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Abstract—Advances in positioning technologies together with
the wide adoption of GPS-enabled smartphones enable accurate
and low-cost tracking of user location. This allows the collection
of large amounts of person-specific mobility data that offer
remarkable opportunities for data analysis. Yet, the sharing of
such data poses significant privacy risks. This enunciates the
need for privacy-preserving, trajectory data publishing methods.
Existing approaches are either limited in their privacy specifica-
tion component or they incur significant, and often unnecessary,
data distortion. In response, we propose a novel framework for
anonymizing trajectory data that prevents the disclosure of both
identity and sensitive location information, while retaining data
utility. Our framework involves: (i) selecting similar trajectories,
by employing Z-ordering or data projections on frequent sub-
trajectories, (ii) organizing the selected trajectories into carefully
constructed clusters, and (ii) anonymizing each cluster separately.
We develop algorithms to realize our framework, which are
effective and efficient, as verified by extensive experiments.

I. INTRODUCTION

The enormous advances in positioning technologies, such

as GPS, GSM, UMTS and RFID, along with the rapid

developments in the wireless communications industry, have

made possible the accurate tracking of user location, at a

low cost [7]. This, together with the wide adoption of GPS-

enabled smartphones, gave rise to novel applications, which

are based on user location. At the same time, the mobility data

that are collected from these applications provide a valuable

resource for understanding human behavior, as well as for

supporting various processes. The sharing, however, of person-

specific movement data, for research or other purposes, poses

significant challenges, as it may threaten individuals’ privacy.

Specifically, the publishing of person-specific trajectories

(i.e., sequences of locations visited by individuals) can lead to

identity disclosure, even when they are devoid of identifying

information [3], [21]. Identity disclosure attacks are possible,

when an individual can be associated with a sequence of

locations in the published data. Consider, for example, the

dataset in Fig. 1a, where each trajectory ti corresponds to an

individual and contains an ordered list of locations visited by

them. Observe that identity disclosure is possible, based on the

sequence of locations d and a, because this sequence appears

only in t1. A sequence of locations that may lead to iden-

tity disclosure, is called quasi-identifier (QID) [21]. Existing

approaches prevent identity disclosure by either anonymizing:

(i) each trajectory as a whole (e.g., by producing cylindri-

cal tubes that contain many trajectories [1]), or (ii) parts

id trajectory

t1 (d, a, c, e)
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Fig. 1: (a) The original database T (b) Z-ordering

of trajectories, based on specific QIDs [21], [23]. The first

category of approaches, termed QID-blind, employ clustering

and perturbation [1], [16], while approaches that fall into the

second category, termed QID-aware, use generalization and

suppression [15], [21], [23].

QID-blind approaches are limited into their privacy speci-

fication component and may harm the utility of the published

data, unnecessarily. This is because: (i) they assume that an

attacker may know all locations visited by an individual, which

is extremely difficult, due to the high-dimensionality and

sparsity of trajectory data [21], (ii) clustering-based methods

may lose information about the direction of movement of co-

clustered trajectories, and (iii) perturbation-based approaches

may generate false associations, harming data truthfulness. On

the other hand, QID-aware approaches assume that data own-

ers possess (i) detailed knowledge of QIDs (e.g., an attacker

knows a certain sequence of locations about an individual

[21]), which is unlikely in the context of trajectory data

publishing [3], and (ii) taxonomies that organize all locations

in terms of semantic similarity, which is restrictive for real-

world trajectory data publishing applications [18].

Adapting km-anonymity [22] to trajectory data and employ-

ing a distance-based generalization model has been proposed

recently [18] to address some of these limitations. However,

the approach of [18] may risk the disclosure of sensitive

location information (e.g., the fact that an individual visited a

psychiatric clinic) and incur excessive distortion, as it applies

distance-based generalization to the entire dataset.

In this paper we propose a novel anonymization framework,

which allows preventing the disclosure of both identity and
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sensitive location information, while publishing minimally

distorted data. This is achieved by performing a series of

operations: (i) Select, which identifies similar trajectories

based on summary information about them, (ii) Organize,

which sorts the selected trajectories with respect to similarity

and groups them into clusters, and (iii) Anonymize, which

constructs clusters that prevent both types of disclosure.

Our work makes the following specific contributions:

• We develop two algorithms, called ZGA and SGA, to

realize our anonymization framework. ZGA performs Se-

lect by capturing location similarity, based on Z-ordering

[20], whereas SGA by measuring trajectory similarity

using projections of trajectories on frequent subtrajecto-

ries [2]. These algorithms subsequently organize similar

trajectories, using Gray order [19], and form clusters

which are anonymized independently.

• We design ℓm-ANON, an algorithm for anonymizing

the clusters created by ZGA or SGA. This algorithm

employs distance-based generalization to preserve privacy

and works in an apriori-like fashion.

• We experimentally demonstrate that our approach is

effective at preserving data utility and very efficient.

The rest of the paper is organized as follows. Section II for-

mulates the problem and Section III presents our framework.

Related work and experiments are presented in Sections IV

and V, respectively. Section VI concludes the paper.

II. PROBLEM FORMULATION

Let L be a set of locations visited by individuals. Each

location in L corresponds to a different region (cell) of a

two-dimensional, uniform grid, and we may use the (X,Y )-
coordinates of the cell to refer to its associated location.

Some locations in L are sensitive, as they represent places

that individuals are not willing to be associated with, such as

an oncology clinic. Following [14], we assume that sensitive

locations are specified by data owners.

A trajectory t is an ordered list of locations (l1, . . . , ln),
where li ∈ L, 1 ≤ i ≤ n. The size of the trajectory t =
(l1, . . . , ln), denoted by |t|, is the number of its locations, i.e.,

|t| = n. A trajectory s is a subtrajectory of, or is contained in,

a trajectory t = (l1, . . . , ln), when: (i) |s| ≤ |t|, and (ii) there is

a mapping f such that λ1 = lf(1), . . . , λν = lf(ν) and f(1) <
· · · < f(ν). Thus, s is formed by removing some locations

from t, while maintaining the order of all other locations.

Given a set of trajectories T , the support of a subtrajectory

s, denoted by sup(s, T ), is defined as the number of distinct

trajectories in T that contain s. These trajectories are referred

to as the supporting trajectories of s, and their set is denoted

with Ts. Given a set of trajectories T and a minimum

support threshold minSup, specified by data owners, the set

of frequent subtrajectories contains a subtrajectory s, if and

only if sup(s, T ) ≥ minSup [2].

Example 1: A trajectory dataset is shown in Fig. 1a and is

comprised of trajectories t1 to t6 (id is shown for reference

purposes only). Each trajectory contains some of the locations

in the set L = {a, b, ..., g}, and the locations f and g are

sensitive. A subtrajectory of the trajectory t1 = (d, a, c, e)
is s = (a, e), which has a support of 3. Assuming that

minSup = 3, the subtrajectories (d, c) and (d, e) are both

frequent, unlike (d, c, e) and (d, e, c).

In the following, we define the concept of trajectory key,

which is essentially a projection of the trajectory on the feature

space of an ordered set of subtrajectories.

Definition 1 (Trajectory key): Given a trajectory t in T and an

ordered set of subtrajectories S = (s1, . . . , sl), where si ∈ T ,

1 ≤ i ≤ l, the key of t, denoted as KS
t is a set of size |S|,

whose i-th element is 1, if si is contained in t, and 0 if not.

Example 2: Consider the trajectory t1 in Fig. 1a and assume

the set
(

(d, e), e, d
)

, which contains the three most frequent

subtrajectories in T ordered in decreasing support; the key for

t1 is (111), as all three of them are subtrajectories of t1.

As mentioned before, a location in L is associated with

a distinct pair of (X,Y )-coordinates. To measure similarity

between locations, we use the Z-order (or Morton order),

a function that maps locations to numbers, called z-values.

The z-value for a location is calculated by interleaving the

binary representations of the location’s (X,Y ) coordinates

[20], and the mapping preserves the locality of locations. That

is, locations with “similar” coordinates are mapped to numbers

whose difference is “small”. Based on this function, we obtain

the Z-ordering of locations, as explained below.

Definition 2 (Z-ordering of locations): Given a set of locations

in L and their corresponding z-values, Z-ordering is defined

as the ordering obtained by sorting the locations in ascending

order of their z-values.

The Z-ordering of all nonsensitive locations in T , is shown

in Fig. 1b. To publish T in a way that prevents both the disclo-

sure of individuals’ identity and sensitive location information,

we use the km-anonymity and lm-diversity privacy principles,

which were originally developed for transaction data [22].

The following definition explains how these principles can be

adapted to trajectory data and combined together, in order to

obtain the principle of (k, ℓ)m-anonymity.

Definition 3 ((k, ℓ)m-anonymity): Given parameters k and ℓ,
which are specified by data owners, a trajectory dataset T
satisfies (k, ℓ)m-anonymity, if and only if: (i) sup(s, T ) ≥ k,

for any subtrajectory s, comprised of m nonsensitive locations

in L, and (ii) sup(s′, Ts) ≤ ℓ, where s′ is any subtrajectory

of sensitive locations that are contained in Ts.

Example 3: The dataset in Fig. 1a is (2, 2)1-anonymous,

because each nonsensitive location a to e has support of at

least 2, and none of the sensitive locations f and g co-occurs

with all the supporting trajectories of a or e. However, this

dataset is not (2, 2)2-anonymous, as the subtrajectory (a, d)
of t3 co-occurs with f , in no other trajectory.

(k, ℓ)m-anonymity guarantees that an attacker, who knows

any subtrajectory s of m nonsensitive locations about an indi-

vidual, cannot link the individual to fewer than k trajectories
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in the published dataset, nor can associate the individual with

a sensitive location with a probability that exceeds 1/ℓ.
To enforce (k, ℓ)m-anonymity, we employ the distance-

based generalization model [18], which replaces nonsensitive

locations with generalized locations. A generalized location

{l1, . . . , lv}, is a set of at least two nonsensitive locations

l1, . . . , lv in L, which is interpreted as any of the locations

l1, ..., lv . Sensitive locations are not generalized, because they

typically need to be retained intact in applications. Thus, given

a trajectory t in T , we may replace a nonsensitive location li
in t, where 1 ≤ i ≤ u, with a generalized location {l1, ..., lv}.

Clearly, generalization must avoid unnecessarily distorting

the original dataset T , thus we need to quantify distortion.

To achieve this, we adopt the location, trajectory, and trajec-

tory dataset distance measures [18], which are applicable to

distance-based generalization and are defined as follows.

Definition 4 (Distance): Given a nonsensitive location l that

is generalized to {l1, . . . , lv}, the location distance between l
and {l1, . . . , lv}, is defined as:

Dloc(l, {l1, . . . , lv}) = avg
{

EuclDist(l, li) | 1 ≤ i ≤ v
}

where EuclDist is the Euclidean distance. The trajectory dis-

tance between t = (l1, . . . , ln) and its generalized counterpart

t′ = (l′1, . . . , l
′

n) is defined as:

Dtraj (t, t
′) = avg

{

Dloc(li, l
′

i) | 1 ≤ i ≤ n
}

The trajectory dataset distance between T = {t1, . . . , tu}
and its generalized counterpart T ′ = {t′1, . . . , t

′

u}, where the

trajectory ti is generalized to trajectory t′i, 1 ≤ i ≤ u, is

defined as:

D(T , T ′) = avg
{

Dtraj (ti, t
′

i) | 1 ≤ i ≤ u
}

These measures quantify distortion, based on the distance

between the original and generalized data and apply average to

combine specific distances, as illustrated below. Normalizing

these measures is possible by dividing each of them with the

maximum distance between locations in T .

Example 4: Consider trajectory t1 of Fig. 1a and let

EuclDist(a, b) = 1, EuclDist(a, c) = 1 and EuclDist(b, c) =
2. If locations a and c of t1 are generalized to location {a, b, c},

then the location distances are Dloc(a, {a, b, c}) = (0 + 1 +
1)/3 = 2/3 and Dloc(c, {a, b, c}) = 1. Also, if trajectory

t1 = (d, a, c, e) is generalized to (d, {a, b, c}, {a, b, c}, e) the

trajectory distance Dt1 = (0 + 2/3 + 1 + 0)/4 ≈ 0.42.

The problem we consider is formulated as follows.

Problem: Given a trajectory dataset T , and parameters k, ℓ,
and m, construct a (k, ℓ)m-anonymous version T ′ of T , such

that D(T , T ′) is minimized.

III. SELECT-ORGANIZE-ANONYMIZE FRAMEWORK

This section presents our framework for enforcing (k, ℓ)m-

anonymity to a trajectory dataset T . Our framework performs

the following operations:

1) Select: This operation selects similar trajectories, based

on different properties of their keys.

2) Organize: In this operation, the selected trajectories are

sorted, based on their Gray order [19], and grouped into

carefully constructed clusters.

3) Anonymize: This operation constructs a minimally dis-

torted (k, ℓ)m-anonymous dataset, by anonymizing the

trajectories of each cluster separately.

To realize this framework, we develop two algorithms,

henceforth called ZGA (for Z-ordering, Gray-code ordering,

and Anonymize) and SGA (for Subtrajectory selection, Gray-

code ordering, and Anonymize). As is evident from their

names, these algorithms perform Select, based on different

notions of trajectory key similarity. In addition, we introduce

ℓm-ANON, an algorithm that enforces (k, ℓ)m-anonymity, us-

ing distance-based generalization. In what follows, we present

the details of the ZGA, SGA, and ℓm-ANON algorithms.

ZGA algorithm. This algorithm performs the Select oper-

ation, based on the similarity of nonsensitive locations. To

achieve this, it constructs the Z-ordering of the locations,

which preserves the locality of locations, as discussed in

Section II. Then, ZGA performs Organization by: (i) creating

a key, for each trajectory in the dataset, based on Z-ordering,

(ii) sorting trajectories, based on the Gray order of their keys,

and (iii) formulating clusters, based on the latter sorting or-

der. Thus, trajectories that contain many similar, nonsensitive

locations are organized together.

Consider, for instance, three trajectories with keys t =
(001), t′ = (011), and t′′ = (101), which are sorted in Gray

order. Note that t is more similar to t′ than to t′′, because: (i)

t and t′ differ by only one bit (the 2nd bit from left to right),

and (ii) the bit in which they differ is adjacent to the bit they

share (the 3rd bit from left to right). Thus, ZGA organizes

trajectories that share many neighboring locations, which can

be subsequently generalized with low information loss. Due

to its efficient computation and effectiveness, Gray order has

been employed as an alternative to more computationally

demanding clustering algorithms (e.g., in [10], [22]). However,

the way that Gray order is combined with Z-ordering is new, to

the best of our knowledge. Subsequently, the SGA algorithm

performs the Anonymize operation, by applying ℓm-ANON to

each cluster separately.

Algorithm ZGA takes as input a trajectory dataset T , as

well as parameters k, ℓ, m, and C, and it constructs the (k, ℓ)m-

anonymous counterpart T ′ of T . The parameter C specifies the

number of clusters, which will be created in the Organization

operation, and is set by data owners. Automated specification

of C is possible [13] but left as future work. After initialization,

ZGA constructs the Z-ordering of all nonsensitive locations

in L and stores it in a set S (Steps 1-3). Next, the algorithm

stores each trajectory t ∈ T and its key KS
t in a 2D array

D, which is then sorted according to the Gray order of the

stored trajectory keys (Steps 4-7). After that, ZGA assigns the

ordered trajectories of D into clusters (Step 8). Each cluster is

then anonymized using ℓm-ANON (to be discussed later) and

added into T ′ (Steps 9-9). Last, T ′ is returned (Step 12).

Example 5: Consider applying ZGA to the dataset in Fig. 1a,
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Algorithm: ZGA

Input: A dataset T , parameters k, ℓ, m, and C
Output: A (k, ℓ)m-anonymous dataset T ′

1 T ′ := ∅ // Initialize output

2 D := S := ∅ // Initialize D and S
3 S := Z-ordering of nonsensitive locations in L
4 for every trajectory t ∈ T do
5 D(t).traj := t
6 D(t).key := KS

t

7 sort D according to D.key in Gray order
8 G := set of clusters, each containing |D|/C consecutive

trajectories from D
9 for every cluster C ∈ G do

10 T̃ := ℓm-ANON(C, k, ℓ,m)

11 T ′ := T ′ ∪ T̃

12 return T ′

Algorithm: SGA

Input: A dataset T , parameters k, ℓ, m, C, and K
Output: A (k, ℓ)m-anonymous dataset T ′

1 T ′ := ∅ // Initialize output

2 D := ∅ // Initialize D
3 S:= the set of top K frequent subtrajectories, comprised of

nonsensitive locations, in descending order of support
4 for every trajectory t ∈ T do
5 D(t).traj := t
6 D(t).key := KS

t

7 sort D according to D.key in Gray order
8 G:= set of C clusters, each containing |D|/C consecutive

trajectories from D
9 for every cluster C ∈ G do

10 T̃ := ℓm-ANON(c, k, ℓ,m)

11 T ′ := T ′ ∪ T̃

12 return T ′

when all parameters are set to 2. The algorithm constructs the

Z-ordering {a, b, d, e, c} by sorting these locations in ascend-

ing order of their z-values, and populates the 2D-array D with

all trajectories and their keys. Then, ZGA sorts D based on

the Gray order of trajectory keys (Step 7). The unsorted and

sorted keys of these trajectories are shown in Figs. 2a and

2b, respectively. As C = 2, two clusters containing {t6, t3, t1}
and {t4, t2, t5} are created and anonymized separately by ℓm-

ANON (Steps 9-9). Last, the dataset T ′ in Fig. 2c is returned.

SGA algorithm. This algorithm performs the Select operation

of our framework, based on the notion of frequent subtrajec-

tories, and the Organization operation, by creating trajectory

keys from the selected subtrajectories. That is, trajectories are

projected on distinct sets of nonsensitive locations, which are

visited by most individuals in a specific order, and trajectories

with “similar” projections are brought together. In this way,

ZGA organizes trajectories that share many frequent subtra-

jectories, which can be subsequently anonymized with low

information loss. To see this, observe that a subtrajectory of

m nonsensitive locations and a support of at least k, is km-

anonymous. Then, the sorting, clustering, and anonymization

of trajectories are performed, as in the ZGA algorithm.

Algorithm: ℓm-ANON

Input: A cluster C, parameters k, ℓ, and m
Output: A (k, ℓ)m-anonymous set C′

1 C′ := C // Initialize output

2 for i := 1 to m do
3 S := ∅ // Initialize S
4 for every subtrajectory s ∈ C′ with size i do

5 compute sup(s′, C′

s)
6 if sup(s, C′) < k or sup(s′, C′

s) > ℓ then
7 S := S ∪ s // Insert s to S

8 sort S in increasing order of sup(s, C′)
9 for every subtrajectory s ∈ S do

10 while sup(s, C′) < k or sup(s′, C′

s) > ℓ do
11 find the location l1 in s with the minimum support

in C′

12 find the location l2 ∈ C′ such that l2 6= l1 and
Dloc(l1, l2) is minimum

13 replace each occurrenc of l1 and l2 in C′ with the
generalized location {l1, l2}

14 return C′

The SGA algorithm takes as input a trajectory dataset T ,

as well as parameters k, ℓ, m, C, and K, and it returns T ′,

the (k, ℓ)m-anonymous counterpart of T . The parameter K
controls the number of subtrajectories, contained in trajectory

keys. Specifically, SGA creates a key with the top K frequent

subtrajectories in T (i.e., those with the largest support). These

subtrajectories are comprised of nonsensitive locations only.

K is set by data-owners and its impact will be assessed in

Section V. After initialization, SGA finds the top K frequent

subtrajectories, using the method in [17], which is selected

due to its efficiency (Steps 1-3). Then, in Steps 7-9, SGA

performs sorting, clustering, and anonymization, and it returns

the (k, ℓ)m-anonymous dataset T ′, in Step 12.

Example 6: Consider applying SGA to the dataset in Fig. 1a,

when all parameters are set to 2. The algorithm finds the top

2 frequent subtrajectories, d and e, and stores them in S, in

descending order of support (Step 3). Then, it constructs the

2D-array D, using all trajectories in T and their keys, which

is sorted, as in Fig. 2b (Steps 4-7). Next, SGA creates the

clusters {t5, t1, t3} and {t4, t6, t2}, which are anonymized,

and produces the dataset in Fig. 3d (Steps 8-12). This dataset

differs from the output of ZGA (Fig. 2c), due to the different

notion of trajectory similarity used by SGA.

ℓm-ANON algorithm. This algorithm is used by ZGA and

SGA, to enforce (k, ℓ)m-anonymity to a cluster produced by

these algorithms, with minimal distortion. Given a cluster C,

and parameters k, ℓ and m, ℓm-ANON constructs the (k, ℓ)m-

anonymous counterpart C ′ of C. To achieve this effectively

and efficiently, it employs distance-based generalization [18]

and the apriori principle [2]. That is, it first considers general-

izing subtrajectories, containing one location, and then applies

the same procedure to increasingly larger subtrajectories, as

long as (k, ℓ)m-anonymity is not satisfied.

In more detail, ℓm-ANON initializes C ′ to the input cluster

C and iterates over all subtrajectories of size i (Steps 1-4).
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location

id c e b d a

t1 1 1 0 1 1
t2 1 1 1 0 1
t3 0 1 0 1 1
t4 1 1 1 1 0
t5 1 0 0 1 0
t6 0 1 0 1 0

(a)

location

id c e b d a

t6 0 1 0 1 0
t3 0 1 0 1 1
t1 1 1 0 1 1
t4 1 1 1 1 0
t2 1 1 1 0 1
t5 1 0 0 1 0

(b)

id trajectory

t′
6

({d, a, c, e}, {d, a, c, e})
t′
3

({d, a, c, e}, {d, a, c, e}, {d, a, c, e}, f)
t′
1

({d, a, c, e}, {d, a, c, e}, {d, a, c, e}, {d, a, c, e})
t′
4

({a, b, d}, {a, b, d}, e, c)
t′
2

({a, b, d}, {a, b, d}, e, c)
t′
5

({a, b, d}, g, c)

(c)

Fig. 2: (a) key of T using Z-ordered locations (b) Gray ordered key, and (c) output of ZGA

F.sb F. sup

d 5
e 5

(d, e) 4
c 4

(d, c) 3
a 3

(a)

freq. subtraj.

id e d

t1 1 1
t2 1 0
t3 1 1
t4 1 1
t5 0 1
t6 1 1

(b)

freq. subtraj.

id e d

t5 0 1
t1 1 1
t3 1 1
t4 1 1
t6 1 1
t2 1 0

(c)

id trajectory

t′
5

({d, a, e, c}, g, {d, a, e, c})
t′
1

({d, a, e, c}, {d, a, e, c}, {d, a, e, c}, {d, a, e, c})
t′
3

({d, a, e, c}, {d, a, e, c}, {d, a, e, c}, f)
t′
4

({a, b, d}, {a, b, d}, e, c)
t′
6

({a, b, d}, e)
t′
2

({a, b, d}, {a, b, d}, e, c)

(d)

Fig. 3: (a) ordered array F containing subtrajectories and its respective support (presenting the 5 most frequent) (b) key of T
using 2 most frequent subtrajectories (c) gray ordered key, and (d) output of Algorithm SGA

Note that i increases from 1 to m in each iteration. For each

subtrajectory of size i, it calculates the support sup(s′, C ′

s),
where C ′

s is the set of supporting trajectories of s in C ′, and s′

is the sensitive location with the largest support in C ′

s (Step 5).

Then, ℓm-ANON populates a set S with all subtrajectories that

require protection, either because they have a lower support

than k in C ′, or because they co-occur with s′ in more

than ℓ subtrajectories in C ′

s (Steps 6-7). After considering all

subtrajectories in C ′, the algorithm sorts S with respect to the

support of its members, in increasing order (Step 8). Next, it

considers each subtrajectory in S and applies distance-based

generalization to it, so that: (i) its support is at least k, and

(ii) it does not co-occur with s′ in more than ℓ subtrajectories

in C ′

s (Steps 9-13). Note that the generalization aims at

minimizing the trajectory distance measure (see Definition 4),

and it is applied to each subtrajectory in S. After that, the

algorithm proceeds to the next iteration, if i does not exceed

m. Otherwise, ℓm-ANON returns C ′, which satisfies (k, ℓ)m-

anonymity (Step 14).

Example 7: Consider applying ℓm-ANON to a cluster contain-

ing t4, t2, and t5 in Fig. 1a, when all parameters are set to

2. The algorithm starts by considering the subtrajectories of

size 1 in Fig. 4a and calculates sup(s′, C ′

s), for each of them

(Steps 2-5). Then, it adds a into S , since its support is 1<k
(Steps 6-7). No other subtrajectory satisfies the check in Step

6, so ℓm-ANON sorts S and applies generalization. Thus, the

generalized location {a, b}, which has minimum Dloc(a, b),
is constructed and replaces a and/or b, in all trajectories

of C ′ (Steps 8-13). This produces the cluster in Fig. 4b.

After that, ℓm-ANON considers the subtrajectories of size 2

in Fig. 4c and applies the same procedure. This creates the

cluster, shown in Fig. 4d, which contains {a, b, d} and satisfies

(2, 2)2-anonymity. As all subtrajectories of size 2 have been

considered, ℓm-ANON returns the cluster in Fig. 4d.

IV. RELATED WORK

Trajectory data anonymization has attracted significant at-

tention, due to the pervasive use of location-aware devices that

led to tremendous increase in the volume of collected spa-

tiotemporal data about individuals. Bonchi et al. [3] surveyed

works on trajectory data anonymization and classified them

into motion-pattern based and location based, according to the

adversarial model they adopt. Motion-pattern based methods

investigate how anonymized data may allow an attacker to

predict individuals’ locations, based on their mobility patterns

[9], [11], whereas the goal of location based methods is to

prevent the inference of individuals’ identity and/or sensitive

location information from anonymized data (e.g., [1], [14],

[16], [18], [21], [23]). Our method falls into the latter category,

and, more specifically, to the subcategory of QID-aware meth-

ods, which guard against attackers with specific background

knowledge. In what follows, we discuss QID-aware, location

based methods that are relevant to the one we propose. We

also note that there are QID-blind methods [1], [16], which

do not consider specific locations that may risk privacy.

Terrovitis et al. [21] considered multiple attackers, each

knowing a different set of places of interest (POIs), visited

by individuals. To preserve privacy in this setting, the authors

proposed limiting the probability of associating these POIs

to an individual’s record in the published trajectory dataset.

This is achieved through a suppression-based method, which

aims at removing the least number of POIs from trajectories,

so that the remaining trajectories are protected with respect

to the knowledge of each adversary. Unlike [21], our method

additionally prevents the inference of sensitive location infor-

mation, and employs generalization, which generally preserves

data utility better than suppression.

Yarovoy et al. [23] considered trajectories containing time

information, in addition to POIs, and assumed that each

individual has a different set of POIs and times that need to

be protected. To offer protection, the authors followed a k-

anonymity based approach, which protects trajectories based
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Fig. 4: (a) Support for subtrajectories of size i = 1 (b) transformed set C ′ after the processing of subtrajectory a, (c) support

for subtrajectories of size i = 2, and (d) the final (2, 2)2-anonymous result C ′

on individuals’ privacy requirements. In practice, eliciting

privacy requirements from individuals may be challenging [3],

so the use of privacy principles that provide more uniform

protection, such as (k, ℓ)m-anonymity that we adopt, is more

feasible. The authors of [23] developed two generalization-

based algorithms, which employ Hilbert curves. The algo-

rithms proposed in [23] follow a very different process of

generalizing data than that of our algorithms and may create

overlapping groups of records. This is mainly because the

algorithms in [23] adopt a different privacy model and consider

time information.

Recently, a km-anonymity-based algorithm for trajectory

data has been proposed in [18]. This algorithm, called SE-

QANON, works in an apriori-like fashion (i.e., it aims at

protecting increasingly larger combinations of individuals’

locations from identity disclosure) and applies generalization

to the entire dataset. However, SEQANON does not provide

protection against the inference of individuals’ sensitive lo-

cation information, and may heavily generalize data. This is

because it creates a large number of generalized locations

compared to our algorithms, as our experiments demonstrate.

