contain more

distant locations, as shown in Figs. 6c-6d. Next, we evaluated
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Fig. 7: (a) avg. number of generalized locations’ size and (b)

avg. % of distance in generalized locations for ℓ.

the impact of parameter ℓ. As SEQANON does not satisfy lm-

diversity, we only report results for ZGA and SGA in Fig. 7.

Notice that ZGA created generalized locations that consist of

fewer and less distant locations, thereby helping data utility.

On average, the generalized locations, created by ZGA consist

of 82.5% fewer locations than those constructed by SGA, and

their average distance is lower by 81.9%. The superiority of

ZGA is attributed to the fact that it captures the distance of

original locations more effectively, and it is evident for all

tested values of ℓ.
Last, the effect of parameter C, which controls the size of

clusters, on data utility was investigated. The results in Fig. 8

demonstrate that ZGA outperforms SGA by a large margin,

particularly for larger values of C. Specifically, ZGA permits

the publishing of 2.54 times more original locations than SGA,

and it creates 78% fewer generalized locations, as shown in

Figs. 8a and 8b, respectively. Furthermore, the generalized

locations that are constructed by ZGA contain 22.7% fewer

original locations, on average, as can be seen in Fig. 8c. The

locations in these generalized locations are also “close” to

one another, as can be observed from Fig. 8d. In fact, the

average percent of distance for the locations of ZGA is smaller

than the corresponding percent for SGA, by at least 14.7%.

This confirms that taking into account the distance of original

locations allows preserving data utility better than doing so

based on their frequency, as SGA does through the use of

frequent subtrajectories.

Efficiency. We report results for parameters k, m, C, and

dataset size, which affect runtime the most. The results for

k in Fig. 9a show that ZGA and SGA are more efficient

than SEQANON by 48.3% and 13.6%, respectively, when

k > 10, but need more time, for smaller k values. This is

because, they enforce lm-diversity, which requires applying

more generalization, when k is smaller. That is, our algorithms

need to progressively increase the support of generalized

locations to larger values than k, until lm-diversity is satisfied,

when k < 25. Furthermore, ZGA and SGA need less time as

k increases, unlike SEQANON. This is because, SEQANON

needs to consider a much larger number of potential gener-

alizations to deal with subtrajectories with a lower support

than k. Also, ZGA is more efficient than SGA by 72.8%, on

average, as it does not require frequent subtrajectory mining.

The impact of m is shown in Fig. 9b. As m increases, all

algorithms need more time, but ZGA outperforms SEQANON

and SGA by 55% and 72%, on average. However, all algo-

rithms scale well with m, as they employ the apriori principle.

Fig. 9c shows the effect of C. As expected, our algorithms are

significantly faster as C increases, because they run on smaller

clusters. On the other hand, SEQANON is not affected by this

parameter, as it is applied to the entire dataset. In addition,
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ZGA outperforms SEQANON and SGA by 33% and 71% on

average, respectively.

Last, we examined the impact of dataset size and report the

results in Fig. 9d. In this experiment, we used increasingly

larger subsets of records, which are contained in all larger

sets. Observe that all algorithms scale equally well with the

dataset size and that ZGA is more efficient than SEQANON

and SGA by 61% and 75%, on average.

VI. CONCLUSIONS

In this paper, we proposed a novel framework for

anonymizing trajectory data. Our framework enforces (k, ℓ)m-

anonymity on trajectory data, using two generalization-

based algorithms that follow a Select-Organize-Anonymize

paradigm. The benefit of our framework is that it enables the

generation of truthful data with low distortion, in an efficient

and scalable manner.
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ABSTRACT

Publishing data about individuals, in a privacy-preserving
way, has led to a large body of research. Meanwhile, algo-
rithms for anonymizing datasets, with relational or trans-
action attributes, that preserve data truthfulness, have at-
tracted significant interest from organizations. However, se-
lecting the most appropriate algorithm is still far from triv-
ial, and tools that assist data publishers in this task are
needed. In response, we develop SECRETA, a system for
analyzing the effectiveness and efficiency of anonymization
algorithms. Our system allows data publishers to evalu-
ate a specific algorithm, compare multiple algorithms, and
combine algorithms for anonymizing datasets with both re-
lational and transaction attributes. The analysis of the algo-
rithm(s) is performed, in an interactive and progressive way,
and results, including attribute statistics and various data
utility indicators, are summarized and presented graphically.

1. INTRODUCTION
Publishing data about individuals is essential for applica-

tions, ranging from marketing to healthcare. Several mar-
keting studies, for example, seek to find product combina-
tions that appeal to customers with specific demographic
profiles, while a large class of medical studies aims to dis-
cover associations between patient demographics and dis-
eases. To enable these applications, data must be published
in a way that preserves privacy and utility.

Towards this goal, numerous algorithms that prevent the
disclosure of individuals’ private and sensitive information,
while maintaining data truthfulness (i.e., generate data that
can be analyzed at a record level), have been proposed
[4,6,7,10]. These algorithms work by transforming attribute
values in a dataset (e.g., replacing them with more general
values), and are applicable to either relational or transaction
(set-valued) attributes. For example, an individual’s year of
birth is modeled as a relational attribute, while his/her pur-
chased items are modeled as a transaction attribute. Fur-
thermore, these algorithms can be combined, using a recent
approach [9], to anonymize datasets with both relational and

∗More details about the demo, together with additional
screen shots, are available at: http://secreta.uop.gr/.

(c) 2014, Copyright is with the authors. Published in Proceeding of the 17th
International Conference on Extending Database Technology (EDBT 2014)
on OpenProceedings.org. Distribution of this paper is permitted under the
terms of the Creative Commons license CC-by-nc-nd 4.0

transaction attributes, referred to as RT -datasets.
While there is a growing interest for publishing protected

and truthful data from governmental [8] and industrial orga-
nizations [1], selecting the most appropriate algorithm, for a
given dataset and publishing scenario, remains a challenging
and error-prone task. This is because both the effectiveness
and efficiency of algorithms depend on: (a) data character-
istics (e.g., the distribution of values in an attribute), (b)
various input parameters which affect the level of privacy
and utility (e.g., hierarchies that govern data transforma-
tion), and (c) data utility requirements (e.g., the need to
accurately answer a certain query workload, or to adhere to
constraints on the way values are transformed).
To assist data publishers in this task, we propose SEC-

RETA, the first system for evaluating and comparing
anonymization algorithms for relational, transaction, and
RT datasets. Our system integrates 9 popular algorithms
under a common, benchmark-oriented framework, and it al-
lows data publishers to apply and analyze the performance
of one or more of these algorithms. SECRETA operates in
two modes, namely Evaluation and Comparison.
The Evaluation mode can be used to configure and eval-

uate the effectiveness of a given algorithm, with respect to
data utility and privacy, as well as its efficiency. For cap-
turing data utility, we employ several information loss mea-
sures [7, 12] and support data utility requirements. These
requirements can be expressed using queries and/or utility
constraints [7], which are specified by data publishers or gen-
erated automatically. Furthermore, SECRETA enables the
use of 20 different combinations of algorithms to anonymize
RT -datasets. The selection and management of these com-
binations is performed in an intuitive way that allows pre-
serving different aspects of data utility.
The Comparison mode offers data publishers the ability

to design and execute benchmarks for comparing multiple
anonymization algorithms. These benchmarks facilitate an
interactive and progressive comparison of sets of algorithms,
with respect to their utility and efficiency. The results of the
comparative analysis are summarized and presented graph-
ically, allowing for fast and intuitive understanding of the
effectiveness and efficiency of different algorithms.
To our knowledge, SECRETA is the only system that

permits a comprehensive evaluation and comparison of re-
cent anonymization techniques. The Cornell Anonymization
Toolkit [11] demonstrates a single algorithm for relational
data, also supported by SECRETA, while TIAMAT [3] does



not support algorithms for transaction data, nor methods for
anonymizing RT -datasets. Moreover, none of these systems
employs utility requirements. We believe that the distinctive
features of SECRETA can greatly assist data publishers in
making informed decisions on publishing anonymized data.

2. OVERVIEW OF SECRETA
This section describes the components of our system,

which we broadly divide into frontend and backend com-
ponents. The frontend offers a Graphical User Interface
(GUI), which enables users to: (a) issue anonymization re-
quests, and (b) visualize and store experimental results. The
backend consists of components for servicing anonymization
requests and for conducting experimental evaluations. The
architecture of SECRETA is presented in Figure 1.
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Figure 1: Architecture of SECRETA

2.1 Frontend of SECRETA
The frontend is implemented using the QT framework

(https://qt-project.org). Using the provided GUI, users
can: (a) select datasets for anonymization, (b) specify hi-
erarchies and query workloads, (c) select and configure
anonymization algorithms, (d) execute experiments and vi-
sualize the experimental results, and (e) export anonymized
datasets and experimental results, in a variety of formats.
In what follows, we detail the components of the frontend.

Dataset Editor: It enables users to select datasets for
anonymization. The datasets can have relational and/or
transaction attributes, and they need to be provided in a
Comma-Separated Values (CSV) format. Once a dataset is
loaded to the Dataset Editor, the user can modify it (edit
attribute names and values, add/delete rows and attributes,
etc.) and store the changes. The user can also generate
data visualizations, such as histograms of attributes. Figure
2 shows a loaded dataset and some visualizations.

Configuration Editor: It allows users to select hierar-
chies and to specify utility and privacy policies. Hierarchies
are used by all anonymization algorithms, except COAT [7]
and PCTA [5], whereas utility and privacy policies are only
used by these two algorithms to model such requirements.
Hierarchies and policies can be uploaded from a file, or auto-
matically derived from the data, using the algorithms in [7].

Queries Editor: This component allows specifying query
workloads, which will be used to evaluate the utility of
anonymized data in query answering. The system supports
the same type of queries as [12], and uses Average Relative
Error (ARE) [12] as a defacto utility indicator. The query

workloads can be loaded from a file and edited by the user,
or be inserted directly using the GUI (see Figure 2).

Experimentation Interface Selector: This component
selects the operation mode of SECRETA. Figure 3 shows an
interface of the Evaluation mode, in which users can evaluate
a given algorithm, while Figure 4 shows an interface of the
Comparison mode, which allows users to compare multiple
algorithms. Through these interfaces, users can select and
configure the algorithm(s) to obtain the anonymized data,
store the anonymized dataset(s), and generate visualizations
that present the performance of the algorithm(s).

Plotting Module: This module is based on the QWT li-
brary (http://qwt.sourceforge.net/) and supports a se-
ries of data visualizations that help users analyze their data
and understand the performance of anonymization algo-
rithms, when they are applied with different configuration
settings. Specifically, users can visualize information about:
(a) the original/anonymized dataset (e.g., histograms of at-
tributes, relative difference of the frequency between an orig-
inal and a generalized value), and (b) anonymization results,
for single and varying parameter execution. In single pa-
rameter execution, the results are derived with fixed, user-
specified parameters and include frequencies of generalized
values in relational or set-valued attributes, runtime, etc. In
varying parameter execution, the user selects the start/end
values and step of a parameter that varies, as well as fixed
values for other parameters. The plotted results include data
utility indicators and runtime vs. the varying parameter.

Data Export Module: This module allows exporting
datasets, hierarchies, policies, and query workloads, in CSV
format, and graphs, in PDF, JPG, BMP or PNG format.