Methods that employ differential privacy [8] have also

been proposed [5], [6]. These methods focus on specific data

analytic tasks, such as query answering or frequent pattern

mining [2], and they employ noise addition. Thus, unlike our

approach, they harm data truthfulness, which is necessary to

preserve in many applications [12].

V. EXPERIMENTAL EVALUATION

This section presents an experimental evaluation of our

algorithms, in terms of data utility and efficiency.

Experimental setup. All algorithms were evaluated using a

dataset of moving objects in the Oldenburg city. The dataset

was constructed using Brinkhoff’s data generator [4], which

is employed by many related works [1], [16], [21], [23].

The dataset consists of 18,143 trajectories, whose average

length is 4.72 and are created as in [18]. We compare our

algorithms, referred to as SGA and ZGA, respectively, with

the SEQANON algorithm [18], which is the most closely

related to them. All algorithms were implemented in C++ and

tested on an Intel Core i7 at 2.2 GHz with 6 GB of RAM.

Data utility. In this section, we evaluate the impact of

parameters k, m, ℓ, and C on data utility, whose default values

are k = 5, m = 2, ℓ = 2, and C = 5. The parameter K
in SGA is fixed to 10, because this offered a good trade off

between utility and efficiency, as we found empirically (results

omitted due to space limitations). To quantify data utility, we

measure the number of original and generalized locations in

the anonymized datasets. For the generalized locations, we also

measure their average size and distance, similarly to [18].

We first considered the effect of k, which varied in [2,

100]. Observe, in Figs. 5a and 5b, that the number of original

locations, as well as that of generalized locations, decreases

with k. This is because all algorithms create fewer and

larger generalized locations (i.e., they generalize more original

locations together), as k increases. Both SGA and ZGA retain

many more original locations than SEQANON, which helps

data utility. Specifically, ZGA and SGA retained 81% and

28% more original locations than SEQANON, on average. This

is because they are applied to each cluster separately. This re-

sult is particularly encouraging, as our algorithms prevent both

types of disclosure, unlike SEQANON. Furthermore, ZGA and

SGA created fewer generalized locations than SEQANON, by

88% and 87.8% (on average), respectively.

Fig. 5c reports the average number of locations in a general-

ized location, and Fig. 5d the average distance of all locations

contained in each generalized location, which is computed

as a percentage of the distance between the two furthest

locations in a generalized location. Both of these statistics

increase with k, as the distortion required to preserve privacy

increases. However, the algorithms behave differently. That is,

SEQANON creates generalized locations that contain a small

number of locations that are “close” to one another, whereas

the generalized locations constructed by SGA are more, and

consist of more distant original locations. This is because, the

distribution of clusters created by SGA is rather skewed (i.e., a

small number of clusters with dissimilar trajectories influence

the average statistics in Figs. 5c and 5d). We also observed that

the issue becomes evident for k > 10 and can be ameliorated

by creating signatures comprised of more subtrajectories. On

the other hand, the generalized locations constructed by ZGA

are similar in terms of distance to those created by SEQANON.

To study the impact of m on data utility, we varied this

parameter in [1, 4]. Since the dataset we use has an average

of 4.72 locations per trajectory, using m = 3 (respectively

m = 4) means that we assume that an attacker knows

approximately 65% (respectively 85%) of a user’s locations.

So, for m = 3 and m = 4, we expect that few locations will be

published intact. On the contrary, for m = 1, all locations have

support at least k, and a negligible amount of generalization

is required. This is true for all algorithms, as can be seen in

Fig. 6a. For m = 2, all algorithms create many generalized

locations containing locations that are close to one another, as

shown in Figs. 6b and 6c. Moreover, more generalization needs

to be applied to satisfy privacy, as m increases. This leads
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to generalized locations with larger sizes that contain more

distant locations, as shown in Figs. 6c-6d. Next, we evaluated
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Fig. 7: (a) avg. number of generalized locations’ size and (b)

avg. % of distance in generalized locations for ℓ.

the impact of parameter ℓ. As SEQANON does not satisfy lm-

diversity, we only report results for ZGA and SGA in Fig. 7.

Notice that ZGA created generalized locations that consist of

fewer and less distant locations, thereby helping data utility.

On average, the generalized locations, created by ZGA consist

of 82.5% fewer locations than those constructed by SGA, and

their average distance is lower by 81.9%. The superiority of

ZGA is attributed to the fact that it captures the distance of

original locations more effectively, and it is evident for all

tested values of ℓ.
Last, the effect of parameter C, which controls the size of

clusters, on data utility was investigated. The results in Fig. 8

demonstrate that ZGA outperforms SGA by a large margin,

particularly for larger values of C. Specifically, ZGA permits

the publishing of 2.54 times more original locations than SGA,

and it creates 78% fewer generalized locations, as shown in

Figs. 8a and 8b, respectively. Furthermore, the generalized

locations that are constructed by ZGA contain 22.7% fewer

original locations, on average, as can be seen in Fig. 8c. The

locations in these generalized locations are also “close” to

one another, as can be observed from Fig. 8d. In fact, the

average percent of distance for the locations of ZGA is smaller

than the corresponding percent for SGA, by at least 14.7%.

This confirms that taking into account the distance of original

locations allows preserving data utility better than doing so

based on their frequency, as SGA does through the use of

frequent subtrajectories.

Efficiency. We report results for parameters k, m, C, and

dataset size, which affect runtime the most. The results for

k in Fig. 9a show that ZGA and SGA are more efficient

than SEQANON by 48.3% and 13.6%, respectively, when

k > 10, but need more time, for smaller k values. This is

because, they enforce lm-diversity, which requires applying

more generalization, when k is smaller. That is, our algorithms

need to progressively increase the support of generalized

locations to larger values than k, until lm-diversity is satisfied,

when k < 25. Furthermore, ZGA and SGA need less time as

k increases, unlike SEQANON. This is because, SEQANON

needs to consider a much larger number of potential gener-

alizations to deal with subtrajectories with a lower support

than k. Also, ZGA is more efficient than SGA by 72.8%, on

average, as it does not require frequent subtrajectory mining.

The impact of m is shown in Fig. 9b. As m increases, all

algorithms need more time, but ZGA outperforms SEQANON

and SGA by 55% and 72%, on average. However, all algo-

rithms scale well with m, as they employ the apriori principle.

Fig. 9c shows the effect of C. As expected, our algorithms are

significantly faster as C increases, because they run on smaller

clusters. On the other hand, SEQANON is not affected by this

parameter, as it is applied to the entire dataset. In addition,
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ZGA outperforms SEQANON and SGA by 33% and 71% on

average, respectively.

Last, we examined the impact of dataset size and report the

results in Fig. 9d. In this experiment, we used increasingly

larger subsets of records, which are contained in all larger

sets. Observe that all algorithms scale equally well with the

dataset size and that ZGA is more efficient than SEQANON

and SGA by 61% and 75%, on average.

VI. CONCLUSIONS

In this paper, we proposed a novel framework for

anonymizing trajectory data. Our framework enforces (k, ℓ)m-

anonymity on trajectory data, using two generalization-

based algorithms that follow a Select-Organize-Anonymize

paradigm. The benefit of our framework is that it enables the

generation of truthful data with low distortion, in an efficient

and scalable manner.
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ABSTRACT

In this work, we focus on protection against identity disclosure in

the publication of sparse multidimensional data. Existing multi-

dimensional anonymization techniques (a) protect the privacy of

users either by altering the set of quasi-identifiers of the original

data (e.g., by generalization or suppression) or by adding noise

(e.g., using differential privacy) and/or (b) assume a clear distinc-

tion between sensitive and non-sensitive information and sever the

possible linkage. In many real world applications the above tech-

niques are not applicable. For instance, consider web search query

logs. Suppressing or generalizing anonymization methods would

remove the most valuable information in the dataset: the original

query terms. Additionally, web search query logs contain millions

of query terms which cannot be categorized as sensitive or non-

sensitive since a term may be sensitive for a user and non-sensitive

for another. Motivated by this observation, we propose an anonym-

ization technique termed disassociation that preserves the original

terms but hides the fact that two or more different terms appear in

the same record. We protect the users’ privacy by disassociating

record terms that participate in identifying combinations. This way

the adversary cannot associate with high probability a record with

a rare combination of terms. To the best of our knowledge, our pro-

posal is the first to employ such a technique to provide protection

against identity disclosure. We propose an anonymization algo-

rithm based on our approach and evaluate its performance on real

and synthetic datasets, comparing it against other state-of-the-art

methods based on generalization and differential privacy.

1. INTRODUCTION
The anonymization of sparse multidimensional data in the form

of transactional data (e.g., supermarket sales logs, credit card logs,

web search query logs) poses significant challenges. Adversaries

that have a part of a record as background knowledge are aided

∗
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†
Supported by the EU/Greece funded Heracleitus II Program

‡
Supported by the EU/Greece funded Thalis Program.

by the dataset’s sparsity in identifying the original record. Con-

sider, for example, a dataset D which contains records that trace

web search query logs. Even without any direct identifier in the

data (user’s name or ID) the publication of D might lead to privacy

breaches, if an attacker has background knowledge that associates

some queries to a known user. Assume that John knows that Jane

was interested in buying air tickets to New York, so he has a back-

ground knowledge consisting of terms New York and air tickets. If

D is published without any modification then John can trace all

records that contain both terms New York and air tickets. If only

one such record exists, then John can easily infer that this record

corresponds to Jane.

To counter such privacy leaks, several anonymization techniques

have been proposed in the literature [5, 6, 11, 13, 14, 17, 19, 24,

27]. Most of these methods employ generalization [5, 13, 19, 27]

to reduce the original term domain and eliminate identifying com-

binations. For example, they would generalize New York to North

America, so that the infrequent combination would be replaced by

the more frequent {North America, air tickets}. Alternatively, other

methods which are based on suppression, simply remove infre-

quent terms or terms which participate in infrequent combinations.

Generalization and suppression have been mostly used to provide

protection against identity and attribute disclosure. There are few

works that rely on adding noise (fake records or terms) to offer dif-

ferential privacy [6, 14] or to hide the user intent in web search

engines [24]. The problem with existing methods is that a large

part of the the initial terms are usually missing from the anonymi-

zed dataset. There are only a few works [11, 18, 30] that preserve

all original terms, without adding noise, based on the Anatomy [30]

idea of separating quasi identifiers from sensitive values. Still, all

these methods can only protect against attribute disclosure.

The main contribution of this work is a novel method called dis-

association that preserves the original terms but hides identifying

combinations. The privacy model is based on km-anonymity [27]:

an adversary, who knows up to m items from any record, will not be

able to match his knowledge to less than k records in the published

data. Anonymization is achieved, not by hiding their constituent

terms (as done by earlier approaches), but instead by suppressing

the fact that some terms (like New York and air tickets) appear to-

gether in the same record. The disassociation transformation ex-

tends the idea of Anatomy [30] to provide for the first time protec-

tion against identity disclosure by separating terms of the original

data. We focus on protection against identity disclosure for three

reasons: (a) it is usually explicitly or implicitly required by law in

many countries and applications, (b) it is often the case that the sen-

sitivity of items cannot be accurately characterized, so protection

against attribute disclosure is not an option, and (c) differential pri-
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vacy approaches [6, 14], which offer strong privacy protection, in-

cur a high information loss that is often not an acceptable trade-off.

Protecting identities using disassociation has already been identi-

fied as a complicated problem even for the case of simple relational

data [18], and no previous solution exists for our problem settings.

Finally, the proposed anonymization technique is equally capable

to existing state-of-the-art methods in providing protection against

attribute disclosure if sensitive terms have been identified.

In brief, the main contribution of the paper is the proposal of dis-

association, a new data transformation for sparse multidimensional

data that preserves the original terms of the dataset. We show how

this transformation can be used to anonymize a dataset and prove

that the resulting data adhere to our privacy guarantee. Moreover,

we present an anonymization algorithm that uses disassociation,

and we show that it achieves limited information loss, by evaluat-

ing it experimentally on real and synthetic datasets.

2. PROBLEM DEFINITION
The proposed anonymization method focuses on sparse multidi-

mensional data and provides protection against identity disclosure.

This section formally presents our assumptions about the data and

the attack model. In addition, we define the anonymity guarantee

our method targets to. Figure 1 summarizes our notation.

Data. We assume a collection D of records; each record is a set of

terms from a huge domain T . For example, a term can be a query

posed by a user in the context of web search logs, or a product

bought by a customer in the context of supermarket logs. As a

motivating example, consider a web search query log that traces the

queries posed by users over a period of time. Each record models

a different user and contains the set of queries posed by the user.

Figure 2a presents an exemplary web search query log consisting of

10 records (each being the web search history of a different user).

We do not distinguish between sensitive and non-sensitive terms;

we consider the general case, where any term might reveal sensitive

information for the user and any term can be used as part of a quasi-

identifier for a user. As we discuss in Section 5, having a clear

distinction between sensitive and identifying terms simplifies the

problem and our proposed technique can guarantee, in this case,

protection against attribute disclosure.

Attack model. The identification of a user in D is made possible

by tracing records that contain unique combinations of terms. For

example, if the database of Figure 2a is published and an adversary

A knows that a user U has searched for terms madonna and viagra,

he can infer that only record r2 contains both of them; therefore

A is certain that r2 is associated to U . We assume that the ad-

versary A may have background knowledge of up to m terms (i.e.,

queries) for any record (i.e., user) and that A does not have negative

background knowledge (i.e., the adversary does not know whether

a user did not pose a specific query). Moreover, we assume that

the adversary A does not have background knowledge for so many

individuals that it will allow her to infer negative knowledge about

U (see Section 5 for details).

Anonymity guarantee. The most popular guarantee for protec-

tion against identity disclosure is k-anonymity [26]. k-anonymity

makes each published record indistinguishable from other k−1 pub-

lished records. Applying k-anonymity on sparse multidimensional

data can result to a huge information loss, since groups of identi-

cal records must be created in a sparse data space [1, 13, 28]. For

this reason, we opt for km-anonymity [27], a conditional form of

k-anonymity, which guarantees that an adversary, who has partial

knowledge of a record (up to m items, according to our assumption

Symbol Explanation Symbol Explanation

D, DA Original, anonymized dataset T Domain

A, I Anonymization, inverse transf. s(a) Support of a

P / J . . . Clusters / Joint cluster T
P cluster domain

C, C1, . . . Record Chunks T
C Chunk domain

SC, SC1,. . . Shared chunks CT Term chunk

Figure 1: Notation

above), will not be able to distinguish any record from other k−1
records. More formally:

DEFINITION 1. An anonymized dataset DA is km-anonymous

if no adversary that has a background knowledge of up to m terms

of a record can use these terms to identify less than k candidate

records in DA.

For the original dataset D and its anonymized counterpart DA,

we define two transformations A and I. The anonymization trans-

formationA takes as input dataset D and results in the anonymized

dataset DA. The inverse transformation I takes as input the an-

onymized dataset DA and outputs all possible (non-anonymized)

datasets D′ that could produce DA, i.e., I(DA) = {D′ | DA =
A(D′)}. Obviously, D ∈ I(A(D)). For example, consider the

dataset

D(age, zip) = {(32, 14122), (39, 14122)}

and its corresponding anonymized dataset (using generalization)

DA(age, zip) = {(3x, 14xxx), (3x, 14xxx)},

we have: A(D) = DA and

I(DA) =







{(30, 14000), (30, 14000)}, . . .
{(30, 14000), (31, 14000)}, . . .
{(32, 14122), (39, 14122)}, . . .







In this paper, to achieve km-anonymity (Definition 1), we en-

force the following privacy guarantee.

GUARANTEE 1. Consider an anonymized dataset DA and a

set S of up to m terms. Applying I(DA) will always produce

at least one dataset D′ ∈ I(DA), for which there are at least k
records that contain all terms in S.

Intuitively, an adversary, who has limited background knowledge

(consisting of a set S of up to m terms) about a person, will have to

consider k distinct candidate records in a possible original dataset.

3. ANONYMIZATION BY DISASSOCIATION
In this paper, we propose an anonymization transformation A

that is based on disassociation. The proposed transformation parti-

tions the original records into smaller and disassociated subrecords.

The objective is to hide infrequent term combinations in the orig-

inal records by scattering terms in disassociated subrecords. To

illustrate the crux of the disassociation idea, we will use Figure

2. We have already seen that the dataset of Figure 2a is prone to

identity attacks (e.g., r2 can be identified by madonna and viagra).

The corresponding disassociated anonymized dataset is illustrated

in Figure 2b. Our approach, initially, divides the table into two

clusters P1 and P2 containing records r1−r5 and r6−r10 respec-

tively. In each cluster Pi, records are partitioned to smaller sub-

records, after dividing the terms in Pi into subsets. For example, in

P1, the terms are divided into subsets T1 ={itunes, flu, madonna},

T2 ={audi a4, sony tv}, and TT ={ikea, viagra, ruby}. Then, each

record is split into subrecords according to these subsets. The col-

lection of all subrecords of different records that correspond to the
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ID Records

r1 {itunes, flu, madonna, ikea, ruby}
r2 {madonna, flu, viagra, ruby, audi a4, sony tv}
r3 {itunes, madonna, audi a4, ikea, sony tv}
r4 {itunes, flu, viagra}
r5 {itunes, flu, madonna, audi a4, sony tv}
r6 {madonna, digital camera, panic disorder, playboy}
r7 {iphone sdk, madonna, ikea, ruby}
r8 {iphone sdk, digital camera, madonna, playboy}
r9 {iphone sdk, digital camera, panic disorder}
r10 {iphone sdk, digital camera, madonna, ikea, ruby}

(a) Original dataset D

C
lu

st
er

P
1

|P
1
|
=

5

Record chunks Term chunk

C1 C2 CT

r1 {itunes, flu, madonna}
r2 {madonna, flu} {audi a4, sony tv} ikea, viagra,
r3 {itunes, madonna} {audi a4, sony tv} ruby
r4 {itunes, flu}
r5 {itunes, flu, madonna} {audi a4, sony tv}

C
lu

st
er

P
2

|P
2
|
=

5

Record chunk Term chunk

C1 CT

r6 {madonna, digital camera}
r7 {iphone sdk, madonna} panic disorder,
r8 {iphone sdk, digital camera, madonna} playboy, ikea, ruby
r9 {iphone sdk, digital camera}
r10 {iphone sdk, digital camera, madonna}

(b) Anonymized dataset DA

Figure 2: Disassociation example

same subset of terms is called a chunk. For example, r1 is split

into subrecords {itunes, flu, madonna}, which goes into chunk C1

(corresponding to T1), {}, which goes into chunk C2, and {ikea,

ruby}, which goes into chunk CT . CT is a special, term chunk; the

subrecords that fall into the last chunk (CT ) are merged to a single

set of terms. In our example, CT contains set {ikea, viagra, ruby},

which represents the subrecords from all r1−r5 containing these

terms. In addition, the order of the subrecords that fall in a chunk

is randomized; i.e., the association between subrecords in differ-

ent chunks is hidden. According to this representation, the orig-

inal dataset could contain any record that could be reconstructed

by a combination of subrecords from the different chunks plus any

subset of terms from CT . For example, {itunes, madonna, viagra,

ruby} is a reconstructed record, which takes {itunes, madonna}
from C1, {} from C2, and {viagra, ruby} from CT . Observe that

this record does not appear in the original dataset.

Similarly to the generalization based techniques, the disassoci-

ated dataset DA models a set of possible original datasets I(DA).
However, in our case the possible datasets are not described in a

closed form captured by the generalization ranges, but by the possi-

ble combinations of subrecords. In other words, the original dataset

is hidden amongst the multiple possible datasets in I(DA) that can

be reconstructed by combining the subrecords and terms taken from

the disassociated dataset.

Overall, the anonymized dataset in Figure 2b satisfies Guarantee

1 for k = 3 and m = 2. We see in detail how this happens in

Section 5, but we can observe that an attacker who knows up to

m = 2 terms from a record r of the original database is not able

to reconstruct less that k = 3 records (by combining appropriate

subrecords) that might have existed in the original data.

In the following, we present the details of our technique, which

performs 3 steps: a horizontal partitioning, a vertical partitioning

and a refining. The horizontal partitioning brings similar records

together into clusters. The heart of the anonymization procedure

lies in the vertical partitioning which disassociates infrequent com-

binations of terms. Finally, to reduce information loss and improve

the quality of the anonymized dataset a refining step is executed.

Horizontal partitioning. Records of the original dataset D are

grouped into clusters according to the similarity of their contents

(e.g., Jaccard similarity). For instance, cluster P1 is formed by

records r1−r5 (Figure 2b). Horizontal partitioning reduces the an-

onymization of the original dataset to the anonymization of multi-

ple small and independent clusters. The benefits of this approach

are threefold. First, it limits the scope of the term disassociation to

the records that are contained in the cluster; two terms may be dis-

associated only within the local scope of a partition, limiting this

way the negative effect in the information quality of the published

dataset. Second, since clustering brings similar records together in

the same partition, the anonymity guarantee can be achieved with

reduced disassociation. Third, the anonymization process can be

done more efficiently and even in parallel.

Vertical partitioning. Intuitively, vertical partitioning leaves term

combinations that appear many times intact and disassociates terms

that create infrequent and, thus, identifying combinations. The dis-

association is achieved by concealing the fact that these terms ap-

pear together in a single record. Vertical partitioning applies on

each cluster and divides it into chunks. There are two types of

chunks: record and term chunks. Record chunks contain subrecords

of the original dataset; i.e., each chunk is a collection (with bag se-

mantics) of sets of terms, and they are km-anonymous. That is, ev-

ery m-sized combination of terms that appears in a chunk, appears

at least k times. Term chunks do not contain subrecords; they con-

tain the terms that appear in the cluster, but have not been placed to

record chunks. A term chunk is a simple collection of terms with

set semantics. Each cluster may contain an arbitrary number of

record chunks (≥ 0) and exactly one term chunk (which might be

empty). In Section 5, we explain how the term chunk can be used to

provide l-diversity some terms have been designated as sensitive.

Vertical partitioning is applied to each cluster independently. Let

us consider a cluster P and let TP be the set of terms that appear

in P . To partition P into v record chunks C1, . . . , Cv and a term

chunk CT , we divide TP into v+1 subsets T1, . . . , Tv, TT that are

pairwise disjoint (i.e., Ti ∩ Tj = ∅, i 6= j) and jointly exhaustive

(i.e.,
⋃

Ti = TP ). Subsets T1, . . . , Tv are used to define record

chunks C1, . . . , Cv while subset TT , is used to define term chunk

CT . Specifically, CT = TT and record chunks Ci, 1 ≤ i ≤ v
are defined as Ci = {{ Ti ∩ r | for every record r ∈ P}} where

{{·}} denotes a collection with bag semantics (i.e., duplicate records

are allowed in Ci). Thus, chunks C1, . . . , Cv are collections of

records while chunk CT is a set of terms. The partitioning of TP to

T1, . . . , Tv, TT is performed in a way which ensures that all result-

ing record chunks C1, . . . , Cv are km-anonymous. In Figure 2b,

two 32-anonymous record chunks C1 and C2 are formed for P1, by

projecting the records of P1 to sets T1={itunes,flu,madonna} and

T2 = {audi a4, sony tv} respectively; the remaining terms {ikea,

viagra,ruby} of P1 form the term cluster CT .

Note that, for each published cluster, we explicitly show the

number of original records in it. Without this explicit information,

a data analyst may only infer that the cluster has at least as many

records as the cardinality of the chunk with the greatest number of

subrecords. Not knowing the cardinality of a cluster introduces sig-

nificant information loss; for instance, it is not feasible to estimate

the co-existence of terms in different chunks.

Finally, we remark that horizontal and vertical partitioning are

applied in reverse order from what is followed by approaches that

employ similar data transformations [11, 18, 30]. Thus, since verti-
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Record Term Shared

P1 cluster

{ikea,ruby}
{ruby}
{ikea}

{ikea,ruby}

{ikea,ruby}

{itunes, flu, madonna}
{madonna, flu} {audi a4, sony tv} viagra
{itunes, madonna} {audi a4, sony tv}
{itunes, flu}
{itunes, flu, madonna} {audi a4, sony tv}
P2 cluster

{madonna, digital camera}
{iphone sdk, madonna} panic
{iphone sdk, digital camera, madonna} disorder,
{iphone sdk, digital camera} playboy
{iphone sdk, digital camera, madonna}

Figure 3: Disassociation with a shared chunk.

cal partitioning is applied independently in each horizontal partition

(i.e., cluster), our method follows a local anonymization approach.

This constitutes a significant difference from previous works that

anonymize datasets by performing a global partitioning between

terms (usually between sensitive terms and quasi-identifiers).

Refining. At this final step of the method, we focus on improving

the quality of the published result while maintaining the anonym-

ization guarantee. To this end, we examine the terms that reside

in term chunks. Consider the example of Figure 2b. Terms ikea

and ruby are in the term chunk of P1 because their support in P1

is low (each term appears in only 2 records). For similar reasons

these terms are also in the term chunk of P2. However, the sup-

port of these terms considering both clusters P1 and P2 is not small

enough to endanger user privacy (ikea and ruby appear as many

times as itunes and iphone that are in record chunks).

To address such situations, we introduce the notion of joint clus-

ters that offer greater flexibility in our partitioning scheme by al-

lowing different clusters to share record chunks. Given a set T s

of refining terms (e.g., ikea and ruby), which commonly appear in

the term chunks of two or more clusters (e.g., P1 and P2), we can

define a joint cluster by (a) constructing one or more shared chunks

after projecting the original records of the initial clusters to T s and

(b) removing all T s terms from the term chunks of the initial clus-

ters. Figure 3 shows a joint cluster, created by combining clusters

P1 and P2 of Figure 2b, based on T s={ikea,ruby}.

The idea of a joint cluster can be recursively generalized. We

may form higher-level joint clusters by combining simple and joint

clusters of a lower level (for example see Figure 5). In the general

case a joint cluster J , has as children the joint clusters J1, . . . , Jn

and at its leaves the simple clusters P1, . . . , Pm. Moreover it con-

tains the km-anonymous shared chunks SC1, . . . , SCw, which are

created over a domain T s. All terms of T s come from the term

chunks CT1
, . . . , CTm of P1, . . . , Pm. If T1, . . . , Tw are the do-

mains of SC1, . . . , SCw, T1 ∪ · · · ∪ Tw = T s and Ti ∩ Tj = ∅
for i 6= j, then each shared chunk SCi is created by projecting

the records of every Pj to CTj ∩ Ti. Shared chunks are defined in

this way, in order to avoid having a record contributing the same

projection to shared or simple record chunks more than once.

Reconstruction of datasets. A disassociated dataset DA has the

original records of D partitioned into subrecords (residing in record

or shared chunks) and terms (residing in term chunks). An adver-

sary A can combine record, shared and term chunks in an effort to

reconstruct the world of all possible original datasets I(DA). Pos-

sible original datasets may be reconstructed by combining the sub-

records of record and term clusters padded with some terms from

the term chunks. Such datasets D′ are called reconstructed datasets

and by construction belong to I(DA). The adversary A may con-

sider only the reconstructed datasets that abide to his background

knowledge. Guarantee 1 requires that for every m terms that ex-

ist in a record of D, there will be a D′ that contains k records

with these terms. Thus, an adversary will always have k candidate

records that will match her background knowledge.

Reconstructed datasets are also useful to data analysts, since they

have similar statistical properties to the original one. We experi-

mentally evaluate this similarity in Section 7. The benefit of pro-

viding the disassociated form, instead of a reconstruction directly,

is threefold: (a) an analyst can work directly on the disassociated

dataset. The disassociated dataset reveals some information, i.e.,

itemset supports, that is certain to exist on the original data, (b) the

reconstruction procedure is transparent; an adversary cannot draw

incorrect conclusions about the identity of a user by considering the

reconstructed dataset as original or as ineffectively perturbated and

(c) an analyst can create an arbitrary set of reconstructed datasets

and average query results from all of them.

4. THE ANONYMIZATION ALGORITHM
The proposed algorithm uses heuristics to perform the partition-

ing (horizontal and vertical) and the refining step of Section 3.