2.2 Backend of SECRETA
The backend of our system is implemented in C++. For

each mode of operation, SECRETA invokes one or more
instances of the Anonymization Module with the specified
algorithm and parameters. The anonymization results are
collected by the Method Evaluator/Comparator component
and forwarded to the Experimentation Module. From there,
results are forwarded to the Plotting Module, for visualiza-
tion, and/or to the Data Export Module, for data export.

Policy Specification Module: This module invokes algo-
rithms that automatically generate hierarchies [10], as well
as the strategies in [7], which generate privacy and utility
policies. The hierarchies and/or policies are used by the
Anonymization Module (to be described later).

Method Evaluator/Comparator: This component im-
plements the functionality that is necessary for support-
ing the interfaces of the Evaluation and of the Comparison
mode. Based on the selected interface, anonymization al-
gorithm(s) and parameters, this component invokes one or
more instances (threads) of the Anonymization Module. Af-
ter all instances finish, the Method Evaluator/Comparator
component collects the anonymization results and forwards
them to the Experimentation Module.

Anonymization Module: This component is responsible
for executing an anonymization algorithm with the specified
configuration. SECRETA supports 9 algorithms; 4 of them
are applicable to datasets with relational atrtributes (Incog-



Figure 2: Main screen of SECRETA

Figure 3: Evaluation mode: Method evaluation screen of SECRETA

nito [6], Cluster [9], Top-down [4], and Full subtree bottom-
up), and 5 to datasets with transaction attributes (COAT
[7], PCTA [5], Apriori, LRA and VPA [10]). Addition-
ally, it supports 3 bounding methods (Rmerger, Tmerger,
RTmerger) [9], which enable the anonymization of RT -
datasets by combining two algorithms, each designed for a
different attribute type (e.g., Incognito and COAT).

Experimentation Module: This module is responsible for
producing visualizations of the anonymization results and of
the performance of the anonymization algorithm(s), in the
case of single and varying parameter execution. For visu-
alizations involving the computation of ARE, input is used
from the Queries Editor module. The produced visualiza-
tions are presented to the user, through the Plotting Module,
and can be stored to disk, using the Data Export module.

3. DEMONSTRATION PLAN
During the demonstration, attendees will be able to use

SECRETA to: (a) create, edit and analyze a dataset, and (b)
execute two different scenarios that demonstrate the modes,
functionality range, and potential of the system.

Using the Dataset Editor: The demonstration will start
by allowing the user to load a ready-to-use RT -dataset. Af-
ter that, the user will be able to edit the attribute names
of the dataset, as well as the values in some records. These
operations can be performed directly from the input area
(top-left pane in Figure 2), and the user may overwrite the
existing dataset with a modified one, or export it to a file.
Subsequently, the user will analyze the dataset by plotting
histograms of the frequency of values in any attribute (bot-
tom pane in Figure 2).

Using the Configuration and Queries Editor: The
user will load a predefined hierarchy from a file. This hi-
erarchy is fully browsable and editable, through the hierar-
chy area (top-mid pane in Figure 2). Then, the user will



Figure 4: Comparison mode: Methods comparison screen of SECRETA

load a preconstructed query workload from a file, edit the
query values using the query workload area (top-right pane
in Figure 2), and follow either of the two following scenarios.

Evaluating a method for RT -datasets: In this scenario,
the users will configure, apply, and evaluate a method, in a
series of steps. First, they will use the “Method evaluation”
interface (Figure 3) and set the values for parameters k,m, δ,
by inputting them directly in the form, or by using the cor-
responding slider (top-left pane in Figure 3). Then, they
may select two algorithms, one for anonymizing the rela-
tional attributes, and one for the transaction attribute, and
a bounding method for combining the selected algorithms.

Next, the users will initiate the anonymization process.
When this process ends, a message box with a summary of
results will be presented and the anonymized dataset will be
displayed in the output area (middle pane in Figure 3). Last,
the users will select a number of data visualizations. These
visualizations will be presented in the plotting area (bottom
pane in Figure 3) and may illustrate any combination of the
following: (a) ARE scores for various parameters (e.g., for
varying δ and fixed k and m), (b) the time needed to execute
the algorithm and its different phases, (c) the frequency of all
generalized values, in a selected relational attribute, and (d)
the relative error between the frequency of the transaction
attribute values, in the original and the anonymized dataset.

Comparing methods for RT -datasets: In this scenario,
the users will compare multiple anonymization methods. Us-
ing the“Methods comparison” interface (shown in Figure 4),
they will: (a) select algorithms for anonymizing each type of
attributes, as well as a bounding method, (b) set the values
for parameters that will be fixed, as described above (top-left
pane in Figure 4), and (c) choose a varying parameter (top-
mid pane in Figure 4), along with its start/end value and
step. The choices for (a) to (c) comprise a configuration,
which will be added into the experimenter area (top-right
pane in Figure 4). Similar configurations will be created by
the users for at least another method. After the methods are
applied, the users will select various graphs, which will be
displayed in the plotting area (bottom pane in Figure 4).

4. CONCLUSION
In this paper, we presented SECRETA, a system that

helps data publishers analyze the performance of anonymiza-
tion algorithms and make informed decisions on publishing
anonymized data. Our system allows evaluating and com-
paring a range of different algorithms, in an interactive and
progressing way. In the future, we will extend our system,
by incorporating additional algorithms, such as those in [2].
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[2] J. Cao, P. Karras, C. Räıssi, and K. Tan. rho-uncertainty:
Inference-proof transaction anonymization. PVLDB,
3(1):1033–1044, 2010.

[3] C. Dai, G. Ghinita, E. Bertino, J.-W. Byun, and N. Li. Tiamat:
a tool for interactive analysis of microdata anonymization
techniques. PVLDB, 2(2), 2009.

[4] B. Fung, K. Wang, and P. Yu. Top-down specialization for
information and privacy preservation. In ICDE, 2005.

[5] A. Gkoulalas-Divanis and G. Loukides. Utility-guided
clustering-based transaction data anonymization. TDP,
5(1):223–251, 2012.

[6] K. LeFevre, D. DeWitt, and R. Ramakrishnan. Incognito:
efficient full-domain k-anonymity. In SIGMOD, 2005.

[7] G. Loukides, A. Gkoulalas-Divanis, and B. Malin. COAT:
Constraint-based anonymization of transactions. KAIS,
28(2):251–282, 2011.

[8] National Institutes of Health, 2013. Data repositories. http://
www.nlm.nih.gov/NIHbmic/nih_data_sharing_repositories.html.

[9] G. Poulis, G. Loukides, A. Gkoulalas-Divanis, and
S. Skiadopoulos. Anonymizing data with relational and
transaction attributes. In ECML/PKDD, 2013.

[10] M. Terrovitis, N. Mamoulis, and P. Kalnis. Local and global
recoding methods for anonymizing set-valued data. VLDB J.,
20(1):83–106, 2011.

[11] X. Xiao, G. Wang, and J. Gehrke. Interactive anonymization of
sensitive data. In SIGMOD, 2009.

[12] J. Xu, W. Wang, J. Pei, X. Wang, B. Shi, and A.-C. Fu.
Utility-based anonymization using local recoding. In KDD,
pages 785–790, 2006.



Fuzzy Times on Space-time Volumes 

Manos PAPADAKIS
2
, Martin DOERR

1
 and Dimitris PLEXOUSAKIS

1
 

1
Institute of Computer Science, Foundation for Research and Technology - Hellas,  

N. Plastira 100, Heraklion, 700 13, Greece, Email: {martin, dp}@ics.forth.gr  
2
Computer Science Department, University of Crete,  

Voutes Campus, 700 13, Heraklion Greece, Email: mpapad@csd.uoc.gr 

Abstract: This paper is a study on the formal representation of the temporal extent of 

periods, as defined in CIDOC CRM. Our proposal exploits positive and negative 

evidence, gained by observations, to approximate the definite and indefinite bounds 

of a period, stating whether it is considered as active or possibly active. We 

contribute to the modelling of imprecise temporal information by proposing a 

generalized definition of time intervals which allows the representation of fuzziness 

that characterizes archaeological findings and historical data. Moreover, we provide 

an alternative to Allen’s operators, based on fuzzy time intervals. Finally, we extend 

our fuzzy interval model to represent four-dimensional volumes, which are 

associated with the spatiotemporal nature of periods; we also provide a 

spatiotemporal version of the basic temporal relations to approximate the temporal 

topology of periods. Our study has a crucial impact to fields associated with reality 

modelling, especially observation-based sciences. 

1. Introduction 

The study of the past through the definition, description and association of past periods [7] 

is an important part of historical, archaeological and other research processes. According to 

CIDOC CRM [5] [10], a period is regarded as a “set of coherent phenomena or cultural 

manifestations bounded in time and space”. Analysing periods temporally and spatially 

allows researchers to assume a spatiotemporal perspective of reality [6], where periods are 

treated as 4-dimensional volumes and their possible associations are considered as 

topological relations, such as inclusion, separation and overlap. 

 Since the past is not directly observable [1], evidence about past periods or events is 

derived through the observation process among traces that were left by their related 

phenomena. For instance, wood combustion by-products within the soil of a woodland 

provides clues that refer to an event of a wildfire over that area, at a time that is specified by 

the dating process of the individual findings. However a basic problem of inferring the 

extent of larger spatiotemporal phenomena from empirical evidence is that observations are 

necessarily point wise and scarce which leads to the need of hypotheses of interpolating and 

complementing the space and time between. 

 Data obtained about periods is imprecise due to limitations of observation, definition 

and information loss from the past, which leads to uncertainty with regard to their 

spatiotemporal modelling. For instance, a meeting in time cannot be expressed using 

Allen’s ‘meets’ operator [3], because the time interval endpoints of periods are fuzzy, 

rendering time point equality inapplicable. In addition, the forms of evidence for the 

spatiotemporal extent of a period in the past are too limited for defining its true bounds 

[6],[1]. Moreover, relations based only on total time projections of periods do not provide a 

complete view of a temporal topology among periods due to variations in space. The 

examples mentioned above introduce a second problem in which the limited precision of 

the observations lead to the assumption of fuzzy layers in order to approximate the real 

boundaries or to describe the total association of two periods under consideration. 



 In the rest of this document, we first provide a concise analysis of the aforementioned 

issues, motivated by the example of the conquest of a city. Afterwards, we propose 

solutions to address all issues, followed by a brief overview of potential applications. 

2. Objectives  

The main objective of this paper is to contribute to the theoretical foundations of 

spatiotemporal modelling from observation data, focusing on the impact of time 

imprecision on space-time volumes. Furthermore we propose an approach that devises a 

general theory which connects the knowledge derived from empirical observations with the 

reasoning on approaching the extent and the topological relationships over space-time 

volumes. 

 There are several approaches on modelling imprecise time however, they mainly focus 

on pure temporal reasoning. The prevalent idea is the usage of disjunctions of possible 

temporal relationships [17]. An alternative method introduces the attachment of a 

possibility value among Allen’s operators [4]. Particularly, each temporal relation is 

loosened or strengthen in order to express for instance, the concept of possible before and 

definitely before. A related approach to the previous work focuses on the expression of 

indeterminacy and incompleteness of temporal information using three valued logic [18]. 

Finally, an approach approximates the boundaries of the Ancient Millan periods (“Pre-

Roman”, “Roman” and so on) by applying fuzzy set theory to model imprecise time 

intervals. 