Horizontal partitioning. Horizontal partitioning should bring to-

gether similar records that contain many common terms and few

uncommon ones. Similarity may be assessed using measures from

Information Theory (e.g., Jaccard coefficient). Related clustering

algorithms exist in the literature for set-valued data [29], but un-

fortunately they are not appropriate for our setting since: (a) they

are not efficient on large datasets and (b) they do not explicit con-

trol the size of the clusters. We employ Algorithm HORPART, a

lightweight heuristic that does not have these problems. The key

idea is to split the dataset into two parts: one with the records that

contain the most frequent term a in the dataset and another with the

remaining records. This procedure is recursively applied to the new

datasets until the final datasets are small enough to become clusters.

Terms that have been previously used for partitioning are recorded

in set ignore and are not used in subsequent splitting (Line 3).

Vertical partitioning. To vertically partition the clusters, we fol-

low a greedy strategy (Algorithm VERPART), executed indepen-

dently for each cluster. VERPART takes as input a cluster P and in-

tegers k and m; the result is a set of km-anonymous record chunks

C1, . . . , Cv and the term chunk CT of P .

Let TP be the set of terms of P . Initially, the algorithm com-

putes the number of appearances (support) s(t) of every term t and

orders TP with decreasing s(t). All terms that appear less than

k times are moved from TP to the term chunk TT . Since all the

remaining terms have support at least k, they will participate in

some record chunk. Next, the algorithm computes sets T1, . . . , Tv

(while loop). To this end, the algorithm uses set Tremain that con-

tains the non-assigned terms (ordered by decreasing support s) and

Tcur (that contains the terms that will be assigned to the current

set). To compute Ti (1 ≤ i ≤ v), Algorithm VERPART considers

all terms of set Tremain . A term t is inserted into Tcur only if the

Ctest chunk constructed from Tcur ∪ {t} remains km-anonymous

(Line 12). Note that the first execution of the for loop (Line 10) will

always add a term t to Tcur since Ctest = {t} is km-anonymous

Algorithm: HORPART

Input : Dataset D, set of terms ignore (initially empty)
Output : A HORizontal PARTitioning of D
Param. : The maximum cluster size maxClusterSize

1 if |D| < maxClusterSize then return {{D}};
2 Let T be the set of terms of D;
3 Find the most frequent term a in T − ignore;
4 D1 = all records of D having term a;
5 D2 = D −D1;
6 return HORPART(D1, ignore ∪ a)∪HORPART(D2, ignore)
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Algorithm: VERPART

Input : A cluster P , integers k and m
Output : A km-anonymous VERtical PARTitioning of P

1 Let TP be the set of terms of P ;

2 for every term t ∈ TP do
3 Compute the number of appearances s(t);

4 Sort TP with decreasing s(t);
5 Move all terms with s(t) < k into TT ; //TT is finalized

6 i = 0;

7 Tremain = TP − TT ; //Tremain has the ordering of TP

8 while Tremain 6= ∅ do

9 Tcur = ∅;
10 for every term t ∈ Tremain do

11 Create a chunk Ctest by projecting to Tcur ∪ {t} ;
12 if Ctest is km-anonymous then Tcur = Tcur ∪ {t};

13 i++;
14 Ti = Tcur ;
15 Tremain = Tremain − Tcur ;

16 Create record chunks C1, . . . , Cv by projecting to T1, . . . , Tv ;
17 Create term chunk CT using TT ;
18 return C1, . . . , Cv , CT

(s(t) ≥ k). If the insertion of a term t to Tcur renders Tcur ∪ {t}
non km-anonymous, t is skipped and the algorithm continues with

the next term. After having assigned to Tcur as many terms from

Tremain as possible, the algorithm (a) assigns Tcur to Ti, (b) re-

moves the terms of Tcur from Tremain and (c) continues to the next

set Ti+1. Finally, Algorithm VERPART constructs record chunks

C1, . . . , Cv using T1, . . . , Tv and the term chunk CT using TT .

Refining. The result of the vertical partitioning is a set P of km-

anonymous clusters. The refining step improves the quality of the

anonymized dataset by iteratively creating joint clusters until no

further improvement is possible. A naı̈ve method to perform this

step consists of computing the information loss (e.g., using a metric

of Section 6) for all possible refinement scenarios and choosing the

one with the best effect on data quality. Since such an option is

very inefficient, we define a refining criterion. Let us consider two

clusters J1 and J2. These cluster are joined into cluster Jnew if the

following inequality holds:

s(t1) + · · ·+ s(tn)

|Jnew |
≥

u1 + · · ·+ um

|P1|+ · · ·+ |Pm|
(1)

where (a) t1, . . . , tn are the refining terms T s (Section 3), (b) s(t1),
. . . , s(tn) are the supports of t1, . . . , tn respectively in the shared

chunks of Jnew , (c) P1, . . . , Pm are the simple clusters of J1 and

J2 that contain t1, . . . , tn and (d) v1, . . . , vm are the number of

terms t1, . . . , tn that appear in the term chunk of each of P1, . . . , Pm

respectively. For instance, if J1 and J2 are clusters P1 and P2 of

Figure 2b and Jnew is the joint cluster of Figure 3 then the refin-

ing terms are ruby and ikea and we have:
s(ruby)+s(ikea)

|Jnew |
= 4+4

10
≥

2+2
10

= u1+u2

|P1|+|P2|
. Thus, J1 and J2 are replaced by Jnew .

Note that the left part of Equation 1 estimates the probability

of attributing one of t1, . . . , tn to the records of the joint Jnew

while the its right part expresses the probability of attributing one

of t1, . . . , tn to the initial records of J1 and J2.

Even with the criterion of Equation 1, we still need to exhaus-

tively explore all the combinations of clusters (simple or joint) in

order to choose the best ones. This is computationally infeasible.

Thus, we have opted for a heuristic that merges each time only

two existing clusters (simple or joint) to form a new joint cluster.

The sketch of this method is illustrated in Algorithm REFINE. The

algorithm takes as input a collection of simple clusters P and trans-

forms it to a collection of joint clusters. The algorithm orders the

Algorithm: REFINE

Input : A set P of km-anonymous clusters
Output : A refinement of P

1 repeat

2 Add to every joint cluster a virtual term chunk as the union of the
term chunks of its simple clusters;

3 Order (joint) clusters in P according to the contents of their
(virtual) term chunks;

4 Modify P by joining adjacent pairs of clusters (simple or joint)
based on Equation 1;

5 until there are no modifications in P;
6 return P

clusters of P as follows: a) each term t is given a term chunks sup-

port tcs(t); i.e., the number of term chunks in clusters of P where

t appears; b) the terms in term chunks are ordered in descending

order of their tcs; and c) clusters are ordered by comparing lexico-

graphically their term chunks. After the first iteration, joint clusters

are introduced in P . To each joint cluster J , we add a virtual term

chunk, which is the union of the term chunks of its simple clusters,

and we use it in the ordering step. REFINE modifies P by merging

adjacent pairs of clusters and repeats the process until P does not

change. The merging is done only if the criterion of Equation 1 is

satisfied, and produces a joint cluster as defined in Section 3.

Correctness of the algorithm. Disassociation performs the parti-

tioning (vertical and horizontal) and refining steps detailed in the

previous sections. The proposed method is correct; it succeeds for

any input and it always produces a disassociated km-anonymous

dataset. It is not hard to verify that the algorithm terminates and

produces a disassociated result. The proof that a disassociated

dataset is km-anonymous is provided in Section 5. In a nutshell

notice that (a) horizontal partitioning does not alter the original

dataset and always produces clusters, (b) vertical partitioning cre-

ates km-anonymous clusters since Algorithm VERPART will put

every term that has support over k to the record chunks (Lines 10-

17) and the rest of the terms in the term chunk (Lines 6 and 18) and

(c) refining has the trivial solution of not merging any clusters and

if a joint cluster is created (i.e., if shared chunks are added), then

km-anonymity is preserved as we prove in Section 5.

Complexity. The most expensive part of disassociation is the hor-

izontal partitioning that has a worst case complexity of O(|D|2)
time. The horizontal partitioning can be seen as a version of quick-

sort, which instead of a pivot uses the most frequent term to split

each partition; in the worst case it will do |D| partitionings and at

each partitioning it has to re-order |D| records. The complexity of

vertical partitioning depends on the domain TP of the input clus-

ter P , and not on the characteristics of the complete dataset. The

most expensive operation in the vertical partitioning is to establish

whether a clunk is km-anonymous or not. This task requires ex-

amining
(

|TP |
m

)

combinations, thus it takes O(|TP |!) time. Since

we regulate the size of clusters, the behavior of the overall algo-

rithm, as the dataset size grows, is dominated by the behavior of the

horizontal partitioning. Finally, the refining algorithm has again a

O(|D|2) time complexity, since in the worst case it will perform as

many passes over the clusters as the number of the clusters. Note

that this a worst case analysis; in practice, the behavior of our algo-

rithm is significantly better; this is also verified by the experimental

evaluation of Section 7, which shows a linear increase of the com-

putational cost with the input dataset size |D|.

5. ANONYMIZATION PROPERTIES
In Section 3, we described our disassociation transformation tech-

nique, which is implemented by the algorithm presented in Section
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Figure 4: Illustration of Example 1, Original cluster size = 5

4. In this section, we prove how the disassociated result can guar-

antee km-anonymity, by showing how the transformed data can be

used to reconstruct a possible initial dataset that contains k times

any combination of m terms. In this proof we define two additional

properties that must be preserved in a disassociated dataset.

Cluster anonymity. First, we prove that each disassociated cluster

is km-anonymous, by constructing an initial cluster that contains k
times any m terms of the disassociated cluster.

Let P be an arbitrary cluster of the anonymized dataset which is

vertically partitioned into km anonymous record chunks C1, . . . , Cv

and a term chunk CT . Then the following Lemma holds:

LEMMA 1. For any m terms S = t1, . . . , tm that appear in P ,

at least k distinct records that contain S can be reconstructed by

combining subrecords from the chunks C1, . . . , Cv and terms from

CT , or no record can be reconstructed that contains S .

PROOF. We first prove that Lemma 1 holds if all m terms fall

inside the record chunks. In this case the m terms S = t1, . . . , tm
are scattered in n, (n ≤ m,n ≤ v) record chunks C1, . . . , Cn. Let

S1, . . . , Sn be the subsets of S that appear in each of C1, . . . , Cn.

Since each chunk is km anonymous, Si will appear in the respec-

tive record chunk Ci at least k times together or none at all. The

latter case happens if the Si terms exist in disjoint groups of sub-

records inside Ci. If there is even one of S1, . . . , Sn whose terms

do not appear together at all in the respective chunk, then the S
terms cannot appear together in any reconstructed record. If ev-

ery set of S1, . . . , Sn appears together in the respective chunk,

then it has to appear in at least k subrecords in each chunk. Let

SR1, . . . , SRn be these sets of subrecords, one from each record

chunk. We can then create a record by combining 1 subrecord from

each of SR1, . . . , SRn, i.e., r = sr1 ∪ · · · ∪ srn, where sri is

a subrecord, sri ∈ SRi. Since each SRi contains at least k sub-

records, we remove the used subrecord and repeat the process at

least k − 1 more times. This results to at least k distinct records

that contain all S terms. Assume now that only g, g < m terms fall

inside the record chunks and m − g terms fall in the term chunk.

The previous proof holds for the g terms too, since g < m, thus

k records can be reconstructed from the record chunks that contain

the g items. We can then directly pad these k records with the rest

of m−g terms from the term chunk. We are free to do so, since the

multiplicity and the correlations of these terms are not disclosed in

the disassociated cluster.

Lemma 1 shows that k records can be constructed from a disassoci-

ated cluster; still, this is not sufficient for providing km-anonymity

as defined in Guarantee 1 as the following example illustrates.

EXAMPLE 1. Let us consider the dataset of Figure 4a. Assume

that we want to publish it as 32-anonymous and that we create two

record chunks C1 and C2 with domains T1 = {a}, T2 = {b,c} and

TT = ∅, as illustrated in Figure 4b. It is not hard to verify that all

chunks are 32-anonymous and that Lemma 1 holds.

Let us now consider an adversary A that knows: (a) the anony-

mized dataset of Figure 4b, (b) that the size of the original cluster

is 5 and (c) that a user had used terms a and b, i.e., {a, b} is a

subrecord of the original dataset. Adversary A also knows that the

original dataset is composed by a combination of the records stored

in chunks C1 and C2.

While the subrecords from C1 and C2 can be combined to create

k = 3 records that contain a and b, these records cannot appear in

any original dataset, which must contain 5 records. It is not hard

to verify that the only combination that results in a dataset with 5

records is the one presented in Figure 4a. Thus, no dataset that

contains {a,b} 3 times can be the initial dataset of the example of

Figure 4a. This way, the user’s record {a,b,c} is revealed.

Example 1 demonstrates that Lemma 1 is not sufficient to guar-

antee km-anonymity. Lemma 1 guarantees that k records that con-

tain any m terms can be constructed, but it does not guarantee that

these records can appear in a valid dataset of a predefined size. The

sparsity of the original data, often leads to empty subrecords inside

different chunks. Since there cannot be empty records, a record that

is created as a result of combining empty subrecords is not valid.

An initial dataset that contains an empty record is also not valid,

thus and adversary can discard it. To enforce Guarantee 1, we must

require not only that Lemma 1 holds, but also that these records

can appear in a valid initial dataset. Fortunately, we do no need

to reconstruct all possible original datasets to see if this condition

is satisfied. It suffices to enforce the condition of the following

lemma.

LEMMA 2. Let C1, . . . , Cv be the record chunks that corre-

spond to the anonymization of a cluster P with size s. If (a) chunks

C1, . . . , Cv are km-anonymous and (b) the total number of sub-

records in all chunks
∑

(|Ci|) is greater than or equal to s + k ·
(h − 1), h = min(m, v) or the term chunk is not empty, then

Guarantee 1 holds.

PROOF. To prove this lemma, it suffices to show that for every

different combination of m items: (a) no record that contains the

m terms can be constructed or (b) a valid initial cluster Pr of size s
where the m terms appear in at least k records can be reconstructed.

Assume m random terms t1, . . . , tm from TP . According to

Lemma 1, given a disassociated cluster Pa, no record that contains

these m terms can be created or at least k records can be recon-

structed. In the former case, the km anonymity trivially holds (this

case corresponds to a combination of m terms that did not appear

in the initial dataset1) and it covers case (a). In the latter case, to

prove (b) we need to show that these k records can appear in at

least one valid reconstruction of the disassociated cluster Pa. A

valid reconstruction of cluster Pa is a possible initial cluster that

has s non-empty records. We construct a cluster that contains s
records in total, where at least k of them contain t1, . . . , tm as fol-

lows. We first construct the k records, denoted as Rk that contain

the m terms as described in Lemma 1. If the m terms are scattered

in h chunks, then to construct each of these records we need h sub-

records; one form each chunk, thus k · h subrecords. To create a

valid initial dataset of size s that contains the Rk records we only

need to populate it with s − k additional records Ro that are valid

i.e., non-empty. If the term chunk is non-empty then the s − k
records can be populated by randomly combining terms from the

term chunk. If the term chunk is empty, we can create such records

by assigning 1 subrecord that has not been used in the construction

of Rk, from any of the C1, . . . , Cv chunks,. The total number of

subrecords needed is h · k + s − k = s + k · (h − 1). The worst

1
If a combination of terms cannot be created by combining subrecords, it

holds that it did not appear in the original data. The reverse is not true; if a
combination can be created, it does not mean that it existed in the original
data.
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case, i.e., the maximum number of subrecords that are required for

constructing a valid cluster, is when we need to combine one dif-

ferent subrecord for each of t1, . . . , tm to create a record of Rk. In

this case, h = m or if the cluster has less than m record chunks

h = v. Thus, having s + k · (h − 1), h = min(m, v) subrecords

is sufficient to create a valid initial cluster.

Joint cluster anonymity. An example which demonstrates that

careless creation of shared chunks can lead to cases where combi-

nations of m terms might not appear k times in any reconstructed

dataset is depicted in Figure 5a. Although every chunk (i.e., verti-

cal partition) in the illustrated dataset is 32-anonymous, the overall

dataset is not. Since each record has set semantics, an adversary

can discard initial datasets that contain records with two identical

terms. An attacker A knowing that a user U asked for terms x

and o can only find one matching record in every possible origi-

nal dataset using the following reasoning. Term x appears only in

the 1st cluster (always together with a) and o appears in the shared

chunk. Thus, to construct U ’s record, A has to combine {a,x} with

any of {a,x}, {a} and {o}; but, by the semantics of shared chunks,

the only allowed combination is {a,x,o} which appears just once.

In order to avoid these conflicts we enforce the following property.

PROPERTY 1. Let J be a joint cluster and T r be the set of

terms that appear in the record and shared chunks of the clusters

(joint or not) forming J . A shared chunk of J that does not con-

tain terms from T r must be km-anonymous; if it does, it must be

k-anonymous.

For example in Figure 5a, Property 1 does not hold since T r =
{a,b,c,d,e,f,x}, term a appears on the shared chunk, a ∈ T r and the

shared chunk is not k-anonymous. On the other hand, the property

holds for Figure 5b. T r contains all terms that appear in J except

those that are placed in term chunks and those that appear only in

J’s shared chunks (only o in the previous example). Let us now

consider the following lemma.

LEMMA 3. A joint cluster for which Property 1 holds, is km-

anonymous.

PROOF. We will prove the Lemma by induction. Lemma 2

shows that simple clusters are km-anonymous. It is also easy to

see why joint clusters who contain only simple clusters are km-

anonymous, since no conflicts between the terms of the record and

shared chunks appear there. In the following we will prove the

inductive step; a joint cluster J that is formed by existing km-

anonymous joint clusters is km-anonymous too.

Let J be a joint cluster with domain T J , the km-anonymous

joint clusters J1, . . . , Jq be its children and the simple clusters km-

anonymous P1, . . . , Pw be its leaves. Let SC be the set of the

shared chunks of J that all satisfy Property 1. Moreover, let T r

be the set of terms that appear in the record and shared chunks of

J1, . . . , Jq . Since J1, . . . , Jq are km anonymous we only have to

check how the introduction of the shared chunks SC affects ano-

nymity. Because Lemma 2 holds for each cluster independently,

there is no need to set a new bound for the number of subrecords

contained in SC. We only have to show that the addition of SC al-

lows the creation of k records (or no record at all) that contain any

m-sized combination of terms from T J .

Assume a random combination of m terms t1, . . . , tm from T J

where terms t1, . . . , ti appear in J1, . . . , Jq (in either record or

term chunks) and ti+1, . . . , tm appear in the shared chunks SC.

If i = m, i.e., all terms belong to J1, . . . , Jq , then km anonym-

ity holds since we assumed that J1, . . . , Jq are km-anonymous. If

i = 0, i.e., all terms belong to the shared chunks, then by following

the same constructive proof as we did in Lemma 1 we can cre-

ate k records that contain t1, . . . , tm. This is sufficient for proving

km-anonymity since there is no requirement for the number of sub-

records in the shared chunks. Finally, if some of the m terms cannot

appear together by any combination of subrecords, i.e., they did not

appear together in the original data at all, then the km-anonymity

trivially holds. It remains to prove that J is km-anonymous for

0 < i < m.

Let SC1, . . . , SCn, n ≤ m , with domains T 1, . . . , Tn be the

shared chunks of SC that contain ti+1, . . . , tm. Using the recon-

structed clusters of J1, . . . , Jq we partially reconstruct a joint clus-

ter Jr that contains at least k records with the terms t1, . . . , ti.
Let PR be the partially reconstructed records of J that contain

t1, . . . , ti, |PR| ≥ k. We expand the PR with subrecords from

each SCi of SC1, . . . , SCn to create records that contain all m
terms. For each of SCi with domain T i we have two cases:

T r ∩ T i = ∅ holds: In this case, SCi is km-anonymous and no

term from SCi appears in any of the PR records. We can then

select k subrecords that contain the terms from ti+1, . . . , tm that

fall in T i and concatenate them to k records of PR.

T r ∩ T i 6= ∅ holds: In this case, SCi is k-anonymous. Let SRi

be the records of SCi that contain the terms of t1, . . . , tm that fall

in T i, |SRi| ≥ k. We want to append k subrecords from SRi to

k records of PR to create records that contain all m terms. Still,

not all combinations of PR × SRi are valid due to conflicts. The

conflicts are caused by terms that appear both in the subrecords

of SCi and the records of Jr that have partially been constructed

until now. Assume that the conflict is based on a term a. a is in-

dependent of t1, . . . , tm. Assume that a appears in the record or

shared chunks of the simple or joint clusters Ja, which are descen-

dants of J . The existence of a in these record chunks means that

SRa did not exist in any of Ja, thus the records of SRa cannot be

combined with any of the records of Ja. Let JRa be the partially

reconstructed records of Ja. Because of the conflict, the adversary

knows that if any record of PR belongs to JRa too, then it cannot

be combined with SRa to create the k records we need. To guar-

antee km anonymity, we must be able to combine at least k records

from PR′ = PR \ JRa and SR′
i = SRi \ SRa or none at all.

We will prove this by showing that either all records of PR′ and

all subrecords of SR′
i are disqualified, or that at least k remain in

each set. Since each joint cluster is anonymized independently, it

contributes at least k records to PR. Any conflict with even one

record of a cluster from Ja disqualifies all the records from the

same cluster, thus JRa will be equal to PR or they will differ at

least by k records, i.e., all the records contributed by a cluster that

has no conflict. Thus |PR′| = 0∨ |PR′| ≥ k. Moreover, since we

required that Si is k-anonymous, there will be at least k duplicates

of each record. A conflict over term a will disqualify at least k
records, and if records without a exist in SR′ there will be at least

k of them. So, after eliminating conflicts, |SR′| = 0 ∨ |SR′| ≥ k.

Since both PR′ and SR′ will have either more than k records or

none after eliminating conflicting records, we can either create k
records that contain all t1, . . . , tm or no such record.

The proof is similar for conflicts based on more than one item.

Since a disassociated dataset consists of either joint or simple

clusters, Lemmas 2 and 3 are sufficient to prove that the whole

dataset is km-anonymous. We only have to show that the properties

required by the previous Lemmas can be guaranteed by the algo-

rithm of Section 4. To guarantee the property required by Lemma

2 we only need to add a check at the end of VERPART that verifies

that the cluster contains enough subrecords. If the size limit is not
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Figure 5: Unsafe (a) vs. safe (b) creation of a shared chunk

met, then by moving the least frequent item of the record chunks

to the term chunk, we guarantee that the conditions set by Lemma

2 are satisfied. This solution is always feasible; at least one term

will exist to populate the term chunk in each cluster. To satisfy

Lemma 3 the refining algorithm has to check in the creation of a

shared chunk, if any of its terms appears in the record chunk of

any descendant joint or simple cluster. If this holds, then the chunk

must be k-anonymous, else it can be km-anonymous. Since there

is always the trivial solution of a record chunk that contains only 1

term, which is both k-anonymous and km-anonymous, the refining

algorithm always produces a km-anonymous dataset.

Protection against stronger adversaries. km-anonymity is a con-

ditional guarantee and the protection it offers is reduced against

adversaries with background knowledge that exceeds the attack

model assumptions. The most common case is to have adversaries

that have more knowledge than m terms about a user or adver-

saries that have background knowledge about all users that contain

certain m terms. In both cases, the adversary’s background knowl-

edge consists of enough information to accurately associate some

records to a known group of users U . This allows the adversary

to remove these records from the groups of candidate records that

match her background knowledge for any user who does not be-

long to U . Still, this attack does not lead automatically to complete

re-identification of the additional users, but reduces the number of

candidates according to their overlap with the records that are as-

sociated with U . This type of attacks has been studied in other con-

texts [2, 32] and their effect on disassociation and generalization

based methods is similar. Disassociation has an additional weak-

ness that is related to Lemma 2; if a record of a user is identified

and the remaining terms violate Lemma 2, then the probability of

identifying additional records might be reduced to less than k-1.

Diversity. So far we have discussed an anonymization framework

offering protection against identity disclosure. In this section, we

discuss how the proposed framework may also offer protection against

attribute disclosure and achieve l-diversity.

Former works that guarantee l-diversity, separate sensitive at-

tributes from quasi identifiers [11, 18, 30]. Following the same

idea, we can enforce l-diversity in our framework by (a) ignoring

all sensitive values in the horizontal partitioning and (b) placing all

sensitive values in the term chunk at the vertical partitioning stage.

In the resulting data, all sensitive values will reside at the term

chunk and no association between them and any other subrecord

or value can be done with probability over than 1/|C|, where |C|
is the size of the cluster. By adjusting the size of the clusters, the

anonymization method achieves the desired degree of l-diversity.

The proposed anonymization framework offers protection against

both identity and attribute disclosure. We focus on the former be-

cause to the best of our knowledge there is no other work that em-

ploys a similar to disassociation transformation to guarantee pro-

tection against identity disclosure (works enforcing l-diversity do

not consider re-identification dangers [11, 18, 30]). We expect that

in practice both protection against identity and attribute disclosure

(for the recognized sensitive values) are needed.

6. INFORMATION LOSS
By definition, disassociation incurs a different information loss

compared to classic anonymization methods. The disassociated

dataset preserves all the initial terms and many of the initial item-

sets. An analyst can work directly on the disassociated dataset or

reconstruct a possible initial one. In the former case, the analyst

can compute lower bounds of the supports of all terms and item-

sets. These bounds can be computed by counting all the appear-

ances of terms and itemsets in the record chunks of the simple and

joint clusters and by adding one to the support of each term that

appears in a term chunk. Moreover, the analyst can employ models

for answering queries in probabilistic databases to directly query

the anonymization result [9]. Using such a model, one can assume

that the contents of each record chunk are possible assignments to

every record of the cluster with probability (1/|P |). Still, existing

work on uncertain data management is not tailored to the disasso-

ciated dataset and does not take advantage of the constraints in the

reconstruction procedure that we detailed in Section 3 to increase

the quality of the estimations. Moreover, working directly on the

disassociated dataset requires adjusting existing tools and models

for analyzing data. Because of this, we believe that it is easier to

apply most analysis tasks on a reconstructed dataset. During hori-

zontal partitioning, clusters are created by bringing similar records

together; thus, the statistical properties of a reconstructed dataset

are quite close to the original one. A way to further increase the

accuracy of the analysis on reconstructed data is to create more

than one reconstructed datasets and average the query results on

them. We experimentally evaluate the similarity between the re-

constructed datasets and the original one in Section 7.

Disassociation hides infrequent term combinations, therefore the

incurred information loss is related to term combinations that exist

in the original dataset but are lost in the disassociated dataset. To

assess the impact of the information loss, we examine the behav-

ior of common mining and querying operations on the transformed

data. We employ metrics that are generic and can be used as a

comparison basis with anonymization methods that employ differ-

ent data transformations (such as generalization, suppression and

differential privacy). More specifically, we examine how many of

the frequent itemsets that exist in the original data are preserved in

the published data, and we also measure the relative error in the

estimation of the supports of pairs of items.

Top-K deviation (tKd). The tKd metric measures how the top-

K frequent itemsets of the original dataset change in the published

anonymized data. Let FI (respectively, FI ′) be the top-K fre-

quent itemsets in the original dataset (respectively, the anonymized

dataset); tKd is defined as follows:

tKd = 1−
|FI ∩ FI ′|

|FI|
(2)

Intuitively, tKd expresses the ratio of the top-K frequent itemsets

of the original dataset that appear in the top-K frequent itemsets of

the anonymized data.

To compare disassociation with generalization-based methods,

we define an appropriate version of tKd, called the top-k multiple

level mining loss tKd-ML2, which is based on the ML2 metric
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Dataset |D| |T | max rec. size avg rec. size

POS 515,597 1,657 164 6.5

WV1 59,602 497 267 2.5

WV2 77,512 3,340 161 5.0

Figure 6: Experimental datasets

defined in [27]. Mining a dataset at multiple levels of a general-

ization hierarchy is an established technique [12], which allows de-

tecting frequent association rules and frequent itemsets that might

not appear in the most detailed level of the data. If a generalization

hierarchy that allows the anonymization of the data exists, then we

can assume that the same hierarchy can be used to mine frequent

itemsets from the published (and the original) data at different lev-

els of abstraction. tKd-ML2 is given again by Equation 2, but in

this case FI and FI ′ are the sets of generalized frequent itemsets

that can be traced in the original and anonymized data, respectively.

In the case of generalized datasets, a generalized frequent itemset is

lost if it contains terms that have been generalized at a higher level

during the anonymization process. Reconstructed datasets do not

contain any generalized items, but given a generalization hierarchy

generalized frequent itemsets can be mined.

Relative error (re). This metric (used also in [6]) is used to mea-

sure the relative error in the support of term combinations in the

published data. Since there is a huge number of possible combi-

nations, we limit ourselves to combinations of size two as an in-

dication of the dataset quality. Larger combinations are usually

infrequent, and the case of very frequent ones is already covered

by tKd. The relative error is defined as follows:

re =
|so(a, b)− sp(a, b)|

AV G(so(a, b), sp(a, b))
, (3)

where so(a, b) and sp(a, b) is the support of the combination of

terms (a, b) in the original and in the published data, respectively.

Reconstructing anonymized datasets might introduce new item com-

binations in the published data, which did not exist in the original

data. In order to take them into account in the definition of the rel-

ative error, we use the average of the two supports as denominator,

instead of using the original support so(a, b). The average has a

smoothing effect on the metric, since it normalizes re to [0, 2], and

avoids divisions by 0.

7. EXPERIMENTAL EVALUATION
The goal of the experimental evaluation is to demonstrate the ad-

vantages that disassociation in preserving data quality and to show

that disassociation has a robust behavior in different settings.

7.1 Experimental Settings

Datasets. In the experiments, we use the 3 real datasets described

in Figure 6, which were introduced in [33]. Dataset POS is a trans-

action log from an electronics retailer. Datasets WV1 and WV2

contain click-stream data from two e-commerce web sites, col-

lected over a period of several months. Synthetic datasets were

created with IBM’s Quest market-basket synthetic data generator

(http://www.almaden.ibm.com/cs/quest/syndata.html). Unless oth-

erwise stated, the default characteristics for the synthetic datasets

are 1M records, 5k term domain and 10 average record length.

Evaluation metrics. We measure the information loss incurred by

our method with respect to the following: (a) the tKd, tKd-ML2,

and re measures defined in Section 6 and (b) the percentage of

terms tlost that have support more than k in the original dataset

D but they are placed in term chunks by our method. We report

tKd and re for the disassociated datasets calculated in two differ-

ent ways: (a) one on a single random reconstructed dataset, labeled

as tKd and re, and (b) one calculated only by taking into account

the subrecords that appear inside the record and shared chunks, la-

beled as tKd-a and re-a. In the latter case, we do not take into

account the probability that an itemset can be created by combin-

ing subrecords. tKd-a and re-a trace the itemsets that would exist

in any reconstructed dataset, thus they are based on lower bounds

of itemset supports in the original dataset. tKd and tKd-ML2 are

measured for the 1000 most frequent itemsets. Finally, computing

an average re on all combinations of size 2 is not very informative

in cases of skewed distributions and large domains. The major-

ity of combinations would be rare or would not exist at all in the

original data, but they would dominate the result. To avoid this, we

ordered the domain of each dataset by descending term support and

we used a small range of consecutive terms to trace their re. After

some testing we chose the 200th-220th most frequent terms. re in

this case is an indicator of how well less frequent but not utterly

rare combinations are preserved in the anonymized dataset.

Evaluation parameters. We compared performance by varying

the following parameters: (a) k, (b) the size of the dataset, (c) the

size of the dataset’s domain, (d) the average size of the records,

(e) the terms we use to calculate re and (f) the number of recon-

structed datasets we use to calculate re and tKd. We do not present

a detailed evaluation for m, because in all the available datasets its

effect for values m > 2 is negligible. The explanation for this

is that most record clusters are km-anonymous for any m either

because they have gathered very frequent terms or because they

contain small subrecords. The experiments are all performed with

k = 5, m = 2 unless explicitly stated otherwise.

Comparison to state-of-the-art. Comparing disassociation to other

methods is not straightforward; no other method offers the same

privacy guarantee while introducing the same type of information

loss. We chose to compare disassociation to the generalization-

based Apriori approach [27], since it offers the same privacy guar-

antee and it is the most closely related method. This comparison

allows us to see how the different data transformations, generaliza-

tion and disassociation, affect the quality of the anonymized dataset

in a similar privacy framework. Furthermore, we compare disas-

sociation to DiffPart [6], which offers differential privacy for set-

valued data by suppressing infrequent terms and adding noise. The

comparison with DiffPart demonstrates the gains disassociation of-

fers in terms of information quality, when a more relaxed guarantee

like km-anonymity is chosen over differential privacy. All methods

were implemented in C++ (g++ 4.3.2).

7.2 Experimental Results
The first experiment (Figures 7a-d) investigates the information

loss by our method on the real datasets. In Figure 7a, we see the

result of disassociation in the quality of all datasets and in Figures

7b-d just for the POS dataset. The tKd-a in Figure 7a is similar for

all datasets, showing that the most frequent combinations are pre-

served for different data characteristics. Still, when we trace tKd
on the reconstructed datasets, the results significantly improve only

for the POS dataset, which is the largest of the 3 and its records have

the longest average length. This reflects the fact that disassociation

managed to create multiple record chunks for POS. The combina-

tions of their contents results to a significantly better reconstructed

dataset. Disassociation produces significantly different results for

the 3 datasets, when looking to the re and re-a metrics. The sup-

ports of the combinations traced by re are preserved better when

the ratio of the dataset size to the dataset domain is high. This ratio

is higher for POS and WV1, where re has significantly superior re-

sults to re-a. This indicates the gains from combining terms from
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Figure 7: Information loss on real data (a-d)
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Figure 8: Information loss on synthetic data (a-d)
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Figure 9: Performance on real data (a-b)
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Figure 10: Performance on synthetic data (a-b)
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Figure 11: Comparison with other methods (a-c)

different record chunks in the reconstructed datasets. Finally, the

same ratio affects how many terms are placed in the record chunk,

as reported by tlost, but to a lesser degree. In Figures 7b and 7c, we

see how information loss escalates as the power of the guarantee,

expressed by the k parameter, grows. The measures that depend

on the most frequent items and itemsets are only slightly affected

(Figure 7b), since the disassociation algorithm preserves them in

record chunks. On the other hand, re, which does not depend on

the most frequent items, increases linearly with k, but with a low

rate (Figure 7c). In Figure 7d we explore the gain in information

quality by creating several reconstructed datasets and averaging the

itemset supports on them. We created 10 random reconstructions of

the anonymized POS dataset, and we traced re taking this time into

account the average supports of the itemsets in 2 (re-r2), 5 (re-r5)

and 10 (re-r5) of the reconstructed datasets. We do not report re-

sults for tKd since they were already close to 0 and did not benefit

substantially from multiple reconstructions. We measure the re on

the combinations of the 0-20, 100-120, 200-220, 300-320 and 400-

420 most frequent terms in POS. In the x-axis of Figure 7d, we

depict the frequency order of the terms; e.g. a point over 100 refers

to the re of the combinations of the 100th-120th most frequent

terms in POS. When the terms are frequent, the support of their

combinations is reported accurately in any reconstructed dataset,

so taking the average does not provide any benefit. As the com-

binations become less frequent, using more than one reconstructed

datasets allows for more accurate estimations. In the previous ex-

periments we also examined separately how frequent itemsets of

size less or equal to m and of size greater than m (m = 2) are pre-

served. We did not notice any systematic behavior; depending on

the dataset, any of the aforementioned frequent itemset classes may

be preserved better. For example, frequent itemsets smaller than m

were preserved better in POS and in WV2 and worse in WV1. We

do not report detailed results due to space limitations.

In the experiments of Figure 8 we used synthetic data to see how

the information loss is affected, when the dataset characteristics

variate. Since the anonymization is applied independently on each

cluster, the database size does not have a significant effect on the

quality of the results as demonstrated in Figures 8a and 8b. Only

the re and re-a are positively affected, because the terms it traces

become more frequent and they end up in record chunks more of-
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ten. Moreover, in Figure 8c we see that increasing the domain when

the distribution is skewed, basically affects the tail of the distribu-

tion, thus it does not have a significant effect on frequent combi-

nations of terms traced by tKd, whereas re slightly deteriorates.

The effect of record length is depicted in Figure 8d. Having larger

records results in more record chunks and more rare terms in each

cluster, thus tKd-a and tlost increase. On the other hand, when we

keep the dataset and domain size constant and we only increase the

record size, the support of the terms in the dataset increases and this

explains how re benefits from larger records. Finally, tKd remains

close to 0 for all record sizes, since the multiple record chunks re-

construct most of the frequent itemsets in the reconstructed dataset.

Figures 9 and 10 illustrate the performance of the proposed al-

gorithm in terms of CPU time (results in seconds). Disassociation

is not significantly affected by the value of k, and at the same time

it scales linearly to the dataset and the domain size.

Figure 11 shows how disassociation performs compared to Diff-

Part and the Apriori algorithm. The graphs illustrate the impact of

all algorithms on the quality of the anonymized dataset for k = 5
and m = 2 (DiffPart is unaffected by this parameter). For the Diff-

Part algorithm we used privacy budgets ranging from 0.5 to 1.25,

using a step 0.25 with the same parameters as in [6] and we report

the best results. In Figure 11a we see how disassociation compares

to DiffPart in terms of tKd. Since in both cases the anonymized

datasets contain only original terms (the differential private one has

only a subset of them) tKd is computed in exactly the same way.

The trade-off for using a stronger privacy guarantee like differential

privacy is quite important; in the best case 75% of the top frequent

items have been lost, whereas disassociation loses only 5% in the

same experiment. In Figure 11b we see how disassociation com-

pares to Apriori in terms of tKd-ML2, since no original frequent

itemset appears in the generalized dataset. Disassociation performs

again significantly better than Apriori especially for POS which is

the largest dataset and has more frequent terms than WV1 and WV2.

A problem of Apriori is that few uncommon terms cause the gener-

alization of several common ones. Finally, Figure 11c shows how

all algorithms compare in terms of re. re in the generalized dataset

is calculated by uniformly dividing the support of a generalized

term to the original terms that map to it. DiffPart has suppressed

all the 200-220th most frequent terms in POS (less that 100 of the

original 1657 terms are left), so in order to make the comparison

meaningful we report the re for the (0-20th) most frequent terms.

The re for both DiffPart and Apriori is over 1, which indicates that

the supports of the term combinations have limited usefulness for

analysis, whereas disassociation provides 0.18 re in the worst case.

In summary, the experiments on both real and synthetic datasets

demonstrate that disassociation offers an anonymized dataset of

significantly superior quality compared to other state-of-the-art meth-

ods. Moreover, the information loss does not increase aggressively

as k increases. Finally, disassociation is not computationally ex-

pensive and it is practical for large datasets.

8. RELATED WORK
Privacy preservation was first studied in the relational context

and focused on protection against identity disclosure. In [25, 26]

the authors introduce k-anonymity and use generalization and sup-

pression as their two basic tools for anonymizing a dataset. Incog-

nito [15] and Mondrian [16] are two well known algorithms that

guarantee k-anonymity for a relation table by transforming the orig-

inal data using global (full-domain) and local recoding, respec-

tively. [21] demonstrates that the information loss, when providing

k-anonymity, can be reduced by using natural domain generaliza-

tion hierarchies (as opposed to user-defined ones).

To address the problem of attribute disclosure, where a person

can be associated with a sensitive value, the concept of ℓ-diversity

[20] was introduced. Anatomy [30] provides ℓ-diversity and lies

closer to our work, in the sense that it does not generalize or sup-

press the data, but instead it disassociates them by publishing them

separately. Still, the anonymization approach is restricted to rela-

tional data and it does not protect against identity disclosure. Slic-

ing, a more flexible version of Anatomy appears in [18]. Slicing

guarantees l-diversity as Anatomy, but instead of completely sep-

arating sensitive attributes from quasi-identifies, it might publish

some quasi-identifiers without disassociating them from sensitive

values, if the diversity guarantee is not violated. Moreover, Slicing,

disassociates quasi-identifiers to increase protection from member-

ship disclosure. By disassociating quasi identifiers, an adversary

is faced with several options for reconstructing each record, thus

she cannot be certain that a specific record existed in the origi-

nal data. The data transformation is similar to the approach of our

work, but there are significant differences: a) there is no protection

against identity disclosure and b) the disassociation between quasi-

identifiers does not provide any privacy guarantee, and it takes

place only if the impact on information loss is limited. Protection

against membership disclosure is facilitated, but not guaranteed; it

is roughly estimated using the number of attribute combinations,

and not guaranteed by considering the possible initial datasets as

in our work. The issues of empty and duplicate records are not

addressed. Our work differs from Slicing mainly because it uses

the disassociation of quasi-identifiers to provide a guarantee against

identity, and because it addresses sparse multidimensional values.2.

A similar idea, the vertical fragmentation of relational tables,

is employed in a different context to guarantee user anonymity in

[7]. The proposed technique distributes a relational table to dif-

ferent servers. In each server, only a subset of the relation’s at-

tributes are available unencrypted. The subsets that are available

without encryption are chosen so that sensitive associations be-

tween attributes, captured by confidentiality constraints, are bro-

ken. Fragmentation is similar to the basic idea in our work and

in [30, 18], but the anonymization model is very different since

it focuses on known confidentiality constraints; attacks based on

background knowledge are not considered.

More recently, a stronger privacy preservation paradigm, differ-

ential privacy, has been proposed [10]. Differential privacy is in-

dependent of adversary’s background knowledge and it roughly re-

quires that the existence of every single record in the data does not

have a significant impact in any query. Finally, the work of [8], al-

though focusing at the protection of associations in sparse bipartite

graphs, is related to our work because of the way they define their

semantics. The anonymization technique of [8] replaces each node

of the graph with a safe group of labels, allowing in this way the

anonymized graph to be matched to multiple possible initial graphs.

Privacy on set-valued data. The works that lie closer to this paper

are those for privacy on set-valued data. Most works that provide

protection against identity disclosure rely on generalization. An ef-

ficient algorithm for classical k-anonymity in a set-value context

appears in [13]. [27, 28] introduce the km anonymity guarantee,

which is used and extended in this paper. The authors provide al-

gorithms for anonymizing the data that, unlike our approach, are

based on generalization, employing both local and global recod-

ing. In [4] an algorithm for providing km-anonymity using only

2
In [18] there is an application of Slicing to the Netflix data [23], which

are sparse. This is achieved by padding all null values with the average of
the corresponding attribute values. This technique works only for specific
types of data processing and cannot address of sparse data in general.
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suppression is proposed. The authors have a similar motivation to

our work and focus on web search query logs, which they anony-

mize by removing terms that violate km-anonymity. The proposed

method preserves original terms, but due to the large tail of the term

support distribution in such logs, it removes 90% of the terms even

for low k and m values. In a different setting, [22] studied multire-

lational k-anonymity, which can be translated to a problem similar

to the one studied here, but the anonymization procedure still relies

on generalization. [31] provide protection both against identity and

attribute disclosure by relying on suppression.

Protection against attribute disclosure is provided both by gen-

eralization and disassociation transformations. The work of [11]

extends [30] to provide ℓ-diversity for transactional datasets with a

large number of items per transaction, but it does not depart from

the anonymization framework of [30]; it still has a separate set of

quasi-identifiers and sensitive values. The basic idea of [11] is to

create equivalence classes where the quasi-identifiers are published

separately from the sensitive values and their supports. [5] provides

a more elaborate ℓ-diversity guarantee for sparse multidimensional

data, termed ρ-uncertainty, where sensitive items can act as quasi-

identifiers too. Still, unlike our approach, generalization and sup-

pression are employed to anonymize the data.

There have been few works that investigate the publication of

set-valued data under differential privacy guaranties. [14] focuses

on the anonymization of web search logs, using the AOL data [3].

The proposed method that guarantees differential privacy but it only

publishes query terms and not records. Moreover, the anonymiza-

tion procedure completely hides all terms that are infrequent, which

are the majority of terms in AOL data. In [6] a method for publish-

ing itemsets instead of isolated terms from a set-valued collection

of data is proposed. The DiffPart algorithm follows a top down ap-

proach, which starts from the unification of the whole domain and

refines it by partitioning it to subdomains, if the item combinations

can be published without breaching differential privacy.

Our work lies closer to [11, 30, 18] in the sense that it does not

suppress or generalize the data but instead it severs the links be-

tween values attributed to the same entity. Unlike [11, 30, 18] we

focus on identity protection, and not simply on separating sensitive

values from quasi-identifiers. The work of [18] has the most sim-

ilar data transformation, but it solves a different problem and does

not address the peculiarities of sparse multidimensional data. Our

privacy guarantee comes from [27], but we follow a completely dif-

ferent path with respect to the data transformation and the type of

targeted data utility.

9. CONCLUSIONS
In this paper, we proposed a novel anonymization method for

sparse multidimensional data. Our method guarantees km-anonymity,

for the published dataset using a novel data transformation called

disassociation. Instead of eliminating identifying information by

not publishing many original terms, either by suppressing or gen-

eralizing them, we partition the records so that the existence of cer-

tain terms in a record is obscured. This transformation introduces

a different type of information loss from existing methods, making

it a valuable alternative when the original terms are important.

10. REFERENCES
[1] C. Aggarwal. On k-anonymity and the curse of dimensionality. In

VLDB, pp. 901-909, 2005.

[2] M. Atzori, F. Bonchi, F. Giannotti, and D. Pedreschi. Anonymity
preserving pattern discovery. VLDB Journal, 17(4):703-727, 2008.

[3] M. Barbaro and T. Zeller. A face is exposed for AOL searcher no.
4417749. New York Times, 2006.
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Abstract. Movement understanding frequently requires further information and 

knowledge than what can be obtained from bare spatio-temporal traces. Despite 

recent progress in trajectory data management, there is still a gap between the 

spatio-temporal aspects and the semantics involved. This gap hinders trajectory 

analysis benefiting from growing collections of linked data, with well-defined 

and widely agreed semantics, already available on the Web. This article intro-

duces Baquara, an ontology with rich constructs, associated with a system ar-

chitecture and an approach to narrow this gap. The Baquara ontology functions 

as a conceptual framework for semantic enrichment of movement data with an-

notations based on linked data. The proposed architecture and approach reveal 

new possibilities for trajectory analysis, using database management systems 

and triple stores extended with spatial data and operators. The viability of the 

proposal and the expressiveness of the Baquara ontology and enabled queries 

are investigated in a case study using real sets of trajectories and linked data.  
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1 Introduction 

Nowadays, large amounts of data about trajectories of moving objects can be gathered 

by using a variety of devices (e.g., smart phones equipped with GPS or just connected 

to a GSM network, vehicles equipped with RFID) and information systems (e.g., 

social Web sites that can detect changing locations of their users). A discrete raw 

trajectory is a time ordered sequence of spatio-temporal points (x ,y ,t ) ... 

(x ,y ,t ) (n > 1), where each x ,y is a pair of spatial coordinates and each t  

is an instant, representing sampled positions visited by the moving object. A sample 

point can be associated with keywords that carry information about the movement in 

that point. Lots of information can be extracted from such data, with a myriad of ap-

plications [4,8]. For instance, information extraction methods [8] can find episodes in 

raw trajectory data, i.e., maximal trajectory segments complying with a predicate [7]. 

However, these methods usually consider only the spatio-temporal component of 

trajectories, and do not address the specific content of episodes, whereas episodes can 

be thought of as segments of trajectories that carry specific semantics (e.g., a stop to 

take a picture of a monument or to take part in a sports event). 

Effective analysis of movement must consider the semantics of the trajectories and 

the reality in which they occur. Some conceptual models have been proposed for tra-

jectories databases [12,2]. They have introduced relevant ideas for semantic trajecto-

ries analysis, such as the concepts of stops and moves [12], later generalized to epi-

sodes [8], and dimensions for trajectories analysis [2] (e.g., goal, behavior, transporta-

tion means). Ontologies have also been proposed to support reasoning on knowledge 

bases describing trajectories [13,11]. However, these works do not address the auto-

matic enrichment of trajectories with semantically precise information about specific 

places (e.g., restaurants, hotels, touristic spots), events (e.g., sport events, cultural 

events), and other relevant entities of the open dynamic world in which trajectories 

occur. In this article, a semantic trajectory is a sequence of episodes linked to specific 

concepts and/or instances via ontological relationships that can describe their precise 

semantics. Such semantic enrichment requires lots of continuously updated infor-

mation, with well-defined and widely agreed semantics. 

This article introduces Baquara, an ontology with an associated architecture and an 

approach to enable semantic enrichment and analysis of trajectories with vast and 

growing collections of linked data available in the Web. The proposed ontology has a 

rich repertoire of constructs to semantically describe trajectories and their relevant 

episodes with linked data. Baquara plays the role of a conceptual bridge between 

movement analysis and the semantic Web, by allowing movement data and associated 

knowledge to be connected and queried together. The proposed approach enables 

queries that refer to specific entities and classes taken from linked open data sources.  

Our approach takes as input raw movement data associated with conventional data 

that may not have precise semantics (e.g., tag “Rio” may refer to a city, a state, or 

even a nightclub, among other possibilities). The linked data that help to describe and 

analyze the trajectories are selected according to the spatio-temporal scope of the 

movement to be analyzed, and the application domain (traffic analysis, tourism, 

emergency planning, etc.). Several methods can be used to find connections of 



movement data with linked data, including lexical and spatio-temporal matching (e.g., 

tag “Rio de Janeiro” associated with an episode occurring inside that city). After rele-

vant episodes have been extracted and semantically enriched with linked data, power-

ful queries can be executed in the resulting knowledge base. Such queries could be 

from very specific, e.g., “Select the trajectories with at least one episode related to a 

touristic place called Corcovado in Rio de Janeiro city, even though the episode hap-

pens up to 10 kilometers away from Corcovado”, or abstract enough to only refer to 

concepts, e.g., “Select the trajectories that have a stop related to any sport event”. 

The contributions of this article can be summarized as follows: 

· An ontological framework for movement data, called Baquara, is proposed, 

which enables semantic enrichment and analysis of trajectories of moving ob-

jects with vast and growing collections of linked data available in the Web. 

· Queries on a semantically-annotated movement data collection can be stated in 

our approach by using Baquara constructs in SPARQL
1
 extended with spatial 

operators [1,6], among other language options.  

· The viability of the proposed approach and the expressiveness of the enabled 

queries are investigated in a case study in which tagged movement data are de-

scribed, according to the Baquara ontology, using linked data from DBPedia 

and LinkedGeoData. 

The rest of this article is organized as follows. Section 2 discusses related work and 

contributions. Section 3 describes the proposed Baquara ontology. Section 4 presents 

a system architecture and a general approach for semantic enrichment of movement 

data with linked data. Section 5 presents a case study that illustrates the use of the 

proposed approach. Finally, Section 6 summarizes our contributions and future work. 

2 Related Work 

A pioneering work on conceptual modeling of spatio-temporal objects is MADS 

(Modeling Application Data with Spatio-temporal features) [9]. MADS extends the 

basic ER model with spatio-temporal constructs with its key premise being that spa-

tial and temporal concepts are orthogonal. It uses the object-relationship paradigm, 

including the features of the ODMG (Object Database Management Group) data 

model, and provides spatial and temporal attributes, data types and relationships, of-

fering a wide range of conceptual constructs to model the spatio-temporal world. A 

more recent contribution with focus on conceptual modeling of spatio-temporal ob-

jects changing their geographical positions but not their shapes over time comes from 

Spaccapietra et al. [12]. This model represents semantic trajectories as stops and 

moves, i.e., trajectory segments in which the object is stationary or moving, respec-

tively. It has been the first attempt to embed semantics in the movement representa-

tion, but it lacks generality since other relevant semantic aspects are not explicitly 

taken into account. An extension of the “Stop-Move” model towards overcoming 

                                                           
1  http://www.w3.org/TR/2013/REC-sparql11-query-20130321 



these limitations comes from the CONSTAnT conceptual model [2], which defines 

several semantic dimensions for movement analysis (e.g., goal, behavior).  

Although the conceptual modeling of trajectories have seen a “convergence” to the 

“Stop-Move” model [8], ontologies for movement data did not find so far an agreed 

approach. Due to lack of space we cannot mention here all the proposals for spatio-

temporal ontologies and we focus only on the ones most related to our approach. The 

trajectory ontology proposed by Yan et al. [13] includes three modules: the Geometric 

Trajectory Ontology describes the spatio-temporal features of a trajectory; the Geo-

graphic Ontology describes the geographic objects; and the Domain Application On-

tology describes the thematic objects of the application. These ontologies are integrat-

ed into a unique ontology that supports conjunctive queries in a traffic application. 

The proposal of [11] exploits a movement ontology for querying and mining trajecto-

ry data enriched with geographic and application information. Here the ontology has 

been used to infer application-dependent behavior from raw and mined trajectory 

data. Although Baquara can be seen as an extension of these approaches, it advances 

one important step further since it introduces rich ontological constructs, algorithms, 

and the use of linked data in a semi-automatic process to semantically enrich trajecto-

ries. These extensions to the widely adopted “Stop-Move” model provide a great im-

provement in terms of expressive power, as shown in the case study section.  

3 The Baquara Ontology 

The core of our approach to support semantic enrichment of movement data for tra-

jectory analysis is the so-called Baquara
2
 ontology. Fig. 1 shows the high level con-

cepts (classes) of this ontology, and the major semantic relationships between them. 

Each labeled rectangle represents a concept. Nesting denotes subsumption (IS-A rela-

tionship), i.e., a nested concept (e.g., Episode) is a subclass of its enclosing concept 

(e.g., SemanticTrace). The plus sign on the top left corner of a rectangle indicates 

that the respective concept is further specialized in Baquara. A dashed line between 

concepts denotes a semantic relationship, such as composition (PART_OF) or a spe-

cific relationship (e.g., between an Event and a Place where it occurs). Lines 

linking two concepts in opposite directions denote inverse relationships. 

The Baquara ontology has been designed to serve as a conceptual framework for 

describing semantic trajectories in several application domains, ranging from urban 

transportation to animal ecology. The current version of Baquara has more than 100 

classes and more than 200 properties. It includes all the major constructs needed for 

the description and analysis of trajectories. However, it can also be adapted to specific 

domains, if necessary, by adding class specializations and object properties.  

                                                           
2  The word Baquara, from the Tupi-Guarani languages, means knowledgeable, informed. 



3.1  Places, Events, and Moving Objects 

Baquara ontology uses the W3C’s Time
3
 ontology as the Time conceptualization, 

and a Geometry conceptualization that is compatible with that of the OGC’s Geo-

spatial Features
4
. Alternatives for these conceptualizations can also be considered, as 

standards evolve in the Web of data. These ontologies are used to define instances of 

Place and Event. These concepts, defined in the following, can be used to de-

scribe the spatio-temporal scope of the movement data, as well as the places and 

events of interest, for any particular application domain. 

 

Fig. 1. An overview of the Baquara ontology 

A Place (Definition 1) is a spatial feature relevant for movement analysis. The 

place’s geometry, as defined by OGC’s Geospatial Features, can be simple (point, 

line, or region) or complex (set of points, lines, or regions). Specializations of Place 

relevant for the tourism domain may, for example, include City, Airport, Ho-

tel, Restaurant, and LandMark.  

Definition 1. A Place is a tuple having a Geometry, and at least a name. 

An Event (Definition 2) represents a circumstance that lasts for a time and that is 

relevant for movement analysis in an applicaton domain. An event’s time can be sim-

ple (instant or period) or complex (set of instants or periods), as defined by the W3C’s 

Time ontology. Subclasses of Event relevant for tourism may, for example, include 

Season and SocialEvent. Such categories can be specialized, e.g., 

SocialEvent can be specialized to Party, Meeting,  etc. Conversely, Carni-

val can be regarded as a subclass of Party. Instances of Event (and its subclasses 

in any abstraction level) can be related to specific instances of Place, as indicated by 

the dashed line linking these classes. Thus, an instance of city whose name is “Rio de 

Janeiro”, can be semantically related to events occurring there, named, for example 

“Pan American Games of Rio 2007” and “First Strike of Rio’s Public Buses in 2013”. 

                                                           
3  http://www.w3.org/TR/owl-time 
4  http://www.opengeospatial.org/standards/sfa 



On the other hand, events like “Christmas holidays” may not be associated with any 

particular place, because they occur in many places.  