 There are algebras that focus on the description of temporal [3] or spatial topology [19]; 

however there are quite few approaches, to the best of our knowledge, that concern the 

description of relationships between regions located in space and time. Particularly, in [11] 

there is an approach on associating temporal spaces introducing spatiotemporal relations. 

More specific, temporal and spatial algebras are combined to conclude to a pair of relations 

like “before overlap”, rather than describing exclusively the relations that are formed 

between the space-time points. 

 In order to illustrate the need of spatiotemporal modelling based on imprecise 

observation data as well as the necessity of temporal topology over space-time volumes we 

assume the scenario of the conquest of a city by force where it has been encountered many 

times in history. An important result of such events is the change of leadership of the city 

under attack. In many cases, key evidence that documents such changes is the considerable 

cultural difference within the city borders between the population defending the city, the 

invading troops and the resulting population. Inferring from empirical evidence about the 

conquest events can provide information related to the succession of different cultures in 

cities under consideration. There are several historical sources that demonstrate the city 

conquest scenario, for instance, the siege of the ancient Troy which was excavated by 

Torfmann [16] and described in Homer’s Iliad. However for the sake of simplicity we 

describe the objectives of the current paper using a simplified imaginary city conquest 

event. 

2.1 – Time point equality 

It is obvious that a conquest event can be considered as a “meeting in time” [1] using 

temporal terms, in which the intervals that represent the activities of the defending and 

invading armies “meet” without a discontinuity (“gap”) in between. Trying to apply Allen’s 

meet relation to the event of leadership change mentioned above, leads to the problem of 

seeking the exact time point for which the endpoint equality of the meet relation should be 

applied; this is not an easy decision, as the conquest event which represents the meeting is 

not instantaneous, but has a duration which, in some cases, is considerable and differs, 



depending on the location within the city. Furthermore, even with the assumption that the 

conquest event is regarded as instantaneous by associating it with the time that the 

defending army surrenders, it is difficult to pinpoint the exact time point in which the last 

soldier gave in. 

2.2 – Certainty and Impossibility of existence 

A habitation event leaves traces, products of human activities, that associate a population 

and, by correlation, its culture with a certain place. These primary observations can be 

associated with time intervals through dating processes [1]; by combining the 

spatiotemporal information gained from semantically related observations, a period with 

fuzzy space-time bounds can be defined [6], representing the lifetime of the individual 

culture at that place. However, primary observations can only indicate the possible 

existence of that population over time; precise bounds cannot be derived. Even historical 

records are sparse and of limited precision. This hinders any effort to turn a possibility of 

existence to a precisely limited certainty or impossibility. 

2.3 – Temporal relations on space-time volumes 

Periods can be modelled by four-dimensional volumes that serve as the union of the 

spatiotemporal expanses of the set of the constituent coherent phenomena. Going back to 

the conquest event, there are two periods of habitation in relation to the city, one referring 

to the pre-conquest population and another involving the post-conquest one. In order to 

define temporal relations between these periods, time projections must be used, since 

general spatiotemporal relations do not allow for complete order (e.g., before, meets, starts 

and so on). Taking into account the corresponding time projections of the individual 

habitation periods, the resulting relation is formally “overlaps in time”; on the other hand, 

considering that the city was captured without coexistence between the populations, its 

natural semantics are a “meets in time” relation. This ambiguity is caused by the fact that 

the expansion of the invading population happened over time and not instantly. 

3. Methodology – Proposed Solutions  

3.1 – Negative and Positive observations 

The true temporal extent of a period cannot be observed but is approximated through 

observations [6]. Based on the differentiation between positive and negative evidence, 

gained by observations, we propose the notion of contradictory observations as an 

amplified unity criterion. The contextual coherence of positive observations forms a “part 

of” relation with the period to be defined, as analyzed in CIDOC CRM [10]. On the other 

hand, negative observations provide evidence of semantic inconsistency, precluding the 

possibility of co-existence or inclusion relations with the period to be defined. For instance, 

in our motivating example, findings of everyday objects belonging to the defending people 

are regarded as positive observations for the period that illustrates the reign of the former 

civilization; on the contrary, massive findings of weapons that are associated with the 

conquering army are considered as negative observations.  

 



 

Figure 1: Determinate intervals from indeterminate time 

 The temporal extent of a set of positive observations forms an inner, determinate

interval in which the period is “ongoing” [1] [2], as depicted in Figure 1, whereas negative 

observations define the outer bounds where the period ceases to exist. It is worth 

mentioning that a period is a unified entity, according to CIDOC CRM [5]. It would be 

counter-intuitive to consider that a period is “on-going” only during the time extent derived 

by the dating process of the positive observations (and inactive otherwise), because the 

unity property is violated. As a result, a period is “on-going” till there is no positive 

evidence to prove that claim and a period is “possibly active” till a negative observation 

proves that the period is inactive. The intermediate intervals between positive and negative 

observations result in a possibility of existence for the period in question, rather than a 

precise state (e.g., ongoing or finished). 

3.2 – Point-wise Time and Fuzzy intervals 

Time [12] is perceived as a set of duration-less points known as instants or moments that is 

isomorphic to the set of real numbers R. The real timeline is defined as a totally ordered set 

“Time” under a total order <. In addition, let tempD: Time x Time à R be a real-valued 

function that refers to the temporal distance between two time points and satisfies the 

properties of positive definiteness, symmetry and triangle inequality. 

 A time interval is regarded as a set of instants which illustrates the temporal 

extent of observable phenomena under consideration. There are no instantaneous 

observable phenomena (i.e. with zero duration). In addition, the concept of an empty time 

interval cannot be applied in real events, since phenomena cannot be separated from the 

notion of time.  

 In the sequel, we provide a definition of intervals, allowing to represent fuzzy and non-

fuzzy intervals as specializations of a more general definition. We define the boundaries of 

an interval or space-time region as sets which can either have a certain thickness, in the 

case of fuzziness, or are restricted to points or hyper-planes, in the case of precise sets. The 

boundary becomes the area in which the fuzzy function evaluates to values in (0, 1). In this 

way, the effect of a fuzzy function is “encapsulated” in the thickness of the boundary, hence 

our theory becomes independent of the choice and evaluation of a particular fuzzy function.  

 Let I be a set of time points that represent a valid time interval and 

 be the fuzzy time point membership function of I. We define the following: 

1. A neighbourhood of a time point t is a set  that contains {

. 

2. A time point t is a boundary point of I if for all neighbourhoods  of point t, it 

holds that . In case of fuzzy boundaries, the fuzzy 

function evaluates to  and . 

3. The boundary  of time interval I is the set of all boundary points of I. 



4. A time point t is an interior point of I if there exists a neighbourhood  of point 

t where . 

5. The interior  of time interval I is the set of all interior points of I. 

6. The closure of time interval I, is the set of all interior and boundary points of I: 

. 

7. The exterior  of time interval I is the complement of its closure : 

. 

The following properties hold for a valid interval I: 

(a)  

(b) non-empty boundary or interior sets :  and  

(c) bounded closure:  where , hence the boundary and 

interior sets are finite 

(d) the boundary set is divided into two subsets that wrap the interior set: 

 

(e) convex interior set:  it holds that  In other 

words, all points on the line segment that connects two interior points are also 

elements of the interior set. 

 According to our definition, a time interval is composed of the interior and boundary 

sets that refer to the determinate and indeterminate interval of the defining period, 

respectively, as mentioned in Section 3.1. As our knowledge about the period approximates 

its real bounds, the boundary set of the corresponding temporal interval shrinks. The 

highest precision is reached when the boundary set contains only the true endpoints of the 

period. 

3.3 – Fuzzy temporal relations 

 Information about the relevant topology of precise time intervals can be stated using 

Allen’s operators [3]. However, in cases of imprecise information, the temporal association 

of fuzzy intervals can be approximated by a set of Allen’s operators that hold between the 

possible endpoints of the imprecise intervals. In this section, we propose an alternative 

approach of Allen’s operators that describes the temporal association of fuzzy intervals. 

Particularly, endpoint relations proposed by Allen are replaced with set-oriented statements, 

properly modified in order to adhere to the representation of fuzzy intervals, defined in 

Section 3.2. 

 Let BA, BB, IA, IB, CA and CB be the boundary, interior and closure sets of two valid 

time intervals A and B. 

1. A ‘before’ B describes the scenario of disjoint closure sets; particularly interval A 

happened earlier than B. It is formalized as follows:  

A ‘after’ B is the inverse relation of ‘before’, with the following formalization:

. It is noteworthy that ‘before’ and ‘after’ relations can be 

applied to the interior, closure and boundary sets, as well as any other time-point 

set. These relations will be used as building blocks for the definition of the rest. 

2. A ‘meets’ B describes meetings in time, where interval B starts at the end of the 

temporal extent of A, formalized as:  and  ‘before’ . 

3. A ‘overlaps’ B describes the relation where time interval A pre-exists of B, both 

share interior points and B keeps to exist after A. The following formalization holds: 

,  and  ‘before’   ‘after’ 

. 

4. A ‘starts’ B describes the relation where interval A signifies the start of B. Both 

intervals start at the same time point, however, they share interior points and B 

keeps existing after A ends. It is formalized as follows: 



  and  ‘after’ . 

5. A ‘during’ B describes an inclusion relation like “falls within”. Particularly, the 

following properties hold: . 

6. A ‘finishes’ B refers to the opposite scenario of ‘starts’, where interval A signifies 

the termination of B. Particularly, B predates A, both share interior points and 

terminate at the same time point. It is formally expressed as follows: 

,  and  ‘before’ . 

7. A ‘equals’ B is a special scenario of temporal topology where intervals A and B are 

related with mutual inclusion. Particularly, A shares interior points with B, while the 

interior of B falls within A and the interior of A falls within B. The formalization 

is:  and . 

The inverse relations are formalized similarly, by replacing the boundary, interior and 

closure sets of interval A to the corresponding sets of B and vice versa.  

 Fuzzy relations approximate the temporal topology of periods, regardless of their level 

of fuzziness. Properly loosened constraints are applied in order to avoid any limitation on

the boundary’s thickness and hence the size of the individual periods. Finally, our approach 

is compatible with Allen’s approach in cases of complete awareness.  

3.4 – Meetings in time and transitive events 

As already mentioned in Section 3.1, temporal approximation of periods is in many cases 

imprecise [2] [4], making it difficult or impossible to define a clear-cut relation between 

pairs of successive intervals. To address this, we adopt the concept of a transitive event, 

which considers the non-instantaneous nature of a meeting in time. In essence, we consider 

meetings in time as convex intervals with indefinite bounds (Figure 2), indicating that the 

phenomenal meeting happened sometime during the transitive event. The temporal extent 

of the event depends on the intensity of change, with regard to the instance that acts as a 

transition factor between the meeting intervals. For modelling reasons, we assume a “true” 

meeting in time happened somewhere within the fuzzy bounds, which cannot be observed, 

but can be constrained. 

 Our fuzzy intervals approach, presented in Section 3.2, can describe a fuzzy meeting in 

time as the set of shared time points between the disjoint interiors of the related periods. 

The intersecting boundary points form the indeterminate interval that refers to the temporal 

extent of the transitive event. As far as the relations of the associated periods are concerned, 

meetings in time can be approximated using the fuzzy relation ‘meets’. 

 

     

    Figure 2: True meet within the transitive event        Figure 3: Period A is before period B 



3.5 – Spatiotemporal approach of time 

 As already mentioned in section 2.3, periods are considered as spatiotemporal entities, 

represented as four-dimensional volumes in space-time. Approaching their temporal 

topology using only time projections (i.e. by completely ignoring their space extent), may 

sometimes lead to ambiguity. For instance, as illustrated in Figure 3, periods A and B are 

associated with a ‘total overlap’ relation, however their volumes do not touch at any point 

in their common space, resulting in a ‘local before’ relation. Such conflicting temporal 

approaches, derived by local and total relations, is caused by the fact that, in many cases, 

the space occupied by a period is changing over time. Such cases are frequent in 

archaeology, but have been widely disregarded in the literature [11]. 

 In the rest of this section, we propose a spatiotemporal approach of temporal relations. 

First, space-time is defined, proportionally to point-wise time definition, followed by the 

formalization of fuzzy volumes, which represent the space-time extent of a period. In the 

end, we propose a set of temporal relations applied on fuzzy volumes based on the fuzzy 

relations.  

3.5.1 – Point-wise Space-Time and fuzzy volumes 

Space-time is usually interpreted from a Euclidean space perspective, in which space and 

time are regarded as three- and one-dimensional systems respectively. For the sake of 

simplicity, we adopt a non-relativistic model, in which time is treated as universal and 

constant, being independent of the state of motion of the observer. Furthermore, we only 

regard observers that are at rest with respect to our spatial reference system. Additional 

study on reference systems in relative motion could be considered as future work. It is 

worth mentioning that the theory presented here is independent of geometries on curved 

surfaces, such as Earth, and relativistic space distortions. 

 Space-time is defined as a set ST that is isomorphic to the 4-dimensional space  and 

includes all spatiotemporal points. Each point in ST is considered as a quadruple (x, y, z, t) 

where  and , where Space is the known space set defined in physics 

while Time refers to the timeline. Variables x, y and z refer to Cartesian space coordinates 

in some arbitrary spatial reference system, while t stands for time values. 

 A space-time volume  is regarded as a set of spatiotemporal points that 

illustrates the spatiotemporal extent of a periods. We offer a generalized definition of space-

time volumes that allows space-time representation of periods, regardless of whether fuzzy 

information is included or not. The fuzzy volumes model is defined by extending the 

generalized interval definition, proposed in Section 3.2, in 4-dimensional space-time. 

Although the definitions of neighbourhood, interior, boundary, closure and exterior sets 

remain the same, defining a valid volume requires the following modifications. Let V be a 

space-time volume and  the boundary, interior and closure set respectively. 

Instead of a divided boundary, as in interval property (d), we define a connected and 

continued boundary, formalized as: 

·  is implied that  and 

·  such that   and 

 
Moreover, the convexity property (e) is only required to hold for the time dimension. The 

interior, boundary and closure sets, associated with 4-dimensional volumes, represent the 

indeterminate, determinate and whole extent of the period, respectively. 



3.5.2 – Spatiotemporal version of fuzzy temporal relations 

Information about temporal topology over space-time volumes is gained by the relevant 

association of their time projections. The projected image of a volume upon the time axis 

forms a fuzzy interval, composed by the individual projections of the boundary and interior 

sets of the projected volume. Fuzzy relations that hold on the derived fuzzy intervals 

approach the temporal topology of the corresponding projected volumes. 

 We differentiate time-projections based on the amount of space points that are being 

projected. Time projections that provide an overall image of the occupied space, are 

regarded as ‘total’, whereas time projections derived by discrete space slices are considered 

as ‘local’. Consequently, fuzzy relations that describe the temporal association of the 

individual volumes are distinguished into ‘local’ or ‘total’, depending on whether they are 

related to ‘local’ or ‘total’ time-projections, respectively. 

 ‘Local’ or ‘total’ temporal topology is used, according to the existence of shared space 

points between the associated volumes. Particularly, we propose that if there is no space 

overlap among the volumes, then their temporal topology is described by their ‘total’ 

relation. However, in cases of total or partial space overlap, volumes are associated by a set 

of ‘local’ relations that relate the time projections of the shared space slices. Instead of 

using a set of ‘local’ relations to describe the temporal topology of the individual space-

overlapped volumes, we propose the definition of a single prevailing relation that represents 

every possible temporal association of the shared space slices. Consequently, we introduce 

a relation hierarchy, defined intuitively and semantically related with data of historical 

significance. Particularly, a level of prevalence is attached to each relation, forming a 

classification order from strongest to weakest, as follows: overlaps, equals, {starts, 

finishes}, meets and {before, during}. Stronger relations cause the weaker ones to be 

excluded as possible volume associations. There are two pairs of relations with the same 

level of prevalence, namely ‘starts’/‘finishes’ and ‘before’/‘during’. These cases do not 

raise decidability issues, since the former pair is evaluated semantically as a special case of 

‘equals’, while the latter is considered as a counter-intuitive scenario.        

 Let A and B be two space-time volumes and , 

 the time and space projection functions of a set of space and time points over a 

volume V, respectively. For the sake of simplicity, the variants of functions  and  with 

arity 0 return the total time or space projection of the volume V; hence,  refers to the 

overlapped space of volumes A and B. 

 In the rest of this section, we define the spatiotemporal version of the basic temporal 

relations, proposed in Section 3.3, that hold on space-overlapping volumes, based on the 

relation subsumption hierarchy introduced above. These relations are illustrated in Figure 4. 

1. A ‘sp_before’ B:  

2. A ‘sp_during’ B:  

3. A ‘sp_meets’ B:   

4. A ‘sp_starts’ B: there are two interpretations of the ‘starts’ relation, causal and 

incidental. An incidental start describes the case where there is an area in the period 

B that is reached by the starting period A after its beginning, while in the other case 

a casual start does not allow areas of period B to be reached after the beginning of 

period A. For instance an incidental start can be considered as the transmission of a 

message that triggers the start of a new period, which is affected by speed limits, in 

contrary to a volcano eruption that can be regarded as instant which demonstrates a 

causal start. They are formalized as follows: 

Causal:  

Incidental:  and neither  nor 

 hold. 



5. A ‘sp_finishes’ B:  similarly, there are two interpretations of the ‘finishes’ relation, 

causal and incidental. 

Causal:  

Incidental:  and neither  nor 

 hold. 

6. A ‘sp_equals’ B:  and  does 

not hold. 

In addition, there is a special case of volume equality, in which a pair of ‘starts’ and 

‘finishes’ relations is evaluated into ‘equals’; it is formalized as follows:  

and and 

and  does not hold. 

7. A ‘sp_overlaps’ B:  

 It should be noted that fuzzy temporal relations for both time intervals and 

spatiotemporal volumes are considered complete, since there is no combination of intervals 

(or volumes) that cannot be described by exactly one of the proposed relations. This claim 

is backed by the fact that our analysis can model every temporal relation that is expressed in 

CIDOC CRM [5]. As far as the efficiency of calculating such relations is concerned, it 

depends on the candidate spatiotemporal information systems in which the proposed theory 

may be embedded and the 3D/4D indexing methods they support; these include 

spatiotemporal GIS and databases. 

  

 

Figure 4: temporal relation on spatiotemporal volumes A and B 

4. Applications 

Our proposal provides solutions correlated with the temporal modelling of periods and the 

approximation of their temporal topology, when imprecise information is included. Key 

applications of such a theory are: the approximation of the spatiotemporal extent of a 

period, including determinate and indeterminate bounds, based on observations and

historical sources; determining the influence that one period has on another based on the 

analysis of their temporal association; derivation of spatiotemporal relations based on 

semantic associations; representation of successive periods and meeting in time to realize 

“continuity” of periods [8]; providing answers to temporal queries applied on 

spatiotemporal entities like periods. 

 These applications have a crucial impact on fields associated with reality modelling, 

especially observation-based sciences, such as archaeology, geology, palaeontology, 

ecology and anthropology. More specifically, archaeology, geology and palaeontology are 

related to the revelation of data about various aspects of prehistory, such as human history 

and evolution, aging of the Earth, evolution of organisms and their association with the 

environment, periods of extinction and so on. Relating observations and findings with rock 

layers and layering through stratigraphy [9], the aforementioned sciences can approximate

the temporal extent of periods, related to specific layers, and hence reveal information 

about their temporal association. Additionally studying the temporal association of findings 



with known periods can contribute to dating methods, by approaching the age or date of 

existence of the individual findings. Furthermore, our model can provide efficient temporal 

modelling of the identified geologic periods, through index fossils [13]. Finally, temporal 

topology extraction methods like the Harris matrix [14] can be evaluated through the 

association of the extracted results with the temporal topology derived by our model. 

 Ecology studies the interactions among organisms and their environment, while 

anthropology examines humans on a social and biological point of view. Scientific 

observations over long time periods can be associated with our model, defining the 

determinate and indeterminate boundaries of the corresponding periods. Also, 

approximating the relevant temporal topology over past periods and understanding past 

events enhances the reconstruction of possible pasts, by excluding inconsistent instances of 

our past, and resulting in the most prevailing scenario. 

5. Conclusions and Future Work 

This paper provides solutions to important issues in spatiotemporal modelling. Particularly, 

we proposed a model to reconstruct the extent of periods in space-time using empirical 

evidence and individual observations. It is worth noting that our model can deal with 

imprecise information by modelling fuzziness. Additionally we extended the basic temporal 

relations [3] to be applied on 4-dimensional entities like periods. More specific our theory 

allows independent spatial and dating information in order to approach the spatiotemporal 

relation that describes the coherent phenomena. Applying our theory conversely our model 

can provide evaluation of the concluding global spatiotemporal relations stated by historical 

sources among the phenomena of a space-time volume, by stating precise relations to point 

in them. The assumptions that were made about the extent of the spatiotemporal volumes 

can be considered as shortcomings of our spatiotemporal modelling approach. Essentially, 

the constraints that were stated about the spatiotemporal points, do not allow the illustration 

of periods in which an entity expands and retreats to the same place (Chinese invasion in 

Vietnam). A probable solution would be the declaration of phases that compose the super-

period. Our approach on period modelling is directly dependent on the occurrence of 

observations, as a result it can by adopted by any science field that focuses on modelling 

reality using empirical evidence. In addition our theory can be embedded in GIS systems 

providing solutions in representing fuzzy boundaries. Future research involves period 

modelling in absence of direct observations, where additional factors must be considered, 

such as statistical frequency of observation events and efficiency of detection [15]. 
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Marine species data are scattered across a series of heterogeneous repositories and 

information systems. There is no repository that can claim to have all Marine Species data. 

Moreover, information on marine species is made available through different formats and 

protocols. Our research aims at providing models and methods that allow integrating such 

information either for publishing it, browsing it, or querying it. Aiming at providing a valid 

and reliable knowledge ground for enabling semantic interoperability of marine species data, 

in this paper we motivate a top level ontology, called MarineTLO and discuss its use for 

creating MarineTLO-based warehouses. This approach has been implemented in the context 

of the iMarine operational European research infrastructure. 

1 Introduction 
Marine species data are widely distributed with few well-established repositories or standard 

protocols for their archiving and retrieval. Currently, the various laboratories have in place 

databases for keeping their raw data, while ontologies are primarily used for metadata that 

describe these raw data. One of the challenges in the iMarine project
1
 is to enable users to 

experience a coherent source of facts about marine entities, rather than a bag of contributed 

contents. Considering the current setting where each iMarine source has its own model, 

queries like “Given the scientific name of a species, find its predators with the related taxon-

rank classification and with the different codes that the organizations use to refer to them”, 

cannot be formulated (and consequently nor answered) by any individual source. To 

formulate such queries, we need an expressive conceptual model, while for answering them 

we also have to assemble pieces of information stored in different sources. For example, 

Figure 1 illustrates information about the species Thunnus albacares which is stored in 

different sources (here FLOD, ECOSCOPE, WoRMS, FishBase and DBpedia, more about 

these sources in the next section). These pieces of information are complementary, and if 

assembled properly, advanced browsing, querying and reasoning can be provided. 