Definition 2. An Event is a tuple having a Time, at least a name, and zero or more 

relations with places. 

A MovingObject (Definition 3) is anything that moves and that can be distin-

guished from other moving objects through its MOid (moving object identifier). In 

Baquara, a MovingObject can be a Person, a Vehicle, an Animal, or even a 

Storm (that can be represented as a moving region).  

Definition 3. A MovingObject is a tuple having an MOid, and collections of 

RawTraceDescription and SemanticTrajectory instances.  

The key constituents of the above definition, RawTraceDescription and, 

more important, SemanticTrajectory, are presented in detail in the following. 

3.2 Movement Models and Description Statements 

The entities used to represent movement in Baquara are subclasses of STMovModel 

and SemanticMovModel. A STMovModel (Spatio-temporal Model of Move-

ment) just describes spatio-temporal representations of movement. It can refer to raw 

traces, processed traces (e.g., resulting of data cleansing and map matching), or even 

semantic trajectories and trajectory patterns having spatio-temporal counterparts. 

Such data are efficiently managed by moving object data management systems, such 

as Hermes [10]. The abstract class STMovModel has two concrete subclasses, 

STSnapshot and STSequence. A STSnapshot refer to a particular spatio-

temporal situation that is represented by a Geometry and a Time. A STSequence 

is a sequence of instances of STSnapshot ordered according to their non-

overlapping values of time. It is worth to note that the Baquara ontology does not 

restrict the geometries of moving objects. Baquara allows moving objects to be 

points, lines, or regions (e.g., storms). However, most case studies and moving object 

data management systems focus on point geometries. 

A SemanticMovModel can be a MOTrace, or a MovementPattern. A 

MOTrace (Moving Object Trace) is an abstract class that describes movement done 

by a specific MovingObject. It can be a RawTraceDescription of raw data 

collected by a Device, or a SemanticTrace built by post-processing raw data.  

A RawTraceDescription (Definition 4) is used to semantically describe raw 

data about movement. For example, to indicate the sensor device used to collect the 

trace, and other relevant information, such as the spatio-temporal precision, and the 

sampling rate. The spatio-temporal representation of an episode may differ from that 

of raw data, due to necessary transformations, including data cleansing, interpolation 

between samples, and map matching. Therefore, each class, Episode and 

RawTraceDescription, has its own STMovModel. 

Definition 4. A RawTraceDescription is a tuple with one STMovModel, and 

an indication of the device used to collect that spatio-temporal data. 



A SemanticTrace is an abstract class whose concrete subclasses are 

SemanticTrajectory (Definition 5) and Episode (Definition 6). An Epi-

sode is any noticeable happening in a trajectory segment, such as a stop or a move, 

that can be detected by a trajectory segmentation process; for instance, a stop may be 

detected according to whether the segment exceeds or not some threshold values on 

movement predicates (area covered, speed, etc.). A SemanticTrajectory is a 

time ordered sequence of episodes.  

Definition 5. A SemanticTrajectory is a tuple having an id and a time ordered 

sequence of Episode instances. 

Definition 6. An Episode is a tuple with the RawTraceDescription of the raw 

data used to build it, and, optionally, one STMovModel. 

Differently from a MOTrace, a MovementPattern describes a conceptual 

movement that is not associated with a specific MovingObject. It can happen or 

not in some movement database (e.g., a movement starting at home and ending at 

work). A MovementPattern is an abstract class that generalizes 

TrajectoryPattern (Definition 7) and EpisodePattern (Definition 8).  

Definition 7. A TrajectoryPattern is a tuple with a time ordered sequence of 

EpisodePattern instances, and arbitrary numbers of complying semantic trajec-

tories, and aggregated measures about these trajectories. 

Definition 8. An EpisodePattern is a tuple with arbitrary numbers of complying 

episodes, and aggregated measures about these episodes. 

A MovementPattern (either TrajectoryPattern or EpisodePattern) 

refers to its compliant SemanticTraces (SemanticTrajectory or Episode 

collections, respectively), i.e., the ones with compatible traits (e.g., trajectories whose 

first episode is a stop at a Market). A MovementPattern can also have aggregate 

measures of its compliant SemanticTrace collections. These measures can be 

numeric (e.g., the total distance traveled and the time spent by all compliant traces) or 

geometric (e.g., an aggregate geometry representing the compliant traces). 

Finally, description statements (Definition 9) allow the semantic annotation of the 

previously described entities of the SemanticMovModel with linked data. 

Definition 9. A description statement for an instance r of a class R is a triple 

DS(r,P,V) where P refers to a property defined for instances of R, and V is a value 

that can be a typed literal (string or number), an instance of a class, or a class itself. 

Any instance r of a class R subsumed by SemanticMovModel can have an arbi-

trary number of description statements DS(r,P,V). The general property 

hasAnnotation can be used for general descriptions. For example, an Episode 

can be related to an annotation having the value “bus”. However, such an annotation 

does not have specific semantics; it does not specify, for instance, if the mentioned 

“bus” plays the role of transport means or it is just something that captured the inter-

est of the moving object in the annotated episode. 



Other properties and classes are predefined in Baquara for making description 

statements with specific semantics. For example, an Episode can alternatively be 

described with the predefined property usesTransportationMeans pointing to 

e.g., the class Bus subsumed by class TransportationMeans. The values of 

specific properties can be taken from SemanticAnalysisDimensions, i.e, 

hierarchies of semantically related concepts or instances. Examples of such dimen-

sions also include Goal and Behavior, among others, defined in [2]. Baquara de-

fines specific properties for those and other analysis dimensions, such as MOGroup 

(Moving Objects Group), EventRelation, and PlaceRelation. The former 

allows for movement analysis according to general traits of moving objects (e.g., their 

classes, such as Vehicle and Person), without explicitly identifying them. The 

latter describe the kinds of relations that a MovementModel (e.g., an Episode) 

can have with an Event or a Place, respectively. For instance, an Episode may 

happen in a particular Place during an Event. Alternatively, an Episode can 

happen when the moving object just observes a Place (maybe from distance) or 

prepares for taking part in an Event. Thus, distinct properties can link a 

MovementModel to a Place (e.g., the city “Rio de Janeiro”) or an Event (e.g., 

the sports event “Pan American Games of Rio 2007”).  

4 Semantically Enriching Trajectories with Linked Data 

The ontology described in Section 4 is a conceptual framework to support semantic 

enrichment and analysis of movement data. This section presents the data enrichment 

process based on that ontology. This process allows arbitrary techniques for infor-

mation extraction from movement data (e.g., to find trajectory episodes). It exploits 

ontologies and linked data to delineate movement analysis dimensions with well-

defined semantics, enriching the movement analysis possibilities.  

4.1 Problem Description 

Consider that movement data (MoD) is provided as a relation of the form:  

 MoD (id, MOid(fk), T, S, A , ,A ) (1) 

where id is the tuple identifier (primary key), MOid is the moving object identifier 

(foreign key), T is a validity time (instant or period) when the moving object had the 

position and shape represented by S, S is a geometry (point, line, region), and 

A ,...,A  (n ³ 0) are descriptive attributes (e.g., TransportationMeans, 

Tag, Goal). Note that such a relation can hold relevant episodes instead of raw data. 

A MoD relation can carry lots of information. However, this spatio-temporal and 

descriptive information (when the latter is available) without links to knowledge 

about the geographic space, relevant events, possible goals, and transportation means, 

among other issues, may be not enough to explain movement and support intelligent 

analysis movement. Thus, a semantically rich model of movement, such as Baquara 

defined in Section 3, must be built from the MoD. The challenge is to build such a 



model for large MoD relations, taking into account potentially huge amounts of in-

formation and knowledge about the relevant data analysis dimensions, which may 

vary according to the application domain. This problem can be divided in three tasks: 

Task 1. extract episodes from raw MoD;  

Task 2. find connections (e.g., lexical and spatial) between episodes and infor-

mation about the environment in which the episodes occur; and  

Task 3. devise proper semantic relations between episodes and environment in-

formation to build description statements that can support analyses. 

When large amounts of data are involved, automated methods are necessary to 

solve each one of these tasks. A variety of methods are currently available to solve 

Task 1, mainly by processing spatio-temporal data about movement [8]. Methods to 

solve Tasks 2 and 3 are still open issues, particularly if the attributes in the MoD are 

too generic (e.g. Tag) to be directly mapped to specific analysis dimensions via spe-

cific properties. On the other hand, we argue that the vast and growing collections of 

linked data available in the semantic Web can supply the information needed to real-

ize these tasks in many cases. Furthermore, there is a potential for Task 1 to benefit 

from descriptive attribute values with the well-defined semantics of linked data too. 

4.2 Using Linked Data in the Semantic Enrichment Process  

The semantic enrichment process proposed in this work takes MoD in the form of  

(1), along with ontologies and linked data from various sources, to semantically de-

scribe movement in accordance to the Baquara ontology described in Section 3. The 

Baquara ontology provides a conceptual model to represent trajectories, episodes, 

patterns, and other constructs referring to movement. Its concepts and properties al-

low the description of movement using linked data.  

Fig. 2 illustrates a system architecture to support the proposed semantic enrichment 

process. This process starts by loading the Baquara ontology in the knowledge man-

agement system. Then, linked data with the same spatio-temporal scope as the MoD 

to be analyzed can be selected from several sources (e.g., by using their SPARQL 

endpoints or REST APIs). The collected knowledge, initially represented as RDF 

triples, is used in the semantic enrichment, warehousing, and mining of the MoD.  

 

Fig. 2. The proposed architecture for semantic enrichment and analysis of MoD 



The description statements generation takes MoD and linked data to derive de-

scription statements. This process is interlaced with the extraction of relevant epi-

sodes of the raw MoD contained in the spatio-temporal database. MoD can be con-

verted into RDF triples, to process as knowledge when convenient. Conversely, the 

RDF triples of the resulting knowledge base with description statements based on 

linked data can be converted into a format that allows direct processing in a conven-

tional or spatio-temporal DBMS, for efficiency purposes.  

Algorithm 1 outlines a general method for automatically generating description 

statements. It takes as input MovData, a MoD relation (as described in Section 4.1), 

the Baquara ontology, and linked data with the same spatio-temporal scope as 

MovData (e.g., whose valid time and spatial extents are inside the minimum bounding box 

inclosing the MovData), for a particular application domain (e.g., tourism). It returns 

as output DS, a collection of description statements. The latter describes movement 

sample points or episodes, by connecting them to linked data via properties prede-

fined or specialized in the Baquara ontology.  

INPUT:  MovData(id,MOid,T,S,A , ,A ) % Movement data  

       LD   % Baquara ontology and collected linked data 

OUTPUT:  DS(id,property,value)   % Description statements 

1.   DS = ∅ 

2.   FOR EACH r IN MovData DO 

3.       Matches = FindMatches(r,LD); 

4.       FOR EACH v IN Matches DO 

5.           CandidateProperties = ChooseProperties(r,v); 

6.           FOR EACH p IN CandidateProperties DO 

7.               DS = DS + (r.id,p,v); 

8.  RETURN DS 

Algorithm 1: General approach for generating description statements  

Initially, the set of generated description statements (DS) is empty (line 1). Then, 

for each tuple r Î MovData, the automatic method FindMatches(r,LD) finds 

its matches with linked data in LD (lines 2 and 3). A variety of methods can be used 

for this purpose; such as spatial proximity and lexical similarity between conventional 

attribute values of the MoD and labels of linked data entities (e.g., the tag “Rio” and 

the labels of entities in linked data collections). Of course, problems can arise when 

looking for matches, such as ambiguities. Additional information, such as the classes 

of the moving objects and linked data resources can help solve these problems. Like-

wise, such information can help ChooseProperties(r,v) find properties to 

generate description statements for tuple r and linked data resource v (lines 4 to 7).  

The current version of a prototype built to evaluate the proposed approach for 

MoD enrichment and analysis with linked data employs well-known spatio-temporal 

and text matching techniques [5,3,14] to find matches of MoD with linked data. It 

uses either the general hasAnnotation or the isAt (a place) property to generate 

description statements. The investigation of more sophisticated methods to generate 

specific description statements is theme for future work. 



5 Case Study 

We investigate the viability of our approach to semantically enrich and analyze MoD 

through a case study. In particular, we take raw trajectories and linked data about 

Brazil available at the Web, extract episodes, generate description statements, and 

evaluate some example queries in the resulting knowledge base, as described below. 

5.1 Movement Data  

The relation RawFlickTrajsBrazil(id,MOid,Instant,Lat,Long,Tag) 

is the MoD used in our case study. It was extracted from CoPhIR
7
, a collection of data 

about images uploaded in Flickr
8
. The spatial coordinates (Lat,Long) refer to the 

positions indicated by the Flickr users when uploading their pictures. The Instant 

of each sample was collected by the devices used to take the pictures. Though the 

time of the devices may not be set correctly, it can be used to calculate the time inter-

vals between consecutive sample points. We have verified by visual inspection that 

the coordinates may refer to the user’s position when taking the picture or to a pic-

tured object itself.  

After extracting tuples with spatio-temporal points inside Brazil, we separated the 

trajectories as time ordered sequence points visited by each user during each day and, 

then, we eliminated trajectories with segments having speed higher than 500 km/h 

(i.e., following a simple trajectory reconstruction technique; evaluating more sophisti-

cated approaches for trajectory reconstruction is beyond the scope of this article). The 

resulting raw data collection has 2143 trajectories owned by 564 distinct users, and 

consisting of 14504 sampled positions. These positions are associated with 12443 

distinct tags. The total number of tuples in RawFlickTrajsBrazil is 117146, 

i.e., each spatio-temporal sample point is associated to 8.08 tags in average. We have 

extracted 971 stops from these trajectories. Each of these stops corresponds to a 

period of at least 30 minutes without moving more than 500 meters. These stops are 

associated to 6278 distinct tags, in a total of 45768 (stop,tag) pairs, i.e., around 47 

different tag values associated to each stop, in average. After cleaning irrelevant tag 

values, we used Triplify
9
 to transform the MoD from relations into RDF triples, in 

accordance to the conceptual model defined by the Baquara ontology. 

5.2 Semantic Enrichment with Linked Data 

We have accessed triple sets available on the Web pages, SPARQL endpoints, and 

REST endpoints to extract subsets of linked data from DBPedia
10

 (a knowledge base 

built from Wikipedia
11

), LinkedGeoData
12

 (a large collection of geographic entities’ 

                                                           
7  http://cophir.isti.cnr.it 
8  http://www.flickr.com 
9  http://triplify.org 
10  http://dbpedia.org 
11  http://www.wikipedia.org 



descriptions taken from OpenStreetMap
13

), and GeoCodes
14

 (another knowledge base 

about geographic entities). The extracted subsets are compatible with the spatio-

temporal scope of the raw MoD considered for analyses, i.e., referring to Brazil 

and/or the time period between 2007 and 2008. The extracted linked data was stored 

in the triple repository Virtuoso
15

, which supports spatial data extensions and 

GeoSPARQL
16

 [1] queries with spatial operators.  

Then we have investigated matches between labels of a selected collection of 

linked data and the tags associated with the sample points and episodes of our trajec-

tory data collection. We have used just approximate string matching methods and 

geographic coordinates to help disambiguate in some cases. Most of the matches 

found are tag values from CoPhIR trajectories matching labels of entities classified as 

different kinds of places (PopulatedPlace, NaturalPlace, Ammenity, 

etc.) in the collected linked data. We have also found a smaller number of matches 

with specific kinds of events (SportsEvent, SoccerTournament, 

FootballMatch, etc.) and organizations (SportsTeam, SoccerClub, 

SambaSchool, etc.). This semantic enrichment process enabled us to generate some 

description statements to answer queries such as the ones presented in the following. 

5.3 Analytical Queries 

There follows some examples of GeoSPARQL queries that can be executed in the 

knowledge base resulting from the semantic enrichment of our collection of Flickr 

trajectory data. They use the bq namespace to refer to the Baquara ontology.  

Query 1 (single episode query): Select trajectories with at least one episode that 

mentions and occurs up to 10 km from Corcovado (the mountain of Rio de Janeiro 

in whose top stands the statue of Christ the Redeemer).  

SELECT ?trajectory WHERE { 

 ?trajectory a bq:SemanticTrajectory; 

  bq:hasEpisode ?episode. 

 ?episode bq:hasAnnotation ?a. ?a bq:hasValue ?v. 

 ?v a <http://dbpedia.org/ontology/Mountain>; 

  rdfs:label "Corcovado"@pt; geo:geometry ?cGeo. 

 ?rio a <http://dbpedia.org/ontology/City>; 

  rdfs:label "Rio de Janeiro"@pt; geo:geometry ?rioGeo. 

 FILTER(bif:st_intersects (?cGeo,?rioGeo,20) && 

        bif:st_intersects (?eGeo,?cGeo,10)) } 

                                                                                                                                           
12  http://linkedgeodata.org 
13  http://www.openstreetmap.org 
14  http://www.geocode.com 
15  http://virtuoso.openlinksw.com 
16  http://www.opengeospatial.org/standards/geosparql 



Query 2 (multiple episodes query): Select trajectories with a stop in an Ameni-
ty, a stop mentioning a SportsEvent, and a stop lexically related to "Beach".  

SELECT ?trajectory WHERE { 

 ?trajectory a bq:SemanticTrajectory;  

   bq:hasEpisode ?s1, ?s2, ?s3. 

 ?s1 a bq:Stop; bq:occursIn ?p1.   
 ?s2 a bq:Stop; bq:hasAnnotation ?a2. 

 ?s3 a bq:Stop; bq:hasAnnotation ?a3. 

 ?a2 bq:hasValue ?v2. ?a3 bq:hasValue ?v3.   

 ?p1 a <http://linkedgeodata.org/ontology/Amenity>.  

 ?v2 a <http://dbpedia.org/resource/SportsEvent>. 

 FILTER(regex(?v3,"Beach")) } 

Commenting on the above queries, the raw trajectories extracted from Flickr have 

sample points annotated with the tag "Corcovado" that are far away from that 

mountain, probably because it can be seen and pictured from many positions in Rio. 

The FILTER clause in Query 1 ensures that the considered mountain labeled with 

"Corcovado"@pt is the one inside the city called Rio de Janeiro and that the 

stop mentioning that mountain occurs up to 10 km from it. Further, in Query 2, the 

bidding of the description statements of the stops s1 and s2 with values from specif-

ic classes from LinkedGeoData and DBpedia, respectively, are more precise than just 

matching strings, as it is done in the filter condition with v3. 

6 Conclusions and Future Work 

Vast collections of linked data about real world entities and events have been fed and 

continuously updated on the Web. However, their potential to leverage movement 

understanding has not been exploited yet. This article gives the following contribu-

tions towards using linked data to help movement analyses: (i) an ontology, called 

Baquara, for semantic trajectories enrichment with linked data; (ii) an architecture to 

narrow the gap between trajectory mining and the semantic Web; (iii) an automated 

method to derive semantic annotations from movement data with free annotations; 

(iv) examples of analytical queries enabled by this proposal through a case study with 

real data available at the Web. Though the queries presented in this article run on 

triple stores, the latter can be used just as means to handle knowledge. After semantic 

enrichment, the resulting knowledge can be converted into conventional and spatio-

temporal databases, for more efficient analysis and mining. 

In our future work we plan to: (i) evaluate the proposed approach with spatio-

temporal and linked data from distinct domains; (ii) develop efficient methods to 

derive precise description statements from different data collections; and (iii) investi-

gate the use of linked data for trajectories warehousing and trajectories mining. 
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ABSTRACT

Mining frequent subgraphs is an important operation on graphs;

it is defined as finding all subgraphs that appear frequently in a

database according to a given frequency threshold. Most exist-

ing work assumes a database of many small graphs, but modern

applications, such as social networks, citation graphs, or protein-

protein interactions in bioinformatics, are modeled as a single large

graph. In this paper we present GRAMI, a novel framework for

frequent subgraph mining in a single large graph. GRAMI under-

takes a novel approach that only finds the minimal set of instances

to satisfy the frequency threshold and avoids the costly enumera-

tion of all instances required by previous approaches. We accom-

pany our approach with a heuristic and optimizations that signif-

icantly improve performance. Additionally, we present an exten-

sion of GRAMI that mines frequent patterns. Compared to sub-

graphs, patterns offer a more powerful version of matching that

captures transitive interactions between graph nodes (like friend of

a friend) which are very common in modern applications. Finally,

we present CGRAMI, a version supporting structural and semantic

constraints, and AGRAMI, an approximate version producing re-

sults with no false positives. Our experiments on real data demon-

strate that our framework is up to 2 orders of magnitude faster and

discovers more interesting patterns than existing approaches.

1. INTRODUCTION
Graphs model complex relationships among objects in a variety

of applications such as chemical, bioinformatics, computer vision,

social networks, text retrieval and web analysis. Mining frequent

subgraphs is a central and well studied problem in graphs, and plays

a critical role in many data mining tasks that include graph classi-

fication [9], modeling of user profiles [11], graph clustering [15],

database design [10] and index selection [31]. The goal of frequent

subgraph mining is to find subgraphs whose appearances exceed a

user defined threshold. This is useful in several real life applica-

tions. Consider for example protein-protein interaction (PPI) net-

works [5]. These networks are graphs where nodes represent pro-

teins (and are labeled with their functionality) and edges represent

∗
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interactions between these proteins. Such graphs are constantly

updated to include new proteins and their interactions. A critical

task for biologists is to predict the functionality (and add the cor-

responding label) of a new protein without experimental testing.

The above task may be accurately preformed by mining frequent

subgraphs with similar interactions to the new protein [5].

Consider the collaboration graph G of Fig. 1 and a user inter-

ested to mine important collaborations among authors. Typically,

in such graphs, frequent subgraphs are most likely to show collab-

orations among authors having the same field of work (i.e., collab-

orations among DB researchers). In order to reveal more interest-

ing subgraphs, the user would progressively reduce the frequency

threshold until subgraphs showing interdisciplinary collaborations

are discovered (i.e., among AI, DB and IR researchers). Lowering

the frequency threshold increases the number of qualified interme-

diate results and intensifies the already expensive computations of

the mining process. For example, a state-of-the-art method for fre-

quent subgraph mining crashes after a day consuming 192GB for

an input graph of 100K nodes and 1M edges. Therefore, the de-

velopment of efficient frequent subgraph mining algorithms that

support large graphs and low frequency thresholds is very crucial.

Existing literature considers two settings: transactional and sin-

gle graph. The transactional case assumes a database of many, rela-

tively small graphs, where each graph represents a transaction [18,

29]. A subgraph is frequent if it exists in at least τ transactions,

where τ is a user-defined threshold. In this paper, the focus is on the
single-graph setting that considers one large graph [17, 19, 20]. For

this setting, a subgraph is frequent if it has at least τ appearances

in the graph. Such a context is required in many modern applica-

tions, including social and PPI networks. The single-graph setting

is a generalization of the transactional one, since a set of small

graphs can be considered as connected components within a single

large graph. Detecting frequent subgraphs in a single graph is more

complicated because multiple instances of identical subgraphs may

overlap. Moreover, it is more computationally demanding because

complexity is exponential in the graph size.

The most straightforward method to evaluate frequency of a sub-

graph S in a graph G is to look for isomorphisms of S in G [12,

16, 19, 20]. Isomorphisms are exact matches of S in G that pair

nodes, edges and labels. For example, in the collaboration graphG
of Fig. 1, subgraph S1 has three isomorphisms.

A typical method to mine frequent subgraphs in a single graph,

is a grow-and-store method that proceeds with the following steps:

1. Find all nodes that appear at least τ times and store all of their

appearances.

2. Extend the stored appearances to construct larger potential fre-

quent subgraphs, evaluate their frequency, and store all the ap-

pearances of the new frequent subgraphs.
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Figure 1: (a) A collaboration graph G; nodes correspond to au-

thors (labeled with their field of work) and edges represent co-

authorship (labeled with number of co-authored papers). (b)

and (c) Subgraphs S1 and S2.

3. Repeat Step 2 until no more frequent subgraphs can be found.

Existing approaches such as SIGRAM [20] use variations of this

grow-and-store method. These approaches take advantage of the

stored appearances to evaluate the frequency of a subgraph. The

main bottleneck of such algorithms is the creation and storage of

all appearances of each subgraph. The number of such appear-

ances depends on the size and the properties of the graph and the

subgraph; it can be prohibitively large to compute and store, ren-

dering grow-and-store solutions infeasible in practice.

In this work, we propose GRAMI (GRAph MIning); a novel

framework that addresses the frequent subgraph mining problem.

GRAMI undertakes a novel approach differentiating it from grow-

and-store methods. First, it stores only the templates of frequent

subgraphs, but not their appearances on the graph. This eliminates

the limitations of the grow-and-store methods and allows GRAMI

to mine large graphs and support low frequency thresholds. Also,

it employs a novel method to evaluate the frequency of a subgraph.

More specifically, GRAMI models the frequency evaluation as a

constraint satisfaction problem (CSP). At each iteration, GRAMI

solves the CSP until it finds the minimal set of appearances that are

enough to evaluate subgraph frequency, and it ignores all remaining

appearances. The process is repeated by extending the subgraphs

until no more frequent subgraphs can be found.

Solving the CSP can still take exponential time in the worst case.

In order to support large graphs in real-life applications, GRAMI

employs a heuristic search and a series of optimizations that sig-

nificantly improve performance. More specifically, GRAMI in-

troduces novel optimizations that (a) prune large portions of the

search space, (b) prioritize fast and postpone slow searches and (c)

take advantage of special graph types and structures. By avoid-

ing the exhaustive enumeration of appearances and using the pro-

posed optimizations, GRAMI supports larger graphs and smaller

frequency thresholds than existing approaches. For example, to

compute the frequent patterns of the 100K nodes/1M edges graph

that the state-of-the-art grow-and-store method crashed after a day,

GRAMI needs only 16 minutes.

Additionally, we propose three extensions to the original GRAMI

framework. The first one considers graphs such as social or re-

search networks, that may contain incomplete information and tran-

sitive relationships. In such cases indirect relationships (like a

friend of a friend) reveal neighborhood connectivity and proxim-

ity information. To explore these relationships, patterns were in-

troduced [4, 17, 34]. Patterns establish a more powerful definition

of matching, than subgraphs, that captures indirect connections by

replacing edges with paths. To mine frequent patterns, we have

appropriately extended GRAMI. For instance in Fig. 1, GRAMI

may also consider u5
··· u8

10 u9 to be a match of S1 since u5

(labeled DB) is indirectly connected to u8 (labeled IR). The sec-

ond extension, CGRAMI, allows the user to define a set of con-

straints, both structural (e.g., the subgraph is allowed to have up to

α edges) and semantic (e.g., a particular label cannot occur more

than α times in the subgraph). The constraints are used to prune

undesirable matches and limit the search space. The final exten-

sion, AGRAMI, is an approximate version, which approximates

subgraph frequencies. The approximation method may miss some

frequent subgraphs (i.e., has false negatives), but the returned re-

sults are not approximate (i.e., does not have false positives).

Noteworthily, GRAMI and its extensions support directed and

undirected graphs and may be applied to both single and multiple

labels (or weights) per node and edge.

In summary, our main contributions are:

• We propose GRAMI, a novel framework to mine frequent sub-

graphs in a large single graph. GRAMI is based on a novel idea

that refrains from computing and storing large intermediate re-

sults (appearances of subgraphs). A key part of the underlying

idea is to evaluate the frequency of subgraphs using CSP.

• We offer a heuristic search with novel optimizations that signif-

icantly improve GRAMI’s performance by pruning the search

space, postponing searches, and exploring special graph types.

• We develop a variation of GRAMI that is able to mine frequent

patterns, a more powerful version of matching that is required in

several modern applications.

• We present CGRAMI, a version that supports structural and se-

mantic constraints, and AGRAMI, an approximate version which

produces results with no false positives.

• We experimentally evaluate the performance of GRAMI and dem-

onstrate that it is up to 2 orders of magnitude faster than existing
methods in large real-life graphs.

The rest of the paper is organized as follows. Section 2 formal-

izes the problem. Section 3 presents GRAMI and its optimizations.