                                                      
1
 iMarine, FP7 Research Infrastructures, 2011-2014 



 
Figure 1: Integrated Information about Thunnus Albacares from five sources 

We believe, therefore, that a unified and coherent model for better accessing/reasoning upon 

and across different marine data sources is a critical and, at the same time, challenging 

objective, in order to provide a valid and reliable knowledge ground for enabling semantic 

interoperability of marine data, services, applications and systems. In a nutshell, the key 

contributions of our work are the following: (a) we identify use cases motivating the need for 

having harmonized integrated information, (b) we introduce a generic core model, called 

MarineTLO, for schema integration, (c) we describe the mappings between this model and 

main sources of marine information for building integrated warehouses, (d) we comparatively 

evaluate two different triplestores for the problem at hand, and (e) we report results regarding 

the ability of the MarineTLO-based warehouse to answer queries which cannot be answered 

by the underlying sources. To the best of our knowledge, no such warehouse exists.  

The rest of this paper is organized as follows. Section 2 discusses the underlying sources and 

motivating application scenarios, Section 3 describes the proposed approach, Section 4 

describes the process for constructing MarineTLO-based warehouses, Section 5 discusses the 

process for evaluating the ontology, comparatively evaluates two triplestores, and describes 

the current uses of the MarineTLO-based warehouse. Finally, Section 6 concludes and 

identifies directions for future work and research. 

2 Sources and Motivating Scenarios  
In this section, we first describe the main underlying sources (§2.1) and then discuss four 

motivating scenarios as came up by the organizations participating in iMarine (§2.2). 

2.1 Main Underlying Sources 

Fisheries Linked Open Data (FLOD) RDF dataset. FLOD, created and maintained by 

Food and Agriculture Organization (FAO), is dedicated to create a dense network of 

relationships among the entities of the Fishery domains, and to programmatically serve them 



to semantic and traditional application environments. The FLOD content is exposed either via 

a public SPARQL endpoint
2
 (suitable for semantic applications) or via a JAVA API to be 

embedded in consumers’ application code. Currently, the FLOD network includes entities and 

relationships from the domains of Marine Species, Water Areas, Land Areas, Exclusive 

Economic Zones, and serves software applications in the domain of statistics and GIS. 

ECOSCOPE Knowledge Base. IRD
3
 offers a public SPARQL endpoint

4
 for its knowledge 

base containing geographical data, pictures and information about marine ecosystems 

(specifically data about fishes, sharks, related persons, countries and organizations, harbors, 

vessels, etc.). 

WoRMS. TheWorld Register of Marine Species
5
 currently contains more than 200 thousand 

species, around 380 thousand species names including synonyms, and 470 thousands taxa 

(infraspecies to kingdoms). 

FishBase. FishBase
6
 is a global database of fish species. It is a relational database containing 

information about the taxonomy, geographical distribution, biometrics, population, genetic 

data and many more. Currently, it contains more the 32 thousand species and more than 300 

thousand common names in various languages. 

DBpedia. DBpedia
7
 is a project focusing on the task of converting content from Wikipedia to 

structured knowledge so that Semantic Web techniques can be employed against it. At the 

time of writing this article, the English version of the knowledge base of DBpedia describes 

more than 4.5 million things, containing persons, places, works, species, etc. In our case, we 

are using a subset of DBpedia’s knowledge base containing only fishes (i.e., instances 

classified under the class http://dbpedia.org/ontology/Fish). 

2.2 Motivating Scenarios 

The availability of a top-level ontology for the marine domain would be useful in various 

scenarios. 

For Publishing Linked Data. There is a trend towards publishing Linked Data; consequently 

a rising issue concerns the structure that is beneficial to use during such publishing. The 

semantic structure that will be presented can be used by the involved organizations for 

anticipating future needs for information integration, and thus alleviating the required effort 

for (post) integration. 

Fact Sheets. FactSheetGenerator
8
 is an application provided by IRD aiming at providing 

factual knowledge about the marine domain by mashing-up relevant knowledge distributed 

across several data sources. Figure 2 shows the results of the current FactSheetGenerator 

when searching for the species Thunnus albacares. Currently, the results are based only 

on ECOSCOPE and related knowledge stored in other sources (e.g., about commercial codes 

or taxonomic information) cannot be exploited. The approach that we will present in this 

                                                      
2
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3
 Institut de recherche pour le developpement (IRD), France (http://www.ird.fr/) 

4
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5
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7
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paper can be exploited for advancing this application, i.e., for providing more complete 

semantic descriptions.  

 
Figure 2: Thunnus Albacares in FactSheetGenerator 

For Semantic Post-Processing of the Results of Keyword Search Queries. Another big 

challenge nowadays is how to integrate structured data with unstructured data (documents and 

text). The availability of harmonized structured knowledge about the marine domain can be 

exploited for a semantic post-processing of the search results (over dedicated or general 

purpose search systems). Specifically, the work done in the context of iMarine so far, 

described in [Fafalios et al., 2012][Fafalios and Tzitzikas, 2013], has proposed a method to 

enrich the classical (mainly keyword based) searching with entity mining that is performed at 

query time. The results of entity mining (entities grouped in categories) complement the query 

answers with information which can be further exploited by the user in a faceted and session-

based interaction scheme [Sacco and Tzitzikas, 2009]. This means that instead of annotating 

and building indexes for the documents (or web pages), the annotation can be done at query 

time and using the desired entities of interest. These works show that the application of entity 

mining over the snippets of the top hits of the answers can be performed at real-time, and 

indicate how semantic repositories can be exploited for specifying the entities of interest and 

for providing further information about the identified entities. 

The initial application within iMarine of this “semantic post-processing” service used FLOD. 

Figure 3 shows a screen dump of the results for the query tuna over a deployment (as a 

portlet) in an infrastructure where the underlying system is gcube search [Simeoni et al., 

2007] and the knowledge base is FLOD. The approach presented in this paper has improved 

this service from various perspectives: more entities can be identified in the results; the 

system is able to provide more complete information about the identified entities, etc. 



 

Figure 3: Examples of semantic post-processing of search results within gcube 

 

For Enabling Complex Query Services over Integrated Data. MarineTLO can be used as 

the schema for setting up integrated repositories that offer more complex query services, 

which cannot be supported by the individual underlying sources. In general, there are two 

main approaches for building and querying such repositories: the materialized integration 

approach (or warehouse approach), and the virtual integration (or mediator) approach (both 

are described in Section 4). The key point is that in both cases a schema is needed; 

MarineTLO can serve this requirement. 

3 MarineTLO-based Integration 

3.1 Design Principles 

MarineTLO is not supposed to be the single ontology covering the entirety of what exists. It 

aims at being a global core model that i) covers with suitable abstractions the domains under 

consideration to enable the most fundamental queries, ii) can be extended to any level of 

detail on demand, and iii) can adequately map and integrate data originating from distinct 

sources, in a style similar to other related domains [Doerr et al., 2003][Cangemi et al., 2002]. 

Figure 4 drafts the intended architecture of knowledge models. 



 

Figure 4: MarineTLO-based architecture 

Note that the adoption of a single and coherent core conceptual model has two main benefits: 

(a) reduced effort for improving and evolving it, since the focus is given on one model rather 

than many [Ibrahim and Pyster, 2004], and (b) reduced effort for constructing mappings, 

since this approach avoids the inevitable combinatorial explosion and complexities that result 

from pair-wise mappings between individual metadata formats and/or ontologies [Doerr et al., 

2003].  

Since the marine domain is complex and multiple views or projections should be supported 

for inference, the MarineTLO makes use of (i) categorical and cross-categorical relations as 

logical derivation of classes and properties of the selected sources, (ii) categories of classes 

(meta-classes) which support certain type of inference about classes in a way analogous to 

how classes support certain types of inference about instances and enable the assignment of 

attribute values to a class. Attention has been given also to the design of MarineTLO for 

preserving monotonicity. Since the primary role of MarineTLO is the meaningful integration 

of information in an OpenWorld, it aims to be monotonic in the sense of Domain Theory. 

That is, the existing constructs and the deductions made from them should remain valid and 

well-formed, even as new constructs are added to the MarineTLO. A particular consequence 

of this principle is that no class is declared as complement of a sibling concept under a 

common direct superclass. 

Competitive Models. Although many organizations keep marine data, these data are 

organized based on the needs and activities of the particular organizations. Darwin Core 

offers a glossary of terms intended to facilitate the sharing of biodiversity information. The 

philosophy for the development of Darwin Core [Madin et al., 2007][TDWG, 2004][Wilson, 

2009][Wieczorek et al., 2012], which intends to keep the standard as simple and open as 

possible and to develop terms only when there is demand for sharing, is not sufficient. 

Specifically, the terms are organized into nine categories, often referred to as classes, six of 

which cover broad aspects of the biodiversity domain (event, location, geological context, 

occurrence, taxon, and identification). The remaining categories cover relationships to other 

resources, measurements, and generic information about records. Especially for the record 



level, Darwin Core recommends the use of a number of terms from Dublin Core (type, 

modified, language, rights, rights holder, access rights, bibliographic citation, references). 

Darwin Core was designed to be minimal (only terms shared in common by natural history 

collections) and flat (no relational structure). A Darwin Core data record leaves the 

interpretation of the relationships between the whole record and one of its fields to the 

intuition of the human reader; in other words, it cannot be used to draw logical conclusions 

(e.g., consistency, equivalence) without human intervention. For instance, if a record level 

term dc:ctype equals to the term “physical object”, then it is understood that the observed 

record documents a taxon, e.g., a mammal specimen; if on the other hand, the dc:ctype is 

missing, the record is understood to represent the taxon itself. Fields like “prey of” or 

“predator of” are missing. Also, causally related complex events (or composite events) cannot 

be described. Darwin Core can serve as a data entry questionnaire. One of the major 

drawbacks of Darwin Core in the Semantic Web context is the lack of a well-defined 

ontology, i.e., a formal definition of relationships between the kinds of entities (“core 

schema”) of the biodiversity domain including its scientific processes. Such an ontology 

would define the relationships between concepts, such as biological entities, the events that 

document where and when they occurred, and the processes through which they are identified 

as being representative of a taxonomic concept. Without rigorous relationships between 

concepts and the properties that define them, connections between biodiversity data and 

related semantically rich information, such as literature and genomes, are difficult to traverse 

and no reasoning can be applied. This creates obstacles to cross-disciplinary semantic inquiry, 

such as in the Linked Data distributed data community. 

Similar approached have been described also in different domains, i.e., in the medical 

domain. The Neuroweb Reference ontology [Colombo et al., 2009] is an upper level schema 

and enables a specific infrastructure to operate over different clinical repositories and to 

retrieve patients based on a set of specific criteria. This ontology acts as a vocabulary by 

encoding in a common way the phenotypes (the pathological condition of a patient) of 

different patients coming from different repositories. A similar approach is followed in the 

manufacturing domain where a design of top level ontologies is used to provide a ground term 

for enhancing the collaboration between different labors and partners. In [Mosca et al., 2009] 

a framework for the development of decision support systems for the engineering domain has 

been presented. The framework is based on a set of ontologies that describes all the properties 

of a product so that small and medium enterprises (SME) will be able to easily define the 

roles of the different labors in the lifecycle of the product (i.e., design, production, testing, 

etc.). 

3.2 The MarineTLO Ontology 

For the development and evolution of MarineTLO we adopted an iterative and incremental 

methodology comprising the following steps: (i) ontological analysis of underlying sources, 

(ii) design, (iii) implementation, and (iv) evaluation. For the implementation we used the 

OWL Web Ontology Language 2 [Hitzler et al., 2009], while for the needs of evaluation we 

used the notion of competence queries (described later in this paper). The full version of 

MarineTLO, as well as more information, is available at http://www.ics.forth.gr/isl/MarineTLO.   

For the first version of MarineTLO we used the descriptions and the data of ECOSCOPE, 

FLOD and WoRMS sources. As new sources (i.e., DBpedia, FishBase) or new concepts 



emerged, we updated the MarineTLO ontology appropriately. The following list describes its 

evolution history. 

· Version 1 contained 17 classes and 8 unique properties and was designed to capture 

the scientific names of species and information about predator-prey relationship, 

coming from ECOSCOPE, FLOD and WoRMS. 

· Version 2 contained 57 classes and 22 unique properties. This version captured the 

same concepts as the previous version, as well as information about WoRMS 

classification, competitors, images, and species codes coming from FAO and IRD 

organizations. Furthermore, this version captured specific information about fishes 

from DBpedia (i.e., scientific and common name of species, images, general 

description and others). 

· Version 3 contained 57 classes and 25 unique properties. This version captured the 

same concepts as version 2 and furthermore information about water areas, countries, 

ecosystems, exclusive economic zones, fishing gears, fishing vessels and common 

names of species. In addition, this version integrated information about the common 

names of marine species in different language from FishBase. 

· Version 4 contained 127 classes and 81 properties. This version captured the concepts 

of the previous version, as well as information about catch and byCatch
9
, biological 

parameters, statistical indicators (provided by IRD), and publications. 

For the needs of the intended applications and the main underlying sources, an extension of 

the full version is being used. The current version of the extended ontology contains 151 

classes and 116 properties. With the name “MarineTLO”, we hereafter refer to this extension. 

It is organized in two abstraction levels: schema and metaschema. The metaschema aims at 

providing a method for classifying the schema level in meaningful abstractions, which can be 

exploited not only for expressing cross-categorical knowledge, but also for aiding the 

formulation of generic queries. Figure 5 shows the metaclasses (and how they are organized 

in a subClassOf hierarchy), and Figure 6 shows a part of the classes in the class level. 

Between the classes and the metaclasses there are instanceOf relationships (implemented 

as RDF typeOf relationships) which are omitted from the diagram. We use a set of prefixes 

to declare classes, metaclasses and properties between them. Particularly, we use the prefix 

BT for declaring the metaclasses (e.g., BT27_Species) and BC for declaring the classes (e.g., 

BC8_Actor). For the properties we are using the prefix LT for properties between metaclasses 

(e.g., LT8_usually_belongs_to), LC for properties between classes (e.g., 

LC13_is_carried_out_by), and LT for cross-categorical links (e.g., 

LX6_type_was_attributed_by). 
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Figure 5: The meta-classes of MarineTLO 

The example shown in Figure 1 illustrates how pieces of information that come from different 

sources and concern one particular species, namely Thunnus Albacares, are assembled. 

The labels of the frames indicate the used sources. A more detailed example can be seen in 

Figure 7. The upper part of Figure 7 depicts the scientific name assignment and the lower part 

shows the taxonomic classification of Thunnus Albacares. Rectangles are used to 

denote the class name and its corresponding instance (for example, ns:thunnus_albacares is 

an instance of the class BT27_Species). In some cases, instead of creating new (or even 

arbitrary) URIs we are using blank nodes (e.g. the instance of 

BT46_Scientific_Name_Assignment). In those cases, we are using the notation _:bn to 

declare that this particular node is a blank node. Edges are used to denote the properties. 

Figure 8 shows the same information expressed in RDF. It is evident from this figure that we 

overcome the issues that arise with new resources; instead of adopting a particular policy for 

new resources and defining specific namespaces for publishing them, we model them as blank 

nodes. For example, it is not required to publish a specific URI for the scientific name 

assignment of Thunnus Albacares, however the information connected to it (i.e., the 

actual name, the year, the authoritative information) are more than useful.  

 

Figure 6: Part of the classes of MarineTLO 



 

Figure 7: The scientific name assignment and taxonomic information of Thunnus Albacares 

 

<rdf:RDF xmlns:mtlo="http://www.ics.forth.gr/isl/MarineTLO/v4/marinetlo.owl#" 

 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" 

 xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"> 

 

 <mtlo:BT27_Species rdf:about="http://url/thunnus_albacares"> 

  <mtlo:LX6_assigned_attribute_to_type> 

   <mtlo:BC46_1_Scientific_Name_Assignment> 

    <mtlo:assignedName> Thunnus Albacares </mtlo:assignedName> 

    <mtlo:LC13_is_carried_out_by> 

     <mtlo:BC8_Actor> 

      <mtlo:name> Bonnatere </mtlo:name> 

     </mtlo:BC8_Actor> 

    </mtlo:LC13_is_carried_out_by> 

    <mtlo:assignedDate> 1788 </mtlo:assignedDate>     

   </mtlo:BC46_1_Scientific_Name_Assignment> 

  </mtlo:LX6_assigned_attribute_to_type> 

  <mtlo:LT8_usually_belongs_to> 

   <mtlo:BT26_Genus rdf:about="http://www.ics.forth.gr/isl/thunnus"> 

    <mtlo:LT8_usually_belongs_to> 

     <mtlo:BT27_Familiy rdf:about="http://www.ics.forth.gr/isl/scombridae"> 

      <mtlo:LT8_usually_belongs_to> 

       <mtlo:BT34_Order rdf:about="http://www.ics.forth.gr/isl/perciformes"> 

        <mtlo:LT8_usually_belongs_to> 

         <mtlo:BT22_Class rdf:about="http://www.example/actinopterygii"> 

          <mtlo:LT8_usually_belongs_to> 

           <mtlo:BT19_Phylum rdf:about="http://url/chordata"> 

            <mtlo:LT8_usually_belongs_to> 

             <mtlo:BT18_Kingdom rdf:about="http://url/animalia"/> 

            </mtlo:LT8_usually_belongs_to> 

           </mtlo:BT19_Phylum> 

          </mtlo:LT8_usually_belongs_to> 

         </mtlo:BT22_Class> 

        </mtlo:LT8_usually_belongs_to> 

       </mtlo:BT34_Order> 

      </mtlo:LT8_usually_belongs_to> 

     </mtlo:BT27_Familiy> 

    </mtlo:LT8_usually_belongs_to> 



   </mtlo:BT26_Genus> 

  </mtlo:LT8_usually_belongs_to> 

 </mtlo:BT27_Species> 

</rdf:RDF> 

Figure 8. The scientific name assignment and taxonomy of Thunnus Albacares in RDF 

4 On Constructing MarineTLO-based Warehouses 

4.1 Integration Approaches 

In general, there are two main integration approaches for such repositories: the materialized 

integration approach (or warehouse approach), and the virtual integration (or mediator) 

approach. 

Materialized Approach The materialized approach relies on a central repository (RDF 

triplestore in our case) where all data are to be stored. Mappings (in the broad sense) are 

exploited to extract information from data sources, to transform it to the target model and 

then to store it at the central repository. Over such a repository more complex queries can be 

answered. 

It is good practice not to modify extracted information after each transformation except for 

the use of common identifiers. Rather, any need for updating individual information is 

covered by requesting source providers to make updated sources available. There are some 

important issues that should be taken into account for designing and maintaining a data 

warehouse. Firstly (design phase), the information from each source that is going to be used 

should be selected. Specific views over the sources should be chosen in order to be 

materialized. Next (maintenance phase), issues should be tackled concerning the warehouse 

initial population by the source data and the update of the data when sources are refreshed. 

The notion of graph spaces of RDF triplestores can alleviate this problem. The great 

advantage of materialized integration is its flexibility in transformation logic, the decoupling 

of the release management of the integrated resource from the management cycles of the 

sources, and the decoupling of access load from the source servers. The method that we will 

present can be used for setting up such repositories. 

Moreover, the availability of a materialized repository is beneficial for applying entity 

matching techniques (e.g., see [Noessner et al., 2010]) since more information about the 

domain entities is available, while the application of these techniques is significantly faster 

than applying them without having a repository (i.e., by fetching information from the 

network). 

Virtual Approach. On the other hand, the virtual integration approach does not rely on a 

central repository but leaves the data in the original sources. Mappings (in the broad sense) 

are exploited to enable query translation from one model to another. Then, data from 

disparate sources is combined and returned to the user. The mediator (a.k.a. integrator) 

performs the following actions. First, it receives a query formulated in terms of the unified 

model/schema and decomposes the query into sub-queries. These queries are addressed to 

specific data sources. This decomposition is based on the mappings generated between the 

unified model and the source models, which play an important role in sub-queries’ execution 



plan optimization. Finally, the sub-queries are sent to the wrappers of the individual sources, 

which transform them into queries over the sources. The results of these sub-queries are sent 

back to the mediator. At this point, the answers are merged and returned to the user. Besides 

the possibility of asking queries, the mediator has no control over the individual sources. The 

great advantage (but in some cases disadvantage) of virtual integration is the real-time 

reflection of source updates in integrated access. As regards system’s complexity (complexity 

of query rewriting and of execution planning), this depends on the structural complexity of 

the global view and the differences between this view and that of the underlying models. The 

higher complexity of the system (and the quality of service demands on the sources) is only 

justified if immediate access to updates is indeed required. 

4.2 The Marine-TLO based Warehouse 

We have been investigating the materialized (warehouse) approach. Specifically, we coded 

the MarineTLO ontology using OWL 2 and set up a repository using two different triplestores 

which are described in the sequel. Apart from MarineTLO, the repository contains the entire 

FLOD fetched from its SPARQL endpoint, the entire ECOSCOPE downloaded by its web 

site, and parts of WoRMS extracted using SDDS and TLO Wrapper, part of FishBase 

extracted using FishBaseReaper and part of DBpedia fetched from its public endpoint.
10

 

Figure 9 displays the current MarineTLO-based warehouse. 

 

Figure 9: The current version of MarineTLO-based warehouse 

Used Triplestores. We have comparatively evaluated two different triplestores: OWLIM-

Lite
11

 and OpenLink Virtuoso
12

. The first has been designed for medium data volumes (less 

than 100 million statements). It contains a persistence layer, however reasoning and query 
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11

http://owlim.ontotext.com/
12

 http://virtuoso.openlinksw.com/ 



evaluation are being performed entirely in main memory. On the other hand, Virtuoso 

supports backward chaining reasoning, meaning that it does not materialize all inferred facts, 

but computes them at query level. Practically, this means that transitive relations (i.e., 

rdfs:subClassof, rdfs:subPropertyOf, owl:equivalentClass etc.) are not 

physically stored in the knowledge base, but they are added to the result set during query 

answering. In §5.2 we comparatively evaluate these triplestores. 