Section 4 discusses the extensions of GRAMI. Section 5 presents

the experimental evaluation. Section 6 surveys related work, and

Section 7 concludes.

2. PRELIMINARIES
A graph G = (V,E, L) consists of a set of nodes V , a set of

edges E and a labeling function L that assigns labels to nodes and

edges. A graph S = (VS , ES , LS) is a subgraph of a graph G =
(V,E, L) iff VS ⊆ V , ES ⊆ E and LS(v) = L(v) for all v ∈
VS ∪ ES . Fig. 1a illustrates an example of a collaboration graph.

Node labels represent author’s field of work (e.g., Databases) and

edge labels represent the number of co-authored papers. To sim-

plify presentation, all examples illustrate undirected graphs with a

single label for each node. However, the proposed methods also

support directed graphs and multiple labels per node/edge.

Definition 1 Let S = (VS , ES , LS) be a subgraph of a graph

G = (V,E, L). A subgraph isomorphism of S to G is an injective

function f : VS → V satisfying (a)LS(v) = L(f(v)) for all nodes

v ∈ VS , and (b) (f(u), f(v)) ∈ E and LS(u, v) = L(f(u), f(v))
for all edges (u, v) ∈ ES .

Intuitively, a subgraph isomorphism is a mapping from VS to V
such that each edge in E is mapped to a single edge in ES and vice

versa. This mapping preserves the labels on the nodes and edges.

For example in Fig. 1, subgraph S1 (v1
4 v2

10 v3) has three iso-

morphisms with respect to graphG, namely u1
4 u3

10 u4, u5
4

u4
10 u3 and u6

4 u8
10 u9.



The most intuitive way to measure the support of a subgraph in a

graph is to count its isomorphisms. Unfortunately, such a metric is

not anti-monotone since there are cases where a subgraph appears

less times than its extension. For instance, in Fig. 1a the single node

subgraph DB appears 3 times while its extension DB
4
IR appears

4 times. Having an anti-monotone support metric is of crucial im-

portance since it allows the development of methods that effec-

tively prune the search space; without an anti-monotone metric ex-

haustive search is unavoidable [12, 20]. The literature defines sev-

eral anti-monotone support metrics such as minimum image based

(MNI) [2], harmful overlap (HO) [12], and maximum independent

sets (MIS) [20]. These metrics differ in the degree of overlap they

allow between subgraph isomorphisms, and the complexity of their

computation. In this paper, we adopt the MNI [2] metric mainly

because it: (a) is the only metric that can be efficiently computed;

the computation of MIS and HO are NP -complete [12, 20] and

(b) provides a superset of the results of the alternative metrics; if

we are interested in the MIS or HO metric we may pay their expen-

sive computational cost and exclude the unqualified subgraphs [12].

Formally, the MNI metric is defined as follows [2].

Definition 2 Let f1, . . . , fm be the set of isomorphisms of a sub-

graph S(VS , ES , LS) in a graph G. Also let F (v) = {f1(v), . . . ,
fm(v)} be the set that contains the (distinct) nodes in G whose

functions f1, . . . , fm map a node v ∈ VS . The minimum image

based support (MNI) of S in G, denoted by sG(S), is defined as

sG(S) = min{ t | t = |F (v)| for all v ∈ VS}.

For instance, for the subgraph S1 of Fig. 1b and the graph G of

Fig. 1a, we have F (v1) = {u1, u5, u6}, F (v2) = {u3, u4, u8}
and F (v3) = {u3, u4, u9}, thus sG(S1) = 3. To compare, the

respectiveMIS metric is 2 since isomorphisms u1
4 u3

10 u4 and

u5
4 u4

10 u3 overlap and the MIS metric regards them as one.

The frequent subgraph mining problem is defined as:

Problem 1 Given a graph G and a minimum support threshold τ ,
the frequent subgraph isomorphism mining problem is defined as

finding all subgraphs S in G such that sG(S) ≥ τ .

Problem 1 does not consider finding the actual number of ap-

pearances (i.e., frequency) provided that it is greater than τ . This
is very useful in several applications [6, 20], but there are others

that demand the exact number of appearances (like graph index-

ing [31]). Also note, that Problem 1 is computationally expensive

since it relies on theNP -hard subgraph isomorphism problem [13].

Definition 1 enforces matching on both node and edge labels.

For instance in Fig. 1, subgraph S2 has only one isomorphism

(formed by nodes u1, u2 and u3). Recent research argues that this

matching is rather restrictive, and relaxes it by allowing indirect

relationships and differences between the edges of the graph and

the subgraph [4, 17, 34]. Such frameworks may also consider sub-

graph u6
4 u8

20 u7 to be a match of S2 since DM and DB are

indirectly connected. We refer to this match as a pattern. For min-

ing frequent patterns, we adopt the pattern matching definition as

outlined in [34]. Specifically, we employ a distance metric to mea-

sure the distance between two nodes. To this end, we may use any

metric function, i.e., a function that satisfies the triangle inequal-

ity [34]. Typically, the distance function is computed based on the

edge labels (or weights) but it may also be defined on other graph

properties (e.g., the number of hops between two nodes).

For graph G of Fig. 1, we may use a distance function∆h(u, v)
defined as the number of hops in the shortest path that connects

u and v. For instance, ∆h(u0, u3) = 2. Alternatively, we may

use ∆p(u, v) defined as the minimum sum of the inverse of edge

weights among the paths that connect u and v. For an example,
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Figure 2: (a) The distance ∆p for the graph G of Fig. 1. (b) A

pattern P1.

∆p(u6, u7) = 1/4 + 1/20 = 0.3. Intuitively, a shorter distance

denotes a stronger collaboration. Fig. 2 illustrates the values of∆p

for the graph G of Fig. 1. Solid lines correspond to the original

edges of the graph, while dotted lines illustrate some additional

transitions (for figure clarity, we do not show all transitions).

Definition 3 A graph P = (VP , EP , LP ) is a pattern of a graph

G(V,E, L) iff VP ⊆ V , LP (v) = L(v) for all v ∈ VP and

LP (e) = ∅ for all e ∈ EP .

In other words, a pattern is analogous to a subgraph but without

considering edge labels. For instance, a pattern P1 of the graph G
is presented in Fig. 2b.

Definition 4 Let P = (VP , EP , LP ) be a pattern of a graph G =
(V,E, L),∆ be a distance metric function, and δ be a user-defined
distance threshold. A pattern embedding of P to G is an injective

function φ :VP → V satisfying (a)LP (v) = L(φ(v)) for all nodes
v ∈ VP and (b)∆(φ(u), φ(v)) ≤ δ for all edges (u, v) ∈ EP .

The minimum image based support for a pattern, denoted by

σG(P ), can be computed as in Definition 2 by replacing the iso-
morphisms f1, . . . , fm with the pattern embeddings φ1, . . . , φµ.

For example consider Fig. 2; setting a threshold δ = 0.3, we have
σG(P1) = 2. The corresponding embeddings are illustrated by the
gray areas. Note that there are other possible matches to P1 but

only the indicated two satisfy the constraint∆(φ(u), φ(v)) ≤ δ.

Problem 2 Given a graph G, a distance function ∆, a distance

threshold δ, and a minimum support threshold τ , the frequent pat-
tern embedding mining problem is defined as finding all patterns

P of G such that σG(P ) ≥ τ .

3. THE GRAMI APPROACH
GRAMI proposed a novel technique that addresses the frequent

subgraph mining problemwithout exhaustively enumerating all iso-

morphisms in the graph. To this end, GRAMI models the under-

lying problem as a constraint satisfaction problem (Section 3.1).

Following, Section 3.2 applies the model to solve the frequent sub-

graph problem. Section 3.3 proposes several optimizations to en-

hance performance. The frequent pattern mining problem together

with other interesting extensions are discussed in Section 4.

3.1 The CSP Model
A constraint satisfaction problem (CSP) is represented as a tuple

(X ,D, C) where (a) X is an ordered set of variables, (b) D is a

set of domains corresponding to variables X , and (c) C is a set of

constraints between the variables inX . A solution for the CSP is an

assignment to the variables in X , such that all constraints in C are
satisfied. The subgraph isomorphism problem (Definition 1) can be

mapped to a CSP as follows.



Definition 5 Let S(VS , ES , LS) be a subgraph of a graphG(V,E,
L). The subgraph S to graph G CSP, is a CSP (X ,D, C) where:

1. X contains a variable xv for every node v ∈ VS .

2. D is the set of domains for each variable xv ∈ X . Each domain

is a subset of V .

3. Set C contains the following constraints:

a) xv 6= xv′ , for all distinct variables xv, xv′ ∈ X .

b) L(xv)=LS(v), for every variable xv ∈ X .

c)L(xv, xv′)=LS(v, v
′), for all xv, xv′∈X such that (v, v′)∈ES .

To simplify notation, whenever it is clear from the context, we

use v to refer to a node of the subgraph and to the corresponding

variable xv of the CSP as we do in the following example.

Example 1 Consider Fig. 1. The subgraph S1 to graph G CSP is

defined as:




(v1, v2, v3),
{

{u0, . . . , u9}, . . . , {u0, . . . , u9}
}

,
{

v1 6= v2 6= v3, L(v1) = DB, L(v2) = L(v3) = IR,
L(v1, v2) = 4, L(v2, v3) = 10

}





The following proposition relates the subgraph to a graph CSP

with the subgraph isomorphism f (Definition 1).

Proposition 1 A solution of the subgraph S to graph G CSP cor-

responds to a subgraph isomorphism of S to G.

Intuitively, a solution assigns a different node of G to each node

of S, such that the labels of the corresponding nodes and edges

match. For instance, a solution to the CSP of Example 1 is the

assignment (v1, v2, v3) = (u1, u3, u4).

Definition 6 An assignment of a node u to a variable v is valid if

and only if there exists a solution that assigns u to v. Note that

each valid assignment corresponds to an isomorphism.

In Example 1, v2 = u3 is a valid assignment; v2 = u0 is invalid.

Proposition 2 Let (X ,D, C) be the subgraph S to graph G CSP.

The MNI support of S in G satisfies τ , i.e., sG(S) ≥ τ , iff every
variable inX has at least τ distinct valid assignments (i.e., isomor-

phisms of S in G).

Proposition 2 is a key part of this work since it provides a method

to determine if a subgraph S is frequent in G. To this end, we may
consider the S to G CSP and check the number of valid assign-

ments of every variable. If for every variable there exists τ or more
valid assignments, then sG(S) ≥ τ and S is considered frequent.

Continuing Example 1, we have sG(S1) ≥ 3 since all domains

contain at least 3 valid assignments (more specifically, the domains

of variables v1, v2 and v3 are {u1, u5, u6}, {u3, u4, u8} and {u4,
u3, u9} respectively).

3.2 Frequent Subgraph Mining
We now apply the CSP model presented in Section 3.1 to solve

the frequent subgraph mining problem (Problem 1). We start by

presenting Algorithms FREQUENTSUBGRAPHMINING and SUB-

GRAPHEXTENSION that are used in many related methods to gen-

erate candidate subgraphs [29, 20] and are illustrated for complete-

ness. Then, we consider methods to measure the number of ap-

pearances (frequency) of these subgraphs. Algorithm ISFREQUE-

NTCSP shows how we may address frequency evaluation without

computing and storing all intermediate results. Algorithm ISFRE-

QUENTHEURISTIC offers a heuristic approach and Algorithm ISFRE-

QUENT supplements it with optimizations that highly improve per-

formance. The frequent pattern embedding mining problem (Prob-

lem 2) is discussed in Section 4.

Algorithm: FREQUENTSUBGRAPHMINING

Input: A graphG and the frequency threshold τ
Output: All subgraphs S ofG such that sG(S) ≥ τ

1 result ← ∅
2 Let fEdges be the set of all frequent edges ofG
3 foreach e ∈ fEdges do

4 result ← result ∪ SUBGRAPHEXTENSION(e,G, τ, fEdges)
5 Remove e fromG and fEdges

6 return result

Algorithm: SUBGRAPHEXTENSION

Input: A subgraph S of a graph dataG, the frequency threshold τ and the set of

frequent edges fEdges ofG
Output: All frequent subgraphs ofG that extend S

1 result ← S, candidateSet ← ∅
2 foreach edge e in fEdges and node u of S do

3 if e can be used to extend u then

4 Let ext be the extension of S with e
5 if ext is not already generated then

candidateSet ← candidateSet ∪ ext

6 foreach c ∈ candidateSet do

7 if sG(c) ≥ τ then

8 result ← result ∪ SUBGRAPHEXTENSION(c,G, τ, fEdges)

9 return result

FREQUENTSUBGRAPHMINING starts by identifying set fEdges

that contains all frequent edges (i.e., with support greater or equal

to τ ) in the graph. Based on the anti-monotone property, only

these edges may participate in frequent subgraphs. For each fre-

quent edge, SUBGRAPHEXTENSION is executed. This algorithm

takes as input a subgraph S and tries to extend it with the frequent

edges of fEdges (Lines 2-5). All applicable extensions that have

not been previously considered are stored in candidateSet . To

exclude already generated extensions (Line 5) we adopt the DF-

Scode canonical form as in GSPAN [29]. Then, SUBGRAPHEX-

TENSION (Lines 6-8) eliminates the members of candidateSet that

do not satisfy the support threshold τ since according to the anti-

monotone property, their extensions are also infrequent. Finally,

SUBGRAPHEXTENSION is recursively executed (Line 8) to further

extend the frequent subgraphs.

According to Proposition 2, a subgraph S is frequent in G (i.e.,

sG(S) ≥ τ ) if there exist at least τ nodes in each domainD1, . . . ,
Dn that are valid variable assignments (i.e., are part of a solu-

tion) for the corresponding variables v1, . . . , vn. To evaluate fre-
quency, we may use ISFREQUENTCSP that returns true iff S is a

frequent subgraph of G. Initially, ISFREQUENTCSP enforces node

and arc consistency [22]. Node consistency excludes unqualified

nodes from the domains (like nodes with different labels or with

lower degree) and arc consistency ensures the consistency between

the assignments of two variables. Specifically, for every constraint

C(v, v′), arc consistency ensures that for every node in the domain
of v there exists a node in the domain of v′ satisfying C(v, v′). If,
after node and arc consistency enforcement, the size of a domain

is smaller than τ the algorithm returns false (Line 3). Follow-

ing, ISFREQUENTCSP considers every solution Sol and marks the
nodes assigned to variables to the corresponding domains (Line 5).

If all domains have at least τ marked nodes then (according to

Algorithm: ISFREQUENTCSP

Input: Graphs S andG and the frequency threshold τ
Output: true if S is a frequent subgraph ofG, false otherwise

1 Consider the subgraph S to graphG CSP

2 Apply node and arc consistency

3 if the size of any domain is less than τ then return false

4 foreach solution Sol of the S to graph G CSP do

5 Mark all nodes of Sol in the corresponding domains
6 if all domains have at least τ marked nodes then return true

7 return false // Domain is exhausted



Algorithm: ISFREQUENTHEURISTIC

Input: Graphs S andG and the frequency threshold τ
Output: true if S is a frequent subgraph ofG, false otherwise

1 Consider the subgraph S to graphG CSP

2 Apply node and arc consistency

3 foreach variable v with domain D do

4 count← 0
5 Apply arc consistency

6 if the size of any domain is less than τ then return false

7 foreach element u of D do

8 if u is already marked then count++
9 else if a solution Sol that assigns u to v exists then

10 Mark all values of Sol in the corresponding domains
11 count++

12 else Remove u from the domainD
13 if count = τ then Move to the next v variable (Line 3)

14 return false // Domain is exhausted and count < τ

15 return true

Proposition 2) S is frequent in G. Otherwise, ISFREQUENTCSP

continues with the following solution.

Complexity. Let N and n be the number of nodes of graph G
and subgraph S respectively. The complexity of FREQUENTSUB-

GRAPHMINING is determined by the complexity of SUBGRAPHEX-

TENSION and ISFREQUENTCSP. The former computes all sub-

graphs of G, which takes O(2N
2

) time. The latter evaluates fre-
quency which is reduced to the computation of subgraph isomor-

phisms (a well-known NP-hard problem) and takes O(Nn) time.

Overall, the complexity of the mining process is O(2N
2

·Nn) time
which is exponential in the problem size. Thus, it is of crucial

importance to devise appropriate heuristics and optimizations that

improve execution performance. Several works study the subgraph

generation process and propose techniques that significantly im-

prove performance [29, 20]. These techniques are implemented

in Algorithm SUBGRAPHEXTENSION. In the following section,

we consider the optimization of Algorithm ISFREQUENTCSP that

computes subgraph isomorphisms.

3.3 Optimizing Frequency Evaluation
Algorithm ISFREQUENTCSP naively iterates over the solutions

of the subgraph S to graph G CSP trying to find τ valid assign-

ments for every variable. To guide this search process, we propose

the heuristic illustrated in Algorithm ISFREQUENTHEURISTIC. In-

tuitively, the algorithm considers each variable at a time and searches

for τ valid assignments. If these are found, it moves to the next

variable and repeats the process. In more details, ISFREQUENT-

HEURISTIC starts by enforcing node and arc consistency. Then,

the algorithm considers every variable and counts the valid assign-

ments in its domain (stored in variable count). If, during the pro-

cess, any variable domain remains with less than τ candidates, then
the subgraph cannot be frequent, so the algorithm returns false

(Line 6 and 14). To count the valid assignments, ISFREQUENT-

HEURISTIC iterates over all nodes u in the domainD of a variable

x and searches for a solution that assigns u to x. If the search is
successful then count is incremented by 1, and the process con-

tinues to the next node in D until the number of valid assignments

(count) becomes τ , in which case the algorithm proceeds to the

next domain (Line 13). On the other hand, if search is unsuccess-

ful then u is removed from D and the algorithm continues with

the next node in D. Updating D may trigger new inconsistencies

in other domains, thus, arc consistency (Line 5) is checked again.

ISFREQUENTHEURISTIC also implements the following optimiza-

tion. Assume that for a domain D a solution was found for some

node u ∈ D. Then, count is incremented by 1 and all nodes (in-

cluding u) that belong to this solution are marked in the respective

Algorithm: ISFREQUENT

Input: Graphs S andG and the frequency threshold τ
Output: true if S is a frequent subgraph ofG, false otherwise

1 Consider the subgraph S to graphG CSP and apply node and arc consistency

// Push-down pruning

2 foreach edge e of S do

3 Let S/e be the graph after removing e from S
4 Remove the values of the domains in S that correspond to invalid

assignments of S/e

// Unique labels

5 if S and G satisfy the unique labels optim. conditions then

6 if the size of any domain is less than τ then return false

7 else return true

// Automorphisms

8 Compute the automorphisms of S

9 foreach variable x and its domain D do

10 count← 0, timedoutSearch ← ∅

11 if there is an automorphism with a computed domain D′ then

12 D ← D′ and move to the next x variable (Line 9)

13 Apply arc consistency

14 if the size of a domain is less than τ then return false

// Lazy search

15 foreach element u of D do

16 if u is already marked then count++
17 else

18 Search for a solution that assigns u to x for a given time

threshold

19 if search timeouts then Save the search state in a structure

timedoutSearch

20 if a solution Sol is found then

21 Mark all values of Sol to the corresponding domains
22 count++

23 else Remove u from the domainD and add u to the invalid

assignments ofD in S
24 if count = τ then Move to the next variable (Line 9)

// Resume timed-out search if needed

25 if |timedoutSearch|+ count ≥ τ then

// Decompose

26 Decompose graph S into a set of graphs Set that contain the newly

added edge

27 foreach s ∈ Set do Remove invalid assignments of s from the

respective domains of S
28 foreach t ∈ timedoutSearch do

29 Resume search from the saved state t
30 if a solution Sol is found then

31 Mark all values of Sol to the corresponding domains
32 count++

33 else Remove u from the domainD and add u to the invalid

assignments ofD in S
34 if count = τ then Move to the next variable (Line 9)

35 return false // Domain is exhausted and count < τ

36 return true

domains (Line 10). Hence, if these nodes are considered in a later

iteration of the algorithm, they are recognized as already belonging

to a solution (Line 8). This precludes any further search.

In the following, we introduce Algorithm ISFREQUENT that en-

hances ISFREQUENTHEURISTIC through several optimizations that

significantly improve execution performance. ISFREQUENT uses

three novel optimizations, namely, Push-down pruning, Lazy search

and Unique labels. Finally, ISFREQUENT specializes, for frequent

mining,Decomposition pruning and Automorphisms, that are known

to speed-up search [8] and frequent subgraph mining [1] respec-

tively. In the sequel, we present the optimization techniques ac-

cording to their execution order in the ISFREQUENT algorithm.

Push-down pruning. The subgraph generation tree is constructed

by extending a parent subgraph with one edge at a time. Since

the parent is a substructure of its children, those assignments that

were pruned from the domains of the parent, cannot be valid as-



signments for any of its children. For example, Fig. 3a illustrates a

part of a subgraph generation tree consisting of subgraph S1 which

is extended to S2, S3 and then to S4 (via S2). Assume that when

considering subgraph S1, ISFREQUENT excludes elements a3, b1,
and a3 from the domain of variables v1, v2, and v3 respectively

(depicted by light gray ovals in Fig. 3b). This information can be

pushed down such that a3, b1, a3 are also pruned from all descen-

dants of S1. This happens recursively; for instance, the assignments

pruned because of S2 are depicted by dark gray dotted ovals.

The same substructure may also appear in subgraphs that do not

have an ancestor/descendant relationship. In the example of Fig. 3,

S4 is not a descendant of S3; however, both contain substructure

A−B−A−C. Since S3 and S4 are in different branches, pushing

down the pruned assignments is not applicable. Instead, we use a

hash table to store the pruned assignments of previously checked

subgraphs. The hash key is the DFScode canonical representation

of S3 [29]. When S4 is generated, the hash table is searched for

matching substructures. If one is found, the corresponding invalid

assignments are pruned from the domains of S4. ISFREQUENT

applies this optimization (Lines 2-4) using the invalid assignments

populated while searching for valid nodes (Lines 23 and 33).

Saving the invalid assignments of subgraphs results in a signifi-

cant performance gain for the following two reasons.

• Subgraphs (like S4) take advantage of the respective pruning of

smaller subgraphs (like S1 and S2) to prune invalid assignments.

Thus, the domains of the subgraph variables are reduced avoid-

ing the expensive search procedure (Lines 18 and 29). In many

cases, a subgraph may be eliminated without search. For in-

stance, in Fig. 3, assuming that τ = 3, S4 can be eliminated,

because there are only two valid assignments of variable v1 re-
maining in its domain.

• This domain reduction also speeds up the search process since

it highly depends on the domain size. For instance, in Fig. 3,

assuming that τ = 2, when considering variable v1, the search
space has a size of 2·2·3·4 = 48 combinations (bottom of Fig. 3b),

while without using this optimization the respective search space

size is 5·3·5·6 = 450 combinations.

To perform push-down pruning, Line 3 constructs O(n2) sub-

graphs S/e by removing an edge from S, (n is the number of nodes

in S) and uses a hash lookup to remove the invalid assignment (Line
4). Thus, the overall complexity is O(n2) time.

Unique labels. In the case of data graphs with a single label per

node and subgraphs having a tree-like structure and unique node

labels, the following optimization can be applied:

Proposition 3 LetG be a graph with a single label per node, S(VS ,
ES , LS) be a subgraph ofG, S’s underlying undirected graph is a
tree, and all of its node labels are unique, i.e., LS(v) 6= LS(v

′) for
all v and v′ in VS such that v 6= v′. To calculate sG(S) directly,
it suffices to consider the S to G CSP and refine the domains of

variables by enforcing node and arc consistency.

PROOF: Since each graph node has a single label and the query has

unique labels, no node can appear in more than one domain. For

any S, we will use induction to prove that each valueN in each do-

main of S (after applying the node and arc consistency constraints)

is part of a valid solution. Let Q be a copy of S where all of S’s
directed edges are replaced with undirected ones. Q is connected,

undirected, and acyclic, therefore it is a tree. LetQ be rooted at the

node corresponding to N ’s domain.

• ForQwith height = 1,N is guaranteed to be part of a valid so-

lution (by definition of the node and arc consistency constraints

and by considering the fact that the same node cannot appear in

other domains).
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• ForQ with height = R, let T be a subgraph of S and its under-

lying undirected graph is a subtree of Q sharing the same root

but with height = R − 1. Let L be the set of T ’s leaf nodes
and assume that T has a solution. Q is composed of T and the

set of trees Z with height 1 (or 0) each rooted at a distinct node

from L. Since each element in Z has a solution in G, and each
solution joins with T ’s solution only by its corresponding root
in Z, hence, a valid solution for S exists.

Note that the final step cannot be applied when the underlying undi-

rected graph Q contains a cycle. For example if S is an undirected

triangle of 3 nodes labeled (A,B,C) and the data graphG is undi-

rected and contains 6 nodes forming a cycle: (A,B,C,A,B,C).
When considering the S to G CSP after enforcing node and arc

consistency the count sG(S) is 2, but, the correct result is 0. �

Example 2 Consider the subgraph DB−IR and the graph G of

Fig. 1. Let v1 (resp. v2) be the variable that corresponds to nodes

labeled withDB (resp. IR). The initial domains areDv1 = Dv2 =
{u0, . . . , u9}. After applying node and arc consistency we have

Dv1 = {u1, u5, u6} and Dv2 = {u0, u3, u4, u8} which encodes

the actual isomorphisms of the subgraph to graph G.

If the conditions hold (Line 5), GRAMI uses the current domain

sizes to directly decide whether S is frequent or not (Lines 6-7).

The overall process can be performed in O(n) time.

Automorphisms. Automorphism is an isomorphism of a graph to

itself. Automorphisms appear because of symmetries. Following



[1], such symmetries in the subgraph can be used to prune equiv-

alent branches and reduce the search space. For example, con-

sider subgraph S of graph G presented in Fig. 4; S has automor-

phisms. To determine if S is frequent inG, while iterating over the
domain of v1, ISFREQUENT finds the assignment (v1, v2, v3) =
(u1, u4, u2) to be a solution (i.e., an isomorphism of S to G).
Due to the symmetry of the subgraph S, assignment (v1, v2, v3) =
(u2, u4, u1) is also a solution. The benefits of this observation are
twofold. First, we may identify the valid assignments of a variable

more efficiently. More importantly, when we compute all valid as-

signments of a variable (like v1) we also compute the valid assign-
ments for its symmetric counterpart (i.e., v3).
ISFREQUENT detects automorphisms in Line 8. This requires

O(nn) time where n is the number of nodes in subgraph S. In

practice, despite the exponential worst-case bound, the cost of au-

tomorphisms is very low since the size of subgraph S is negligible

compared to the size of the graph G.

Lazy search. Intuitively, to prove that a partial assignment does not

contribute to any valid solution, the search algorithm has to exhaust

all available options; a rather time consuming process. Thus, if a

search for a solution that pertains to a specific partial assignment

takes a long time, then this is probably because the partial assign-

ment cannot contribute to a complete valid assignment. To address

such cases, initially ISFREQUENT searches for a solution only for

a limited time threshold (Line 18). The intuition of the optimi-

zation is that other assignments may produce much faster results

that will help indicate if the subgraph is frequent (sG(S) ≥ τ ).
In such a case, the result of the timed out search would be irrel-

evant, hence, there is no reason to waste time in further search.

Nevertheless, this cannot guarantee that a timed out partial assign-

ment will not eventually be essential for proving the frequency of

the subgraph. Thus, if search is timed out, the algorithm stores

the search state in the timedoutSearch set of nodes with incom-

plete check. These searches will only be resumed when the non-

timed out cases are not sufficient to show that a subgraph is fre-

quent. More specifically, timed-out searches are considered if after

the time limited search, count < τ and count plus the size of

timedoutSearch (i.e., the number of timed out searches) surpasses

the threshold τ (Line 25). Only then, the algorithm resumes each

timed out search t ∈ timedoutSearch from its saved state but with-

out a time-out option until enough assignments are found to prove

frequency (Line 34). Note that, if necessary, ISFREQUENT even-

tually searches the entire search space for each variable to provide

the exact solution.

The complexity of Lazy search (Lines 15-24) can be done in

O(N) time (note that the search of Line 18 takes constant time

since it is performed for a specific time frame).