4.3 MarineTLO-based Mappings  

For extracting information from the underlying sources and associating them with 

MarineTLO-based descriptions, we use mappings. In general, what we call mapping 

comprises: extensions to the metaschema, extensions to the schema, rdfs:subClassOf, 

rdf:subPropertyOf, owl:equivalentClass relationships between the elements of 

MarineTLO and the schema at hand, plus some inference rules. Below, we sketch the defined 

mappings. For instance, the ECOSCOPE-2-MarineTLO mapping consists of 

rdfs:subClassOf and rdfs:subPropertyOf like those shown in Figure 10. The 

DBpedia-2-MarineTLO mapping contains analogous relationships. Note that we do not use 

any mappings for FishBase and WoRMS, since the software tools we are using for 

transforming data from these sources (see §4.4), directly produce instances which are 

expressed with respect to MarineTLO descriptions.  

(tlo:EcoscopeSpecies, rdfs:subClassOf, tlo:TLOSpecies) 
(eco:fish, rdfs:subClassOf, tlo:EcoscopeSpecies) 
(eco:is_predator_of, rdfs:subPropertyOf, tlo:usuallyIsPredatorOf) 
(eco:is_prey_of, rdfs:subPropertyOf, tlo:usuallyIsPreyOf) 
(eco:biotic_component_of, rdfs:subPropertyOf, tlo:usuallyIsComponentOf) 
(eco:used_data_source, rdfs:subPropertyOf, tlo:isReferencedBy) 

Figure 10: Mappings between Ecoscope and MarineTLO 

However, in FLOD any resource is an instance of CodedEntity, and for distinguishing a 

vessel (e.g. vessel_289) from a species (e.g. thunnus albacares) we need to go one 

step further and look at its code. For instance, we can distinguish FAOSpecies as follows:  

FAOSpecies={x | CodedEntity(x) and ($ y isClassifiedByCode(x,y) and SpeciesCode(y))} 

The required mapping can be defined using owl:Restriction. This is supported by 

OWLIM, but it is not supported by Virtuoso. For the latter, we can express this mapping 

through the following SPARQL INSERT query: 

INSERT {  
 ?x rdf:type < http://www.ics.forth.gr/isl/MarineTLO/v4/marinetlo.owl#FLOD_Species> } 
WHERE { 
 ?x rdf:type <http://www.fao.org/figis/flod/onto/codedentity.owl#CodedEntity> . 
 ?x <http://www.fao.org/figis/flod/onto/codedentityclassification.owl#isClassfiedByCode> ?y .   
 ?y rdf:type <http://www.fao.org/figis/flod/onto/linneanspecies.owl#SpeciesCode> } 

Figure 11:  Expressing OWL Restriction as a SPARQL Insert query 

4.4 Software for Transforming Instances from Heterogeneous Sources to 

MarineTLO  

In some cases the data of the underlying sources (i.e., FishBase, WoRMS) is described in 

different formats. In these cases we have to transform the data to RDF. For this reason, we 



have implemented particular tools for carrying out these transformations, which are described 

below.  

FishBaseReaper. FishBase contains information in relational databases. We have 

implemented a tool, called FishBaseReaper, that extracts data from these databases and 

transforms them to RDF instances according to MarineTLO. The tool takes as input a list of 

concepts of interest (scientific name, ecosystems, bibliographic information), connects to the 

relational databases of  FishBase, and produces as output files (in N-Triples format) that 

contain the extracted information with respect to MarineTLO classes and properties. There is 

also the option of using a specific URI prefix for all the extracted entities, or different URIs 

prefixed according to the type of each entity (i.e., use of the namespace 

http://www.ics.forth.gr/isl/MarineTLO/Species for marine species and 

http://www.ics.fort.gr/isl/MarineTLO/PlaceName for countries). 

The Species Data Discovery Service (SDDS).  The Species Data Discovery Service 

[Candela et al., 2014-1], SDDS for short, is a gCube service [Candela et al., 2008] specifically 

conceived to provide its users with a single access point to species data, both occurrence data 

and nomenclature data, hosted by a number of distributed databases. It is a plugin-based 

mediator service for key species data databases including GBIF and OBIS for occurrence 

data, Catalogue of Life, OBIS, Interim Register of Marine and non-marine Genera (IRMNG), 

ITIS, NCBI, and WoRMS for nomenclature data. 

Given that the set of databases that the service interfaces with is open, it is sufficient to 

implement a dedicated plugin to (i) transforming the query for species data expressed in a 

domain specific query language into an equivalent query supported by the specific data 

provider, (ii) submit the transformed query to the data provider, and (iii) transform the results 

into the common data format envisaged by the SDDS. Details on the domain specific query 

language and the unifying data format characterizing SDDS are discussed in [Candela et al., 

2014-2]. Here it is worth to highlight that (i) the query language is essentially based on 

species names (scientific and common names) and supports directives for automatic query 

expansion based on known species names, (ii) the resulting records are annotated with details 

on data provenance produced accordingly to the policies of each data source, and (iii) the 

resulting records can be produced according to known formats and standards including 

DarwinCore [Wieszorec et al., 2012]. SDDS is offered both via a web-based user interface 

and a web-based API for programmatic access. 

MarineTLO Wrapper. We implemented a tool that uses SDDS API and transforms the 

fetched information into descriptions structured according to the MarineTLO. Its 

functionality is performed in two phases: during the first phase, it takes as input a list of 

scientific names to be retrieved and the data sources to be searched and submits the query to 

SDDS. The output is a Darwin Core Archive (DwC-A) file, containing the classifications of 

the given input. During the second phase the tool parses the DwC-A archives and produces 

the descriptions according to MarineTLO. Finally, the data are exported in RDF or 

NTRIPLES format. 

4.5 Transformation and Entity Matching Rules 

Transformation Rules. Some data can be stored into the warehouse as they are fetched, while 

others may need to be transformed. For example, a literal may need to be transformed into a 

URI, or to be split for using its constituents, or an intermediate node may need to be created 



(e.g. instead of (x,hasName,y) to have (x,hasNameAssignement,z),(z,name,y),(z,date,d). In 

order to handle such cases, we created a number of transformation rules that are applied to the 

fetched data, before its ingestion to the warehouse. The following table shows some of the 

transformation rules we applied for the warehouse; for each transformation rule, the upper 

row shows the initial expression and the lower one shows the transformed expression. 

Table 1: Transformation Rules 

1 

The string “Bonnattere, 1788” for the entry Thunnus Albacares in Worms 

<ns:thunnus_albacares> <mtlo:LX6_type_was_attributed_by> _:bn1 

_:bn1 <mtlo:is_carried_out_by> _:bn2 

_:bn2 <mtlo:name> “Bonnaterre” 

_:bn1 <mtlo:assignedDate> “1788” 

2 

The value (?val) of the property skos:prefLabel for every instance (?inst) of 

the class http://www.ecoscope.org/ontologies/ecosystems_def/fish 

?inst <mtlo:type_was attributed_by> _:bn1 

_:bn1 <mtlo:assignedName> ?val 

3 

?x <mtlo:usually_is_predator_of> ?z 

?y <mtlo:usually_is_predator_of> ?z 

?x != ?y 

?x <mtlo:usually_is_competitor_of> ?z 

 

SILK Rules. We created same-as relationships between the entities using an entity matching 

tool called SILK link
13

. Specifically, i) we inspected the connectivity between the sources, ii) 

we formulated a number of silk same-as rules, iii) we applied these rules to the sources and 

iv) we imported the produced same-as relationships into the warehouse. The reason for 

applying these rules is that they increase the connectivity of the resulting warehouse (this 

aspect will be discussed in detail later). Table 2 shows some indicative SILK rules
14

.  

Table 2: Rules for creating owl:sameAs links using SILK 

# Value from Source A Value from Source B Example 

1 wormsId attribute from 

ECOSCOPE 

Integer part of hasTaxonID 

attribute from WoRMS 

wormsId: 127027 
hasTaxonId: WoRMS:127027 

2 prefLabel attribute (in 

lower case) from 

ECOSCOPE 

label attribute (in latin) from 

FLOD 

prefLabel: Thunnus albacares 
label: “thunnus albacares”@la 

3 altLabel attribute from 

ECOSCOPE 

label attribute from FLOD altLabel: “yellowfin tuna”@en 
label: “yellowfin tuna”@en 

4 prefLabel attribute from 

ECOSCOPE 

binomial attribute from 

DBpedia 

prefLabel: Thunnus albacares 
binomial: Thunnus albacares 

5 label attribute tokenized 

using “ from FLOD  

binomial attribute (to lower 

case) from DBpedia 

label: “thunnus albacares”@la 
binomial: Thunnus albacares 

6 label attribute tokenized 

using “ from FLOD 

WoRMS species URI after 

removing the namespace, the 

taxon id, replacing underscores 

‘_’ with spaces and converting 

it to lower case 

label: “thunnus albacares”@la 
URI: http://www.marinespecies.org/ 
     entities/ WoRMS:127027/ 
     Thunnus_Albacares 

7 binomial attribute from 

DBpedia 

WoRMS species URI after 

removing the namespace, the 

taxon id, replacing underscores 

binomial: Thunnus albacares 
URI: http://www.marinespecies.org/ 
     entities/ WoRMS:127027/ 
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‘_’ with spaces and converting 

it to lower case 

     Thunnus_Albacares 

8 binomial attribute from 

DBpedia 

FishBase species URI after 

removing the namespace and 

replacing underscores ‘_’ with 

spaces 

Binomial: Thunnus albacares 
URI: http://www.fishbase.org/ 
     entity#thunnus_albacares 

9 WoRMS species URI after 

removing the namespace, 

the taxon id, replacing 

underscores ‘_’ with 

spaces and converting it to 

lower case 

FishBase species URI after 

removing the namespace and 

replacing underscores ‘_’ with 

spaces 

URI: http://www.marinespecies.org/ 
     entities/ WoRMS:127027/ 
     Thunnus_Albacares 
URI: http://www.fishbase.org/ 
     entity#thunnus_albacares 

10 label attribute tokenized 

using “ from FLOD 

FishBase species URI after 

removing the namespace and 

replacing underscores ‘_’ with 

spaces 

label: “thunnus albacares”@la 
URI: http://www.fishbase.org/ 
     entity#thunnus_albacares 

11 prefLabel attribute from 

ECOSCOPE 

FishBase species URI after 

removing the namespace and 

replacing underscores ‘_’ with 

spaces 

prefLabel: Thunnus albacares 
URI: http://www.fishbase.org/ 
     entity#thunnus_albacares 

 

4.6 Assessing the Connectivity of Information 

From this activity, we observed that the data fetched from the sources are in many cases 

problematic (consistency problems, duplicates, wrong values). We noticed that placing them 

together in a warehouse makes easier the identification of such errors. Furthermore, the 

availability of the warehouse enables defining sameAs connections by exploiting transitively 

induced equivalences, and can be produced by exploiting SILK matching rules, like the ones 

described in Section 4.5. In any case, the inspection of the repository for detecting the missing 

connections that are required for satisfying the needs of the competence queries is an 

important requirement. To this end, we have devised some metrics for quantifying the value 

of the warehouse and the value (contribution) of each source to the warehouse. These metrics 

are described in detail in [Tzitzikas et al., 2014-1], while a vocabulary that allows the 

representation, exchange and querying of such measurements is described in [Mountantonakis 

et al., 2014].  

4.7 Handling the Provenance 

After ingesting data coming from several sources in the warehouse we can still identify their 

provenance. We support four levels of provenance: (a) at conceptual modeling level, (b) at 

URIs and values level, (c) at triple level, and (d) at query level.   