Decomposition pruning. The final optimization is performed in

Lines 26 and 27. At this point, the algorithm is about to resume

the timed out searches. To reduce the problem size, the algorithm

decomposes the input subgraph S into a set of distinct subgraphs

Set. Recall that algorithm SUBGRAPHEXTENSION extends sub-

graphs by adding an edge e from the set of frequent edges fEdges .

Set Set is constructed by removing one edge at a time from S
and adding to Set the connected component that includes edge e.
Any other decomposition has already been considered by the Push-

down pruning optimization. Finding and removing invalid assign-

ments from the domains of the elements of Set is a much easier

task because they are smaller than the original subgraph S.
For example, consider Fig. 5. Subgraph S extends S′ with edge

C−K and, thus, it is decomposed into Set that contains subgraphs

S1 to S3. Let us assume that the variable corresponding to the new

node labeled with K is vk and the initial domain of vk contains
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S1 to S3 containing the newly extended edge C−K.

values k1 to k7. Further, assume that using subgraphs S1, S2 and

S3 we can exclude values {k1, k5}, {k2, k6} and {k3} respectively.
The decomposition optimization removes all these values from the

domain of vk, therefore, it only contains the values k4 and k7.
Decomposition pruning can be done inO(n2). Resuming timed-

out searches (Lines 28-34) requires solving a CSP on n − 1 vari-
ables with domain of size N and can be done in O(Nn−1) time.

Complexity analysis of ISFREQUENT. Let N and n be the num-

ber of nodes in G and S respectively. Push-down pruning, unique

labels and automorphisms can be done inO(n2),O(n) andO(nn)
respectively. Subgraph size is negligible in comparison to the data

graph size, and thus these procedures are not expensive. ISFRE-

QUENT applies arc consistency, lazy search and resumes timed-out

search that can be done in O(Nn), O(N) and O(Nn−1) respec-
tively. Thus, the complexity of ISFREQUENT is determined by the

resumed timed-out searches. More specifically, if p is the possibil-
ity expressing that a node in a domain of a variable is valid, then

to find the required τ valid assignments we need to consider τ/p
nodes and solve τ/p CSPs of size n − 1 for each one of the n
variables. In total, the complexity bound is O(n · τ/p ·Nn−1).

4. GRAMI EXTENSIONS

Generalization to pattern mining. Section 3 models the subgraph

isomorphism problem (Definition 1) as a subgraph to graph CSP

(Definition 5). Similarly, a pattern embedding φ (Definition 4) can

be mapped to a CSP by replacing Condition 3c of Definition 5 as

follows.

3c) ∆(xv, xv′)≤ δ, for every xv, xv′ ∈X such that (v, v′) ∈EP

(where∆ is the distance metric and δ is the distance threshold).

Whenever it is clear from the context, we use v to refer to a node

of the pattern and xv to refer to the corresponding variable of the

CSP as we do in the following example.

Example 3 Consider Fig. 2. For δ = 0.3, the pattern P1 of graph

G CSP is defined as:




(v1, v2, v3),
{

{u0, . . . , u9}, . . . , {u0, . . . , u9}
}

,
{

v1 6= v2 6= v3, L(v1)=DM, L(v2)=IR, L(v3)=DB,
∆(v1, v2) ≤ 0.3, ∆(v2, v3) ≤ 0.3, ∆(v1, v3) ≤ 0.3

}





The notations for a solution (Proposition 1) and valid (or invalid)

assignments (Definition 6) are easily extended to support pattern to



Table 1: Definitions of the anti-monotonic structural con-

straints for pattern P , implemented in CGRAMI

|VP | ≤ α Number of nodes should not exceed α
|EP | ≤ α Number of edges should not exceed α
max(degree(VP )) ≤ α The maximum node degree is α

Table 2: Definitions of the anti-monotonic semantic constraints

for pattern P , implemented in CGRAMI

(∀v ∈ VP )(L(v) ∈ L) P contains only labels from L
(∀v ∈ VP )(L(v) /∈ L) P does not contain any label from L
(∀v, v′∈EP )(L(v, v′)∈E) P contains only edges from E
(∀v, v′∈EP )(L(v, v′) /∈E) P does not contain any edges from E
(¬subgraph(P ′, P )) Pattern P must not contain a specific subgraph P ′

(∀v∈VP )(count(L(v))≤α) A node label cannot appear more than α times in P

graph CSPs. For instance, assignment (v1, v2, v3) = (u7, u8, u6)
is a solution of the CSP of Example 3 and a pattern embedding of

P1 to G. Moreover, v2 = u3 is a valid assignment while v2 = u0

is invalid (and thus, cannot be extended to a solution).

Proposition 4 Let (X ,D, C) be the pattern P to graphG CSP. The

MNI support of P in G satisfies τ , i.e., σG(S) ≥ τ , iff every vari-
able inX has at least τ distinct valid assignments (i.e., embeddings

of P in G).

Continuing Example 3, we have σG(P1) ≥ 2 since all domains
contain at least 2 valid assignments (the domains of variables v1,
v2 and v3 are {u2, u7}, {u3, u8} and {u1, u6} respectively).
To address the frequent pattern mining problem (Problem 2), we

can also employ Algorithms ISFREQUENTHEURISTIC and ISFRE-

QUENT, with the following additional preprocessing step. For each

frequent node, we precompute the set of nodes that are reachable

within distance δ. We run a distance-bound Dijkstra algorithm from

each frequent node to find the shortest path to the reachable nodes,

where the path distance is defined by the distance function ∆; the

algorithm terminates when the distance of the shortest path exceeds

δ. All optimizations of Section 3.3 apply directly in this setting as
well. To avoid confusion, we use GRAMI for the subgraph mining

problem and GRAMI(δ) for the pattern mining problem.

User-defined constraints. Typically, frequent patterns show in-

teractions between nodes bearing the same label. For instance, in

citation graphs, most collaborations are among authors working in

the same field. In many applications, interactions among nodes of

different types (like interdisciplinary collaborations) are more in-

teresting and important [33]. To allow the user to focus on the

interesting patterns, we developed CGRAMI, a version of GRAMI

that supports two types of user-defined constraints: (a) Structural,

such as “the number of vertices in pattern P should be at most α’
and (b) Semantic, such as “P must not contain specific labels”.

Although not a requirement, it is desirable that the user-defined

constraints are anti-monotonic. In such cases, the constraints can be

pushed down in the subgraph extension search tree to early prune

large parts of the search space, thus accelerating the process. Ta-

bles 1 and 2 present a set of useful structural and semantic anti-

monotonic constraints that are supported by CGRAMI.

Approximate mining. Frequent subgraph mining is a computa-

tionally intensive task since it is dominated by the NP-hard sub-

graph isomorphism problem. Thus, its performance is prohibitively

expensive when applied to large graphs. Motivated by this, we

introduce AGRAMI, an approximate version of our framework,

which is able to scale to larger graphs. To maintain the quality of

results, AGRAMI does not return any infrequent pattern (i.e., does

not have false positives), although it may miss some frequent ones

(i.e., may have false negatives). To achieve this, we modified the

Table 3: Datasets and their characteristics
Dataset Nodes Distinct node labels Edges Density

Twitter 11,316,811 100 85,331,846 Dense

Patents 3,942,797 453 16,522,438 Medium

Aviation 101,185 6,173 133,087 Sparse

MiCo 100,000 29 1,080,298 Dense

CiteSeer 3,312 6 4,732 Medium

way ISFREQUENT handles time-outs (Line 18) as follows: we set

the time-out to occur after f(α) iterations of the search. If a solu-
tion is found before this time-out, the count is updated as normal.

On the other hand, if a time-out occurs it is assumed that the search

was unsuccessful. If enough time-outs occur during the search of a

specific domain such that its count remains less than τ , the pattern
is considered to be infrequent. Parameter f(α) = αn ∏n

1
|Di|+β,

where β is a constant,Di are the domains of the variables, n is the

number of variables and 0 < α ≤ 1 is a user-defined approxi-

mation parameter.
∏n

1
|Di| grows exponentially; thus it has to be

bounded by an exponential weight αn. Increasing α decreases the

approximation error at the expense of longer execution time. When

α = 1, AGRAMI becomes equivalent to GRAMI.

5. EXPERIMENTAL EVALUATION
In this section, we experimentally evaluate GRAMI and its ex-

tensions. For comparison, we have implemented GROWSTORE that

follows a pattern grow-and-store approach [20, 29]. GROWSTORE

uses the original code of GSPAN [29] and takes advantage of all its

optimizations. The only difference is that GROWSTORE, similarly

to GRAMI, use the efficient MNI metric. Both GROWSTORE and

GRAMI are completely memory based. All experiments are con-

ducted using Java JRE v1.6.0 on a Linux (Ubuntu 12) machine with

8 cores running at 2.67GHz with 192GB RAM and 1TB disk. Our

experimental machine used an exotic memory size to accommodate

the memory requirements of GROWSTORE; GRAMI may also run

on ordinary machines with 4GB RAM for all datasets but Twitter.

Datasets. We experiment on several different workload settings by

employing the following real graph datasets; their main character-

istics are summarized in Table 3.

Twitter (socialcomputing.asu.edu/datasets/Twitter). This graph

models the social news of Twitter and consists of ∼11M nodes and

∼85M edges. Each node represents a Twitter user and each edge

represents an interaction between two users. The original graph

does not have labels, so we randomly added labels to the nodes.

The number of distinct labels was set to 100 and the randomization

follows a Gaussian distribution.

Patents. This dataset models U.S. patents’ citations and consists

of a directed graph with ∼4M nodes and ∼16M edges. Each node

represents a patent and each edge represents a citation. The graph

is maintained by the National Bureau of Economic Research [32].

As a preprocessing step, we remove all unlabeled nodes.

MiCo. This dataset models the Microsoft co-authorship informa-

tion and consists of an undirected graph with 100K nodes and ∼1M

edges. Nodes represent authors and are labeled with the author’s

field of interest. Edges represent collaboration between two authors

and are labeled with the number of co-authored papers. To populate

MiCo we crawled the computer science collaboration graph from

academic.research.microsoft.com.

CiteSeer (cs.umd.edu/projects/linqs/projects/lbc). CiteSeer

represents a directed graph consisting of ∼3K publications (nodes)

and ∼4K citations between them (edges). Each node has a single

label representing a Computer Science area. Each edge has a label

(0 to 100) that measures the similarity between the corresponding
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Figure 6: Performance of GRAMI and GROWSTORE

pair of publications, a smaller label denotes a stronger similarity.

Aviation (ailab.wsu.edu/subdue). This dataset contains a list of

records extracted from the aviation safety database and was used

in [7, 20] for evaluation. Each record corresponds to an event

and has several attributes (like event type, location, flight condi-

tion). This information is represented by a graph having two types

of nodes and edges. The first type of nodes represents the events

(and are labeled with the ids of the event) while the second repre-

sents attribute values (and are labeled with the actual value). The

first type of edges links events and is labeled with their relation-

ship (e.g., near to) while the second type links events with attribute

values and is labeled with the attribute name. Aviation consists of

100K nodes and 133K edges. Note that Aviation is a fundamen-

tally different dataset when compared with the previous ones. The

Aviation graph has on average one edge per node, thus, it is very

sparse. Also it has a very large number of distinct node labels.

Metrics. The support threshold τ is the key evaluation metric as

it determines when a subgraph or a pattern is frequent. Decreas-

ing τ results in an exponential increase in the number of possible

candidates and thus exponential decrease in the performance of the

mining algorithms. For a given time budget, an efficient algorithm

should be able to solve mining problems for low τ values. When τ
is given, efficiency is determined by the execution time.

To evaluate a result set, we consider the number and the maxi-

mum size of subgraphs/patterns in the set. Obviously, these values

should be as large as possible.

Computing frequent subgraphs. Initially, we consider Problem 1

that mines frequent subgraph isomorphisms. Fig. 6 shows the per-

formance of GROWSTORE and GRAMI on Twitter, Patents, MiCo

and Aviation datasets. The number of results (intermediate and ac-

tual) grows exponentially when the support threshold τ decreases.

Thus, the running time of all algorithms also grows exponentially.

Unlike GROWSTORE, GRAMI does not need to enumerate all in-

termediate results, thus, it is more efficient. Our results indicate

that GRAMI outperforms GROWSTORE by at least two orders of

magnitude for Patents and MiCo datasets and by at least an or-

der of magnitude for Twitter and Aviation datasets. For the larger
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Figure 7: (a) Memory requirements for GRAMI and GROW-

STORE and (b) UsingMISmetric

datasets (Twitter and Patents) and for the lower τ (3K and 65K

respectively), GROWSTORE was not able to produce results even

when it was alloted 2 orders of magnitude more time than GRAMI.

Memory requirements. Fig.7a illustrates the memory require-

ments for GROWSTORE and GRAMI for the MiCo dataset. Since

GROWSTORE needs to store all intermediate results, it consumes

about an order of magnitude more memory. For τ=10, 400 the size
of the intermediate results exceed the available memory (192GB),

and hence GROWSTORE crashes. For this frequency, there is an

increase in the number of the frequent subgraphs and thus an expo-

nential increase in the number of intermediate candidates that need

to be stored and checked for frequency. This trend also appears

for the other datasets. GRAMI on the other hand is not affected by

the increase in the output size. Most of the memory GRAMI uses,

is required for the storage of the input graph G. The most costly
data structure of ISFREQUENT is the hash table used by push-down

pruning, but, still it does not exceed 2% for the overall required

memory. Also the space needed to store timed-out searches (set

timedoutSearch) was never above 1% of the total memory. For all

our experiments, GRAMI could be also executed in machines with

the typical memory size of 4GB except for the Twitter dataset.

UsingMISmetric. In this experiment, we compare GROWSTOREMIS

the original version of GROWSTORE that uses the MIS metric with

GRAMI
MIS, the modified version of GRAMI that also supportsMIS.

For the Aviation dataset, GRAMI
MIS takes slightly more time than

GRAMI while GROWSTOREMIS could not produce results even if it

was alloted three orders of magnitude more time than GRAMI
MIS.

Interestingly, GROWSTOREMIS cannot produce results in reason-

able time even for the much smaller Citeseer dataset. To achieve a

comparison, we have constructed a new dataset by randomly sam-

pling 1400 edges from the Citeseer dataset. The results are illus-

trated in Fig. 7b. Clearly, GRAMI
MIS outperforms GROWSTOREMIS

by up to 3 orders of magnitude.

Computing frequent patterns. We now consider Problem 2 that

mines frequent pattern embeddings. We evaluate the performance

of GROWSTORE and GRAMI(δ) for several values of the distance
threshold δ. We use the CiteSeer dataset and distance function

∆h(u, v) defined as the number of hops in the shortest path that

connects u and v. For GRAMI(δ), we test on two different dis-

tance thresholds namely 1 and 4. Intuitively, for δ = 1 (respectively
δ = 4) two pattern nodes that are connected with an edge may be
matched with two graph nodes that are one hop (respectively four

hops) away. GROWSTORE can only find matches that are only one

hop away. Thus, only GROWSTORE and GRAMI(1) are directly

comparable since they both compute the same results. As shown

in Fig. 8a, GRAMI(1) is an order of magnitude faster than GROW-

STORE (note the logarithmic scale). As expected GRAMI(4) com-
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Figure 8: Performance evaluation for mining frequent pat-

terns in CiteSeer dataset comparing between GROWSTORE and

GRAMI(δ) where δ is the distance threshold

putes more and larger patterns than GROWSTORE and GRAMI(1)

(Figs. 8b and 8c). An example of a frequent pattern discovered by

GRAMI is illustrated on the right of Fig. 8d and contains 5 nodes

involving 3 different Computer Science areas. To compare, GROW-

STORE computes the 3 nodes patterns at the left of Fig. 8d that in-

volve 1 and 2 areas. To compute these results, GRAMI(4) takes

more time than GRAMI(1) but is still faster than GROWSTORE.

To further illustrate the benefits of GRAMI(δ) we have con-

ducted another set of experiments (Fig. 9). The aim of the experi-

ments is to illustrate the properties of the patterns that can be gen-

erated within a specific time budget. Figs. 9a,b, consider the Cite-

seer dataset with the distance function ∆h and compare between

GROWSTORE, GRAMI(1) and GRAMI(4). Specifically, Fig. 9a

shows the minimum support threshold τ that can be achieved, when
the above algorithms are allotted a time budget that ranges from 1

to 5 seconds (lower is better). For this budget range, Fig. 9b illus-

trates the number of result patterns (higher is better). In both cases,

GRAMI(1) and GRAMI(4) accomplish lower thresholds and result
in more patterns than GROWSTORE.

CGRAMI: User-defined constraints. CGRAMI supports the addi-

tion of constraints on the returned results (Section 4). Using these

constraints, the focus can be on more interesting pattern types like

the ones that show interactions between nodes of a different type.

To evaluate CGRAMI, we use the experimental setting of Fig. 9a,b.

The only difference is that we now use CGRAMI(δ) with a con-

straint that does not allow more than 4 nodes with the same label

in a pattern. The corresponding results are illustrated in Fig. 9c,d

and are directly comparable to Fig. 9a,b. In every case and within

the same time budget allowed for both GRAMI and CGRAMI,

CGRAMI results in a significantly lower minimum support thresh-

old τ and significantly larger frequent patterns set. For instance, for
the Citeseer dataset with a time budget of 3 seconds, CGRAMI(1)

achieves a 3 times lower threshold and almost 3 times more patterns
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Figure 9: Comparing (a,c) the minimum support threshold

and (b,d) the maximum number of frequent patterns that can

be achieved within an allotted time budget. For (a,b) we used

GRAMI(δ) and for (c,d) we use CGRAMI(δ) constrained to re-
ject patterns with more than 4 nodes with the same label

than GRAMI. Additionally, CGRAMI generates patterns having

about 3 times more label interactions than GRAMI.

AGRAMI: Approximate mining. AGRAMI, which offers ap-

proximate subgraph and pattern mining (Section 4), can be tuned

by the approximation parameter α, 0 < α ≤ 1 (value 1 means no

approximation). Fig. 10 illustrates the performance of GRAMI and

AGRAMI for several values for the α parameter in the Patents and

MiCo datasets. We evaluate two parameters, execution time and

recall, i.e., the percentage of subgraphs returned by AGRAMI with

respect to the actual complete set of frequent subgraphs. For the

Patents dataset, the performance gain is significant, nearly an order

of magnitude for both α=2·10−5 and α=3·10−5. For α=3·10−5

the recall is always 100% (i.e., AGRAMI provides all subgraphs)

except for τ = 63.600 that is 95%. For α = 2·10−5 the recall is

always over 90%. For the MiCo dataset, the performance gain is

significant, nearly an order of magnitude when α = 4·10−4 and
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Figure 10: Performance evaluation of GRAMI and AGRAMI

with different values for the approximation parameter.
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Figure 11: The effect of optimizations. No opt: Algorithm ISFREQUENTHEURISTIC (Section 3.2). Lazy: Lazy search and decom-

position optimizations enabled. Pruning: Only pruning push-down optimization enabled. Unique: Only unique labels optimization

enabled. GRAMI: All optimization enabled (Algorithm ISFREQUENT).
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Figure 12: Performance comparison between GRAMI and

GGQL; a modified version of GRAMI that replaces ISFRE-

QUENT with a counting function based on GraphQL

nearly two orders of magnitude when α = 2·10−4. Interestingly,

the recall is always 100%.

Optimizations. This experiment demonstrates the effect of the op-

timizations discussed in Section 3.3 on mining the different datasets.

A summary is illustrated in Fig. 11. For the MiCo dataset, the most

effective optimization is Push-down pruning (denoted by Pruning

in Fig. 11a) that achieves an improvement of up to 2 orders of mag-

nitude. Following that, are the Lazy search and the Decomposition

pruning optimizations, both are combined and denoted by Lazy in

Fig. 11a. The two optimizations accomplish an improvement of

up to an order of magnitude. Last comes the Automorphism and

Unique labels optimizations that achieve only 4% improvement,

since most of the frequent subgraphs in the MiCo dataset neither

have automorphisms nor unique labels. For presentation clarity in

Fig. 11a, we do not illustrate the results of the last two optimiza-

tion methods. A similar trend also applies to Patents and Citeseer

datasets (Figs. 11b and 11c).

For the Aviation dataset (Fig. 11d), a different optimization trend

is noticed since this dataset is fundamentally different than MiCo

Patents and Citeseer. In this case, the most effective optimization is

Unique labels (denoted by Unique in Fig. 11d). As discussed ear-

lier, the Aviation dataset is extremely sparse and has a very large

number of distinct node labels, thus, the Unique label optimization

is very effective. In contrast to the previous cases, all other opti-

mizations do not offer any improvement and are not illustrated.

Comparison with subgraph isomorphism techniques. To ad-

dress the frequent data mining problem, we may also employ sub-

graph isomorphism techniques [21]. For comparison, we have im-

plemented GGQL; a modified version of GRAMI that replaces

ISFREQUENT with a frequency evaluation function based on GRA-

PHQL [16]; one of the fastest state-of-the-art subgraph isomor-

phism techniques [21]. Clearly, as illustrated in Fig. 12, GRAMI

outperforms GGQL by at least 3 times and up to more than an or-

der of magnitude. This is easily justifiable since GRAMI uses sev-

eral optimizations and visits only the necessary nodes in the input

graph to solve the frequent subgraph mining problem.

6. RELATED WORK
This section discusses related work in many different directions.

Transactional mining. This setting is concerned with mining fre-

quent subgraphs on a dataset of many, usually small, graphs. FSQ

[18] construct new candidate patterns by joining smaller frequent

ones. The drawback of this approach is the costly join operation

and the pruning of false positives. GSPAN [29] proposes a variation

of the pattern growth approach. It uses an extension mechanism,

where subgraphs grow directly from a single subgraph instead of

joining two previous subgraphs. Other methods focus on particular

subsets of frequent subgraphs. MARGIN [26] returns maximal sub-

graphs only, whereas CLOSEGRAPH [30] generates subgraphs that

have strictly smaller support than any of their parts. LEAP [28] and

GRAPHSIG [24], on the other hand, discover important subgraphs

that are not necessarily frequent.

Although GRAMI focuses on the single large graph setting, it

may be easily specialized to also support graph transactions.

Single graph mining. On the equally important single graph set-

ting there exists less work. The major difference is the defini-

tion of an appropriate anti-monotone support metric (Section 2).

SIGRAM [20] uses the MIS metric and proposes an algorithm that

finds frequent connected subgraphs in a single, labeled, sparse and

undirected graph. SIGRAM follows a grow-and-store approach,

i.e., it needs to store intermediate results in order to evaluate fre-

quencies. Overall, SIGRAM needs to enumerate all isomorphisms

and relies on the expensive computation of MIS (which is NP -

complete), thus the method is very expensive in practice.

Since the number of intermediate embeddings increases expo-

nentially with the graph size, such approaches do not scale for large

graphs. In contrast, GRAMI does not need to construct all the iso-

morphisms, hence, it can scale to much larger graphs. More im-

portantly, GRAMI supports frequent subgraph and pattern mining

(Problems 1 and 2 respectively). Thus, it allows for exact isomor-

phism matching and the more general distance-constrained pattern

matching. Additionally, GRAMI supports constraint-based mining

and works on directed, undirected, single and multi-labeled graphs.

Approximate mining. There is work on approximate techniques

for solving the frequent subgraph mining problem as well. In GREW

[19], the authors propose a heuristic approach that prunes large



parts of the search space, but discovers only a small subset of the

answers. GAPPROX[3] employs an approximate version of theMIS

metric. It mainly relies on enumerating all intermediate isomor-

phisms but allows approximate matches. SEUS [14] is another ap-

proximate method that constructs a compact summary of the input

graph. This facilitates pruning many infrequent candidates, how-

ever, it is only useful when the input graph contains few and very

frequent subgraphs. SUBDUE [7] is a branch-and-bound technique

that mines subgraphs that can be used to compress the original

graph. Finally, Khan et al. [17] propose proximity patterns, which

relax the connectivity constraint of subgraphs and identify frequent

patterns that cannot be found by other approaches.

In contrast to the existing work, AGRAMI, approximate version

of GRAMI, may miss some frequent subgraphs, but the returned

results do not have false positives.

Subgraph isomorphism. The frequent subgraph mining problem

relies on the computation of subgraph isomorphisms. This prob-

lem is NP-complete and the first practical algorithm that addresses

this problem follows a backtracking technique [27]. Since then,

several performance enhancements were proposed, ranging from

CSP based techniques [23], search order optimization [16], index-

ing [31] and parallelization [25].

Although the state-of-the-art subgraph isomorphism techniques

lead to significant improvements, they are not as effective in the

frequent subgraph mining problem for two reasons: First, subgraph

isomorphism techniques are effective in finding all appearances of

a subgraph, while for the frequent subgraph mining task, it is suf-

ficient to find the minimum appearances that satisfy the support

threshold; this difference affects the way graph nodes are traversed,

minimizing the number of node visits during search. Addition-

ally, modern techniques employ global pruning and indexing tech-

niques. Forming such structures on large graphs results in a huge

and often unacceptable overhead. GRAMI is based on a novel CSP

method that overcomes the previous shortcomings and outperforms

state-of-the-art subgraph isomorphism techniques by up to an order

of magnitude. This is experimentally validated in Section 5.

Pattern matching. There is work on pattern matching over graphs

as well. R-JOIN [4] supports reachability queries in a directed

graph; If two nodes v and v′ are reachable in the query then their
corresponding mappings u and u′ in the graph must also be reach-
able. DISTANCE-JOIN [34] extends the idea to undirected graphs

and accommodates constraints on the distance in the path. GRAMI

presents an extension to support frequent pattern mining, the ex-

tended version adopts the pattern definition from [34].

7. CONCLUSIONS
Many important applications, ranging from bioinformatics to so-

cial network study and from personalized advertisement (e.g., rec-

ommendation systems) to security (e.g., identification of terrorist

groups), depend on graph mining. This paper introduces GRAMI;

a versatile algorithm for discovering frequent patterns in a single

large graph, a significantly more difficult problem compared to the

usual case of mining a set of small graph transactions. The mod-

eling of the frequency evaluation operation as a constraint satis-

faction problem is the crux idea of GRAMI. We complement this

idea with a set of optimizations that allows for the efficient per-

formance of GRAMI. We also implement a version that supports

structural and semantic constraints and an approximate version that

scales to larger graphs. Our experimental results with real datasets

demonstrate the effectiveness of GRAMI which is up to 2 orders of

magnitude faster than existing approaches while discovering larger

and more interesting frequent patterns.
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Abstract

The analysis of movements frequently requires more than just spatio-temporal
data. Thus, despite recent progresses in trajectories handling, there is still a
gap between movement data and formal semantics. This gap hinders movement
analyses benefiting of available knowledge, with well-defined and widely agreed
semantics. This article describes the Baquara2 framework to help narrow this
gap by exploiting knowledge bases to semantically enrich and analyze movement
data. It provides an ontological model for structuring and abstracting movement
data in a multilevel hierarchy of progressively detailed movement segments that
generalize concepts such as trajectories, stops, and moves. Baquara2 also in-
cludes a general customizable process to annotate movement data with concepts
and objects described in ontologies and Linked Open Data (LOD) collections.
The resulting semantic annotations enables queries for movement analyzes based
on application and domain specific knowledge. The proposed framework has
been used in experiments to semantically enrich movement data collected from
social media with geo-referenced LOD. The obtained results enable powerful
queries that illustrate Baquara2 capabilities.

Keywords: trajectories of moving objects, social media, ontologies, linked
open data, semantic enrichment, movement data analysis.

1. Introduction

Nowadays, large amounts of movement data (trajectories of moving objects,
time-ordered sequences of posts on social media, geo-referenced Web logs) can be
gathered by using a variety of devices (e.g., smart phones equipped with GPS or
just connected to a GSM network, vehicles equipped with RFID). These data
can be useful for several kinds of spatio-temporal information analysis and a
myriad of useful applications, in domains ranging from tourism and marketing
to traffic and home land security [1, 2, 3, 4, 5, 6]. However, even spatio-temporal
positions associated with text (e.g., freely annotated trajectories, geo-referenced
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tweets) lack well-defined semantics to support precise information analysis. For
instance, the tag "Rio" in a social media post may refer to a city, a state, or
even a restaurant or nightclub, among other possibilities. Therefore, to realize
potential applications it is necessary to develop appropriate methods to seman-
tically enrich movement data. The recent progresses in movement data handling
[7, 8, 9, 10, 11] include plenty of significant contributions for structuring and
analyzing movement data, but are mainly based on just spatio-temporal data.
Notwithstanding, it is recognized by the scientific community that semantic is-
sues, including the exploitation of textual and contextual information that can
come associated with spatio-temporal coordinates, must be addressed yet to
better understand and exploit movement data [12, 13, 14, 15, 16, 17].