As regards (a), MarineTLO models the provenance of species names, codes etc. (who and 

when assigned them). Therefore, there is no need for adopting any other model for capturing 

provenance (e.g. OPM [Moreau et al., 2011]). As regards (b), we adopt the namespace 

mechanism for reflecting the source of origin of an individual. For example, the URI 

http://www.fishbase.org/entity#thunnus_albacares  denotes that this URI has 

been derived from FishBase. Furthermore, during the construction of the warehouse there is 

the option of applying a uniform notation @source to literals (where source can be FLOD, 

ECOSCOPE, WoRMS, FishBase, DBpedia). As regards (c), we store the triples from each 

source in a separate graph space. This is useful not only for provenance reasons, but also for 

refreshing parts of the warehouse, as well as for computing the connectivity metrics that have 

been described previously. Finally, as regards (d), we have implemented a framework, called 



MatWare that is described below, which offers a query rewriting functionality that exploits 

the graph spaces, and returns the sources that contributed to the query results. The provenance 

at URIs and values level is just an alternative way of modelling provenance. We used this 

approach for modeling the scientific names of the species in the first versions of the 

warehouse. In subsequent versions we used the triple level provenance which allows storing 

data coming from different sources using different graph spaces. In this case the provenance 

of all the contents of a source is being derived from the graph space. An extensive discussion 

about provenance in MarineTLO-based warehouses can be found at [Tzitzikas et al., 2014-2]. 

4.8 Connecting the Pieces 

We developed a framework, called MatWare [Tzitzikas et al., 2014-2], that automates the 

construction, maintenance and quantitative evaluation of warehouses based on MarineTLO. 

Figure 12 illustrates the warehouse construction and evolution process, as supported by 

MatWare.   

 

Figure 12: The warehouse construction and evolution process supported by MatWare. 

5 Evaluation and Current Uses of the MarineTLO-based 

Warehouse 

5.1 Evaluating the MarineTLO-based Warehouse through Competence 

Queries 

For evaluating the structuring of MarineTLO and the process used for creating the 

MarineTLO-based repository, we had to investigate whether they offer the required 

abstractions for (a) adequately modeling the domain, (b) hosting information coming from 

different sources, and (c) allowing answering useful queries which cannot be answered by the 

individual underlying sources. For the latter, we formed a collection of competence queries in 

collaboration with the involved partners and their priorities. Table 3 shows some fundamental 



concepts that exist in the competence queries. The columns at the right show which of them 

are answerable by the underlying sources. We should note that the real competence queries 

include queries that combine more than one of the listed concepts, like the complex query that 

was described in the introduction of this paper, e.g., “I want the taxonomic information of the 

predators of a particular species with the different codes that the organizations use to refer to 

them”. This particular query requires sources that contain information about: (a) scientific 

names, (b) species taxonomy, (c) predators, and (d) codes (usually provided by FLOD/FAO). 

Such queries cannot be answered by any particular source (which is also evident for the 

particular example from the contents of Table 3), but can now be answered by the 

MarineTLO-based Warehouse that contains the required sources. This is the concrete 

evidence of the benefits offered by the integrated model. A table showing the competence 

queries we used and their corresponding SPARQL expression can be found at MarineTLO 

website. 

Table 3: Basic Queries 

Concepts ECOSCOPE FLOD WoRMS DBpedia FishBase 

Species Taxonomy   ü ü ü 

Scientific/Common Names ü ü ü ü ü 

Authorships   ü ü ü 

Predators ü     

Ecosystems ü     

Countries     ü 

Water Areas  ü   ü 

Vessels ü ü    

Gears ü ü    

EEZ
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  ü    

Bilbiography ü  ü  ü 

Statistical Indicators     ü 

5.2 Comparison of Different Triplestores 

Table 4 shows the sizes in triples of the contents of the OWLIM and Virtuoso repositories for 

the first version of the MarineTLO and its corresponding sources. The first contains in total 

10.8 million triples. This number includes the inferred triples, since this repository 

materialized them. The creation of the repository from scratch (by loading the corresponding 

files) takes around 30 minutes. The time is short because the used edition of OWLIM loads 

everything in main memory. In Virtuoso the number of triples is significantly lower, because 

the inferred triples are not stored. The creation in this case takes 4h and 20 minutes
16

. The 

execution of the INSERT query (needed for FLOD) created about 32,000 triples, i.e., the 

FLOD-originated triples from 2,148,128 increased to 2,180,678. 

Table 4: MarineTLO-based warehouses using OWLIM and Virtuoso 

KB Part # triples in OWLIM # triples in Virtuoso 
MarineTLO 277 58 

FLOD 9,092,087 2,148,128 

ECOSCOPE 170,980 84,184 

WoRMS 70,174 9,552 

FLOD-2-TLO mappings 180 15 

ECOSCOPE-2-TLO mappings 205 11 
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 Exclusive Economic Zone 
16

 Experiments done using a QuadCore Linux machine with 4 GB RAM with OWLIM version 4.2 and 

Virtuoso opensource version 6.1 



WoRMS-2-TLO mappings 180 8 

Total 10,822,758 2,241,956 
  

To test query performance, we used queries provided by the iMarine partners. The average 

time in OWLIM ranged from 62ms to 8.8 seconds, while in Virtuoso from 31ms to 3.4 

seconds. We observe that Virtuoso is faster despite the fact that OWLIM keeps everything in 

main memory, while Virtuoso does not necessarily do so. In general, performance depends on 

the capabilities of the adopted triplestore used (for a comparative analysis see 

[Haslhofer,2011]). 

5.2.1 The contents of the MarineTLO-based warehouse(-s) 

Based on the above results, we decided to use Virtuoso for the subsequent versions of the 

warehouse. Similarly to the different versions of the MarineTLO, we released 4 different 

version of the warehouse. Each version contained the corresponding MarineTLO version and 

the required schema mappings, in addition to the following: 

· Version 1: contents from FLOD, ECOSCOPE and WoRMS, about the scientific name 

and predators of species. 

· Version 2: contents from FLOD, ECOSCOPE, WoRMS and DBpedia, about the 

same concepts of Version 1 (i.e., scientific names and predators) plus authorship 

information of species. 

· Version 3: contents from FLOD, ECOSCOPE, WoRMS, FishBase and DBpedia 

about the same concepts of Version 2 plus common names of species, information 

about ecosystems, countries, water areas, vessels, gears and EEZ. After the Version 3 

release we released another version (named Version 3+) having the same contents 

with Version 3, however, we used multiple graphspaces for storing data coming from 

different sources. This allowed us to track easily the provenance of the information in 

the warehouse (e.g., the fact that “yellowfin tuna” is an English common name of the 

species thunnus albacares is derived from WoRMS and FishBase). 

· Version 4: contents from FLOD, ECOSCOPE, WoRMS, FishBase and DBpedia 

about the same concepts of Version 3, containing also information about 

bibliographic citations and statistical indicators. 

Figure 13 shows the differences between the 4 versions of the MarineTLO-based warehouse, 

in terms of the number of triples, species, main concepts and used sources. The first plot (A) 

shows how the number of species has been increased from 10 thousand (in the first version of 

the warehouse) to 53 thousand (in the fourth version). The second plot (B) depicts the 

increment in the size of the triplestore. Data are described in the warehouse as triples (in the 

form of <subject, predicate, object>), so the plot depicts the number of triples for the 

different versions. Plot (C) shows the different concepts (i.e. scientific names, predators, 

vessels, etc.) which are included in the different version of the MarineTLO-based warehouse 

and the last one (D) illustrates the number of the underlying sources which are exploited in 

each version. 



 

Figure 13: The evolution history of MarineTLO-based warehouse 

5.3 Current uses of MarineTLO-based Warehouse 

The MarineTLO-based warehouse is under constant evolution. At the time of writing, it 

contained information about 54 thousand species (i.e., scientific and common names, 

predators, bibliographic resources, ecosystems, water areas etc.). A SPARQL endpoint is 

available online
17

. Figure 14 shows the contents of the latest version of the MarineTLO-based 

warehouse. 

 

Figure 14: The contents of the MarineTLO-based warehouse (on July 2014) 
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 The warehouse can be accessed from https://i-marine.d4science.org/. Instructions for connecting and 

using is can be found at http://www.ics.forth.gr/isl/MarineTLO/files/AccessingMarineTLOBased 

Warehouse.pdf 



This warehouse is currently in use by the X-Search
18

 system. Before building the 

MarineTLO-based warehouse, X-Search was exploiting FLOD as the underlying knowledge 

base and was able to detect no more than 11,000 species. Note also that for each species, the 

MarineTLO-based warehouse has in average about 30 properties, while in FLOD each 

species has in average only 6 properties. In addition, the MarineTLO-based warehouse 

contains about 200 distinct predicates that connect two URIs (contrary to the about 40 

predicates of FLOD), allowing richer experience while browsing on the properties of an 

entity. The left part of Figure 15(i) depicts an example of (a part of) an entity card. An entity 

card is a popup window describing a resource (e.g., a species) which is displayed to the user 

on-demand (by clicking the small icon next to an entity name in Figure 3), offering entity 

exploration and browsing. In that figure, we divided the card into four groups, each one 

presenting information derived from different sources. Specifically, group A comes from 

DBpedia, B from FLOD, C from ECOSCOPE and D from WoRMS. Note that this 

information is derived at real-time (in less than one second).  

Furthermore, the FactSheetGenerator (described in § 2.2) for using this warehouse is under 

development and will offer more elaborate information. Its current version focuses on tuna 

species and is called TunaAtlas
19

. An indicative screen of a prototype is given in Figure 

15(iii).  

Finally, we have developed (and currently improve) an Android application, called Ichthys 

that exploits the contents of the warehouse aiming to offer to end users information about 

marine species in a user friendly manner. Screen samples are shown in Figure 15(ii). 

6 Concluding Remarks 
In this paper, we described the design of a top level ontology for the marine domain, intended 

to satisfy the need for maintaining integrated sets of facts about marine species, and thus 

assisting ongoing research on biodiversity. The ontology offers a unified and coherent core 

model for schema mapping, which enables the formulation and answering of complex queries 

that cannot be answered by any individual source alone. We identified and described use 

cases and applications that exploit this ontology, and elaborated on the mappings that are 

required to build integrated warehouses. Finally, we discussed the realization of the mappings 

given the reasoning capabilities of the selected triplestore and evaluated the warehouse with 

respect to its completeness and its ability to answer the complex queries. 

In the future, we plan to continue along the same lines and evolve MarineTLO by considering 

more sources and more competence queries, and to enhance the configurability of the 

workflow used for producing MarineTLO-based wareshouses.  

To conclude, MarineTLO will also be exploited in the context of the LifeWatch Greece 

project
20

, as the core underlying schema of the Lifewatch Greece infrastructures. Towards this 

end, it will be extended to cover also terrestrial and fresh water domains, microCT scanning 

processes, genetics, morphometric characteristics, and more. 
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 http://www.ics.forth.gr/isl/X-Search 
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 http://www.i-marine.eu/Content/About.aspx?id=f0fd33e9-b4bf-41b4-a746-46c0981913cc 
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 http://www.lifewatchgreece.eu/ 



 

 

Figure 15: Usages of MarineTLO-based warehouse. (i) an entity exploration card displayed by XSearch for the 

species Thunnus Albacares, (ii) Screenshots from the Icthys Android  application, (iii) the Tuna Atlas application 
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