This article is a major extension of [38]. It describes the Baquara2 concep-
tual framework for movement data enrichment and analysis, which includes a
customizable process to semantically enrich movement data, and an upper on-
tology that provides a conceptual model to accommodate the enriched data and
support knowledge-based queries for movement analysis. The Baquara2 ontol-
ogy has a rich set of constructs to semantically describe progressively detailed
movement segments, which are organized in an arbitrarily deep hierarchy and
generalize concepts like trajectories and episodes (e.g., stops and moves). The
Baquara2 semantic enrichment process aims to semantically annotate move-
ment segments with references to concepts (classes) and objects (instances of
concepts) of movement analysis facets, such as space, time, and goals. These
facets can be built from extracts of description logics compatible knowledge-
bases, such as LOD collections and their associated ontologies [18, 19].

The proposed ontology and semantic enrichment process can be used with a
variety data. The adaptation points of the Baquara2 conceptual framework are
the domain knowledge used to semantically describe movements, and the tasks
of the semantic enrichment process. The domain knowledge employed can be
selected according to the spatio-temporal scope of the movements to be analyzed
and the application domain. The general enrichment process can be customized
by choosing specific methods to perform its tasks, which vary with the semantic
enrichment objectives and facets (places, goals, transportation means, etc.).
This work illustrates such a customization, in the form of an algorithm that
connects movement data to visited Places of Interest (PoIs), according to their
spatial proximity and the lexical similarity between LOD properties and text
that comes associated with spatio-temporal coordinates (e.g., tweets, textually
annotated trajectory positions or stops).

Baquara2 enables queries referring to concepts and/or objects used to se-
mantically enrich the movement data, such as the following ones:

Query 1 Select the social media users with at least one stop to visit a mountain
called Corcovado in the city of Rio, followed by one stop in a marketplace,
where he/she does at least one finer stop in a restaurant.

Query 2 Determine the percentage of European tourists in Brazil that make at
least a stop in a nature reserve, where he/she does at least one finer stop
in a handcraft shop.
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These queries can be expressed in languages like SPARQL1, and its exten-
sions with spatial operators, such as GeoSPARQL [20] and ST-SPARQL [21],
among other alternatives. The viability of the proposal have been investigated
in case studies using movement data extracted from Flickr2 and Twitter3, and
semantically enriched with labeled geo-referenced places of several subclasses
taken from DBPedia4 [22] and LinkedGeoData5 [23].

The rest of this article is organized as follows. Section 2 defines general
constructs for structuring and abstracting movement data. Section 3 describes
the Baquara2 upper ontology, that provides conceptual support to annotate
and query movement data according to a variety of semantic description facets.
Section 4 describes a basic semantic enrichment process, a customized algorithm
to semantically annotate movement data having associated text with visited
PoIs, and the Baquara2 general architecture to semantically enrich and analyze
movement data using ontologies and LOD. Section 5 reports experiments that
apply our proposal to semantically enrich and analyze movement data collected
from social media with geo-referenced LOD. Finally, Section 6 discusses related
work, and Section 7 summarizes our contributions and future work.

2. General Structures and Abstractions for Movement Data

This section defines general concepts necessary to understand, structure and
abstract movement data in several refinement levels. First, we call movement
data any collection of spatio-temporal data representing sampled or inferred
positions of moving objects. This informal definition encompasses, among many
other things, moving objects’ trajectories, and temporally ordered sequences of
social media users’ geo-referenced posts. A raw trajectory (or just trajectory,
for simplicity) is a temporally ordered sequence of spatio-temporal positions
occupied by a moving object. It is possible to get accurate trajectories, by
using state-of-the-art sensors and fine sampling rates (e.g., every second, every
3 meters). However, it is hard to gather large volumes of annotated trajectories,
because annotating them is a laborious task [14, 24, 25, 26]. Nevertheless,
some social media posts (e.g., geo-referenced tweets) can come with spatio-
temporal coordinates and usually have plenty of attached textual contents (e.g.,
text, hash tags). These contents can be regarded as textual annotations that
may provide hints to explain movements. A system user’s spatio-temporal trail
(or simply trail) is a temporally ordered sequence of geo-refferenced registries
of interactions of a user with a particular system (e.g., Twitter, FourSquare,
Facebook, Flickr, Instagran), with spatio-temporal coordinates and associated
contents (e.g., tweet(s) text). Differently from trajectories, social media users’
trails are usually sparse, due to the asynchronous nature of the users’ posts, and

1http://www.w3.org/TR/sparql11-query
2https://www.flickr.com
3https://twitter.com
4http://dbpedia.org
5http://linkedgeodata.org
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usually are less precise than trajectories, due to limitations of their gathering
processes or other restrictions. Trajectories and trails can also be combined
(e.g., spatio-temporally fused) to exploit the best traits of each one of these
categories of movement data [27]. Combinations and derivatives of different
kinds of movement data can also be regarded as movement data, provided that
they still represent (changes of) positions of moving objects.

A moving object’s positions sequence (MOPS) represents the known move-
ment history of an object (e.g., a car monitored by GPS, a social media user)
during a certain period of time as a temporally ordered sequence of spatio-
temporal positions occupied by this object. A movement data segment or simply
movement segment (MS) is an abstraction that refers to any continuous subse-
quence of a MOPS. These concepts generalize notions like social media user’s
trails (time-ordered sequences of posts), trajectories, and episodes (e.g., stops,
moves). A MOPS can be successively segmented in several levels of detail. The
MSs referring to successively smaller segments of a MOPS can be organized
in a hierarchy with many refinement levels for information analyses purposes.
Annotations can be associated with a MOPS, MS, or known spatio-temporal
positions of a moving object to help describe its movements. Annotations of
movement data and movement patterns are formally defined in Section 3.2.

The first step for movement analysis is to collect and time-order spatio-
temporal positions of each moving object in a MOPS (Definition 1).

Definition 1. A moving object’s positions sequence (MOPS) is a tuple:

mops = (idMO,PS,A)

where:

idMO is the unique identifier of a moving object;

PS = 〈p1, . . . , pn〉 is a time ordered sequence of spatio-temporal
positions of the moving object identified by idMO;

A is a set of annotations associated with the whole mops.

Each position pi of PS (i, n ∈ N; 1 ≤ i ≤ n;n ≥ 1) is a tuple of the form:

pi = (i, geom, t, Ai)

where:

i is the temporal order of the position pi in PS;

geom is a geometry that represents the moving object identified by
idMO during the time t;

t = [begin, end], with begini and end being instants of time and
begin ≤ end, is the time interval (begin < end) or instant
(begin = end) when the position of the moving object identified
by idMO is represented in space by the geometry geom;

Ai is a set of annotations associated with pi.
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An idMO identifies a moving object in a given data source. A moving
object can sometimes be decomposed in a relevant moving entity (e.g., instance
of person, animal, or vehicle) and a data gathering device (e.g., cell phone, GPS
navigator) used to tack the moving entity positions. The entity id (possibly fake,
for privacy reasons) of the same real world entity, can be different in different
data sources. For example, though the same person can post in different social
media systems (e.g., Twitter, Flickr, Facebook), her id can be different in each
system. The same can happen to a device. In addition, a moving entity can hold
several devices, and the same device may be held by different users at different
times. Consequently, the movement data of the same real world entity and/or
device taken from different sources is separated in distinct MOPS (each one with
a different idMO). Identifying if movement positions coming from different data
sources pertain to the same moving entity and/or device is beyond the scope of
this work. This problem has been addressed as data fusion in [27].

A position pi of a MOPS represents its location and shape in a given time.
If the moving object shape can be neglected due to its small size compared
to the space where it moves (e.g., a person or a car moving in a city), the
geometry pi.geom can be a point. Otherwise, it can be a polygon or multi-
polygon (e.g., representing a moving storm). The positions of a MOPS must be
totally ordered by their respective times, and their times cannot overlap, i.e.,
the following constraint must apply to the positions sequence PS of any MOPS:

∀pi, pi+1 ∈ PS : pi.t[end] < pi+1.t[begin]

A MOPS can be segmented for information analysis purposes by using a
variety of methods proposed in the literature to produce subsequences such as
trajectories and episodes [14, 13, 11]. Although a structured trajectory can
be defined as a time-ordered sequence of episodes [14], both trajectories and
episodes refer to subsequences of movement positions satisfying particular pred-
icates. For instance, the segmentation of a MOPS into trajectories can be
determined according to constraints on time (e.g., a trajectory per day), space
(e.g., segment according to some geographic boundaries or after reaching certain
traveled distances), or both (e.g., segment every time there is a sampling gap or
stop lasting longer than a given threshold) [28]. Episodes, such as stops/moves,
on the other hand, can be determined by predicates like “speed below/above a
certain threshold” [29] or “moving object inside a given region for a time pe-
riod longer/shorter than a certain threshold” [30, 31]. In this work, we propose
a generalized concept for constructs such as trajectories and episodes called
movement segment (MS).

An MS (Definition 2) is an abstraction for a portion of the movement history
of a moving object identified by idMO. Possible values for an MS’ type include:
TRAIL (time ordered sequence of social media user’s posts), TRAJ (trajectory),
STOP episode, and MOVE episode. An MS is associated to a subsequence of spatio-
temporal positions 〈pi, . . . , pj〉 of a positions sequence mops.PS = 〈p1, . . . , pn〉.
However, it can abstract these positions. The geometry ms.geom of the MS ms

is an approximation of the movement portion that ms refers to. For example, a
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stop can be represented in the space by the centroid of the spatial coordinates
of its constituent points, while a move can be represented by line segments. The
time span ms.ts temporally fits all the positions associated to ms.

Definition 2. A movement segment (MS) of a moving object’s positions
sequence mops = (idMO,PS,A) is a tuple of the form:

ms = (idMO, idMS, type, geom, pi, pj , ts, father, level, prev, next, ord,Ams)

where:

idMO is a moving object unique identifier;

idMS is the unique identifier of ms;

type is the type of ms;

geom is the geometry used to abstractly represent ms in the space;

pi, pj are respectively the initial and final positions of the corre-
sponding subsequence 〈pi, . . . , pj〉 of the time ordered positions
sequence 〈p1, . . . , pn〉 of the moving object identified by idMO

(i, j, n ∈ N ;n ≥ 1; 1 ≤ i ≤ j ≤ n);

ts = [b, e] (b = pi.t[begin], e = pj .t[end]) is time span of ms;

father is the shortest movement segment of idMO such that
ms.father 6= NULL → ms.ts ⊂ ms.father.ts;

level is the distance of ms to its ancestry root, i.e., ms.level = 0 if
ms.father = NULL, otherwisems.level = 1+ms.father.level;

prev is the chronologically closest previous sibling of ms;

next is the chronologically closest next sibling of ms;

ord is the distance of ms to its sibling that happened first in time
plus 1, i.e., ms.order = 1 if ms.prev = NULL, otherwise
ms.order = 1 +ms.prev.order;

Ams is a possibly empty set of annotations associated to ms.

Sibling movement segments are those that have the same father, i.e., two
movement segments ms and ms′ are siblings if ms.father = ms′.father. The
set of predecessors of a movement segment ms is given by the transitive closure
predecessors(ms) = prev(ms) ∪ predecessors(ms.prev), with the stop condi-
tion predecessors(NULL) = ∅, and the set of successors of ms by the transitive
closure successors(ms) = next(ms) ∪ successors(ms.next), with the stop con-
dition successors(NULL) = ∅. The set of siblings of ms is siblings(ms) =
predecessors(ms) ∪ successors(ms).

The children of a movement segment ms are the movement segments having
ms as father, i.e., children(ms) = {ms′ | ms′.father = ms.idMS}. The set
of descendants of ms is given by the transitive closure descendants(ms) =
children(ms) ∪ {∪ms′∈children(ms)ms′}. The set of ancestors of ms is given by
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the transitive closure ancestors(ms) = ms.father∪ancestors(ms.father) with
ancestors(NULL) = ∅. The set of movement segments in the lineage of ms is
lineage(ms) = ancestors(ms) ∪ descendants(ms).

Notice that, according to Definition 2, for any movement segmentms its time
span ms.ts must be contained in that of ms.father if ms.father 6= NULL. In
addition, sibling movement segments do not overlap in time, i.e.:

∀ms′,ms′′ ∈ children(ms) : ms′.ts ∩ms′′.ts = ∅

These restrictions ensure that the time span of an MS covers the time spans
of all its descendants, and that sibling movement segments are always organized
in a consistent total ordering in time, in the sense that no segment begins
before its previous one finishes. Thus, movement segments can be arranged in
a tree-like hierarchy to support information analysis at different levels of detail,
determined by their time span, as stated by Definition 3.

Definition 3. A movement segments hierarchy (MSH) for a MOPS de-
noted by mops is a tree denoted by msh such that:

1. each node of the msh is a movement segment of mops;

2. the father of the unique root node of msh is NULL.

MSHs can support semantic analysis of movement data in different levels
of detail. For example, at the root of the hierarchy a MOPS mops can be
regarded as a sequence of semantic trajectories [14]. Each semantic trajectory
can be refined in the next level by a sequence of episodes, each one referring
to subsegments of a semantic trajectory that satisfy some kind of predicate
(e.g., stops inside cities and moves between them). Then stops in each city can
be further refined in finer stops (e.g., in places like an airport, a university, a
shopping mall) and moves between such smaller stops that refine bigger stops
in cities. Finally, stops in relatively big places of cities (e.g., a university or a
marketplace), can be further segmented in lower level stops in smaller places
(e.g., particular departments of the university or shops of the marketplace) and
moves between such finest stops.

Figure 1 illustrates a hierarchy of movement segments. At the top level the
corresponding MOPS is segmented and abstracted in sequences of trajectories
inside big countries or world regions, such as Brazil, the US, and the EU. These
trajectories are further segmented in stops and moves progressively detailed in
the lower levels of the hierarchy. Stops are represented by circles, and moves
by dashed lines between them, with arrows indicating the movement direction.
Many of these movement segments have associated annotations, which begin
with the sign @. In this example, the annotations indicate the places where
trajectories or stops occur, and the transportation means of some moves. The
portion of the second hierarchical level presented in Figure 1 details Trajectory
3 by showing stops in some Brazilian cities and moves between them. The third
hierarchical level details stop 3.1 in Rio, with stops and moves in smaller
places that are inside Rio , including stop 3.1.1 at the GIG airport, followed
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Figure 1: A movement segments hierarchy example

by stops at Sun hotel, SC market, Corcovado, Ipanema Beach, and so on.
Finally, in the lowest level some details of the movement inside SC Market are
presented, including stop 3.1.3.1 at BB ATM, stops in some shops, and so on.

3. The Baquara2 ontology

The conceptual modeling core of our approach for semantic enrichment and
analysis of movement data is the Baquara2 upper ontology. It has been designed
to serve as a conceptual framework for describing movement segments in several
application domains, ranging from urban transportation to animal ecology. Such
adaptation can be done by specializing some of its pre-defined classes, and by
creating new relationships among them.

Figure 2 shows the high level concepts (classes) of Baquara2 ontology, and
the major semantic relationships between them. It has been produced by using
the Protegé6 ontology editor version 3.4 with the Jambalaya7 graphic editor
plugin. Each labeled rectangle represents a concept. Nesting denotes subsump-
tion (IS A relationship), i.e., each nested concept is a subclass of its enclos-
ing concept. For instance Episode IS A MovementSegment. The plus sign on
the top left corner of a rectangle indicates that the respective concept can be

6http:/protege.stanford.edu
7http://protegewiki.stanford.edu/wiki/Jambalaya
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further specialized, according to application domains and analyses needs. A
dashed line between concepts denotes a semantic relationship, such as compo-
sition (PART OF) or a specific relationship (e.g., between an Event and a Place

where it occurs).

Figure 2: The backbone of the Baquara2 ontology

The five main concepts of the Baquara2 ontology are:

• MovementData that can be a MovingObjectPosition, a MovementSegment,
or a MovementPattern;

• Geometry that can be a SimpleGeometry (e.g. a spatio-temporal point, a
line segment) or a ComplexGeometry (e.g., a sequence of points, a sequence
of line segments, or a sequence of line segments and points);

• Annotation, such as a SemanticAnnotation, a FreeTextAnnotation, or
a NumericAnnotation, used to describe some MovementData;

• MovementAnalysisFacet, such as Goal or TransportationMeans, that
semantically organize (with semantic relationships such as IS A, PART OF,
or even domain specific relations) concepts and objects that can be refer-
enced in semantic annotations;
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• MovementDescription of movement patterns (MPC - Movement Pattern

Category) or movement segments (MSC - Movement Segment Category)
that use annotations to depict their common properties (e.g., moves of
tourists by bus to visit historic places).

Geometries are well studied in spatial databases and geographic information
systems [32]. Movement positions and movement segments have been defined in
the previous section. Then, the following subsections describe in more detail the
other constituents of the Baquara2 ontology, which are crucial for the semantic
lifting with domain specific knowledge.

3.1. Movement Analysis Facets

Movement segments and other abstractions for describing movements like
some movement patterns (Section 3.3) can be semantically annotated by linking
them to concepts (classes) and/or objects (instances of classes) of semantic facets
for movement description and analysis (Definition 4).

Definition 4. A semantic facet is a graph G(V,E), where:

V is a set of resources, each one referring to a concept (class) or
object (instance of a class);

E is a set of semantic relationships between resources of V .

Facets describe information and knowledge about relevant themes for move-
ment analysis. Each facet has an intentional level (TBox) and an extensional
level (ABox) based on description logics [33]. The first has at least one concep-
tualization hierarchy (classes organized according to their IS A relationships),
and the latter at least one objects hierarchy (instances that can be organized by
some partial ordering relationship, such as PART OF). Schemata and examples of
facets and their derived dimensions for movement analysis in data warehouses
can be found in [34]. Besides the Baquara pre-defined facets described in the
following, that work also proposes facets based movement movement segments
hierarchies, movement patterns hierarchies, and subsumption hierarchies of their
respective categories.

The Baquara2 pre-defined facets cover those of the CONSTAnT model [16],
namely: Space (e.g., Place), Time, Goal (e.g., Eat, Watch a soccer game),
Behavior (e.g., Flock [35], Chasing [36], Avoidance [37]), Transportation-
Means, EnvironmentCondition (e.g., Windy, Sunny), Activity (e.g., Running),
and MovingObject. Baquara also includes the facet Event (e.g., CulturalEvent,
SportEvent), and allows adding new specific facets for movement analysis in
particular application domains.

A MovingObject is described in Baquara as an association between one
MovingEntity (e.g., Person, Animal) and a MovementMonitoringMeans, that
can be specialized in a MovementMonitoringSystem (e.g., SocialMedia), or a
MovementMonitoringDevice (e.g., CellPhone), as discussed in Section 2.
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Baquara2 employs the OGCs Geospatial Features Model8 and the W3Cs
Time Ontology9 as foundations to describe space (places and their relation-
ships) and time (instants, periods of time, and their relationships), respectively.
Their concepts and instances are used to describe the spatio-temporal scope of
movement, as well as the places, times and events of interest for movement anal-
ysis. A place is a spatial feature relevant for movement data description and/or
movement analysis. It can be anything with a geometry, and at least a name. A
places geometry, represented in some coordinate system, can be simple (point,
line, or region) or complex (set of points, lines, and/or regions). Specializations
of place relevant for the tourism domain may, for example, include Country,
City, Airport, Hotel, and Cafe. A time can be an instant or a period of time.

An event is any circumstance relevant for movement analysis in an given
domain. It has at least one label, occurs in a time (instant or period), and
may have relationship(s) with some place(s). For instance, SportEvent and
CulturalEvent are subclasses of Event relevant for the tourism domain. A
CulturalEvent can be specialized to MusicFestival, DanceFestival, etc.
Conversely, Carnival can be regarded as a subclass of TraditionalParty. In-
stances of event (and its subclasses in any abstraction level) can be related to
specific instances of place and time, as indicated by the dashed line linking these
classes in the left bottom portion of Figure 2. For instance, the city Rio can
be semantically related to events occurring there, such as Pan American Games

2007 and Word Cup Final 2014. On the other hand, events like Christmas

holidays may not be associated with any particular place, because they occur
in many places. Remember that a facet represents descriptive information for
movement analysis in the extensional level (e.g., Maracan~a, July 13 2014 5:00

PM - 8:00 PM, watch World Cup 2014 Final), and the intentional level (e.g.,
Stadium, Sunday evening, watch soccer game).

Facets are crucial to semantically organize the resources (concepts or in-
stances of concepts) used to describe movement segments in the semantic an-
notations defined in Section 3.2. They express semantic relationships between
resources of knowledge bases (e.g., ontologies, LOD collection) used to seman-
tically annotate movement data. Extracts of facets relevant for each particular
application can be used as dimensions for movement analysis. Section 5.3 and
[38] provide examples of SPARQL and geoSPARQL queries that exploit seman-
tic annotations for movement analysis. Queries on a multidimensional model
whose dimensions are extracts of facets be found in [34]. That work exploits
facets based on movement movement segments hierarchies, movement patterns
hierarchies, and subsumption hierarchies of their respective categories to sup-
port simpler and more efficient query expressions than the ones referring just
to facets like the ones described in this paper. The improved queries efficiency
is paid with pre-processing during the Extraction, Transformation, and Load
(ETL) process of a movement data warehouse. Finally, a method to derive di-

8http://www.opengeospatial.org/standards/sfa
9http://www.w3.org/TR/owl-time
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mensions tailored for particular sets of semantically annotated movement data
by exploiting properties of currently available LOD collections used for anno-
tating the respective movement data sets is presented in [19].

3.2. Movement Annotations

A set of annotations can be associated with movement segments to describe
what is going on (e.g., place or event of interest, goal, environmental conditions),
as stated by Definition 5.

Definition 5. An annotation is a triple of the form:

annot = (target, property, value)
where:

target is the annotated thing;

property is a descriptive property defined for instances of target;

value is a typed literal (e.g., text, number) or a reference to a re-
source (object or concept) described in a knowledge base.

The target is a reference to a movement object positions sequence (MOPS),
a movement segment (MS), or a specific moving object position (defined in
Section 2). The target can also be a movement pattern or a movement abstract
description (defined in Section 3.3). The property indicates a relation of the
target with the annotation value. For example, the property occursAt indicates
that a movement segment (e.g., a stop) occurs at a particular place denoted by
the value of this property.

An annotation can be free or semantic. The value of a free annotation is a
literal, such as a string, free text, or a number. Thus, it may not have precise
semantics. The value of a semantic annotation, on the other hand, must be a
reference to resource, i.e., a concept (class) or an object (instance of a class)
described in a description logics compatible knowledge base, to better describe
its semantics [39]. In Baquara each semantic annotation is a reference to an
object or a concept of a movement analysis facet described in Section 3.1.

3.3. Movement Patterns and Abstract Movement Descriptions

The Baquara2 upper ontology also provides constructs to express move-
ment patterns, and abstract movement descriptions (movement segment cate-
gories, and movement pattern categories). A movement pattern (MP) is
as a collection of movement segments that satisfies some predicate, based on:
spatio-temporal constraints of movement segments and/or semantic, ordering,
and timing constraints on related segments. Examples of spatio-temporal con-
straints include moving clusters and meetings [36]). Semantic constraints are
expressed by the type of the movement segments and their associated semantic
annotations. Ordering constraints refer to the exact or relative order of move-
ment segments among their siblings or lineage. Timing constraints refer to the
duration of some movement segment(s) or the elapsed time between them.
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A Movement Segment Category (MSC) is an abstract description for
movement segments (MS). One MSC can be represented with by a tuple anal-
ogous to the one proposed to represent an MS in Definition 2, but without any
geometry (geom) or time span (ts), minimum and maximum allowed duration
instead of a single exact duration (dur), the possibility of relative instead of
absolute sibling order, and the possibility of any relatives instead of just im-
mediate relatives (predecessors instead of just prev, successors instead of just
next, ancestors instead of father, and many children) always referring to other
MSCs instead of MSs.

AMovement Pattern Category (MPC) is an abstract description move-
ment patterns (MP). One MPC can be expressed by a reference to an MSC and
its related MSCs, along with possible (partial) ordering and/or timming restric-
tions. For example, any collection of segments S = msi such that: (i) ms is
a Stop of an EuropeanPerson in Market; (i) msi takes part in a meeting pat-
tern; (ii) msi is preceded by at least a sibling Stop in an Airport and another
one in a Hotel; (iii) msi is followed by a a sibling Stop in a TouristicPlace

called Corcovado; and (iv) msi is detailed in a number of shorter stops, being
at least one of them in a Bar for at most 1 hour, which is immediately fol-
lowed by another short Stop in a Restaurant. Notice that stop3.1.3 presented
in Figure 1 satisfies all these semantic and ordering constraints, and maybe
the spatio-temporal constraint (take part in a meeting pattern) and the time
constraint of the short stop in a Bar for at most 1 hour as well.

Abstract movement descriptions (MSCs and MPCs) semantically describe
movement by relaying on annotations, without referring to any concrete move-
ment segment of any existent moving object. However, many concrete move-
ment segments and movement patterns can semantically match such a descrip-
tion. More formal definitions for restricted MSCs and MPCs, with detailed
data structures for representing them can be found in [34], along with exam-
ples of their use for movement analysis. Generalized formal definitions for these
abstract movement descriptions and the investigation of semantic consistency
rules among them, and the semantic matching concrete movement segments and
movement patterns with their respective categories are out of the scope of this
article, and left to future work.

4. Semantic Enrichment and Analysis of Movement Data

This section describes a customizable process to semantically enrich move-
ment data by using a description logics compatible knowledge base (KB), which
can be built with (portions of) domain ontologies and LOD collections. The
semantic enrichment process takes movement data (either raw or structured)
that can come associated with text, as described in Section 2, and connects
it to knowledge base resources for producing semantic annotations of move-
ment data compliant with the Baquara2 upper ontology described in Section 3.
The movement data structuring in movement segments hierarchies and the con-
struction of movement analysis facets of KB resources (concepts or objects) and
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their semantic relationships can take place before, during, or after this seman-
tic enrichment process. These issues are beyond the scope of this article, and
addressed in other works [34, 19].

4.1. A General Process for Semantic Enrichment

Figure 3 illustrates the inputs, outputs, stages, and major usual tasks of the
proposed process to semantically enrich movement data with domain knowledge.
The inputs are: (i) movement data (e.g., movement segments or individual po-
sitions of moving objects) annotated with text (e.g., social media posts textual
contents, text associated with individual positions or episodes of a trajectory);
and (ii) resources that can be taken from domain ontologies and LOD collec-
tions (e.g., DBpedia, LinkedGeoData), and organized in a KB with a variety of
semantic facets as those described in Section 3.1 (place, time, goal, etc.). The
outputs are semantically enriched movement data, i.e., movement data with se-
mantic annotations that refer to resources of particular semantic facets used to
describe and analyze movement data. Such a resource can be a concept (e.g.,
bar, restaurant) or an object (instance of such a concept).

Figure 3: General process to semantically enrich movement data

The proposed semantic enrichment process can be realized in two stages: first
the Data Pre-processing and then the Linking. Each stage includes tasks that are
not rigid, but may be chosen and adapted for particular needs. These tasks are
customizable in terms of the techniques used to accomplish them, parameters
tunning, and even the existence of particular tasks and their relative order.
Their customization can be done according to the characteristics of the data
and knowledge provided as inputs, and the enrichment and analysis purposes.
The execution of distinct tasks in each stage can be intertwined in practice.

The Data Pre-processing stage typically includes the tasks: Data Cleansing &
Integration that filters out invalid data (e.g., outliers) and sometimes integrates
data obtained from different sources (e.g., social media posts of different systems,
social media posts with trajectories [27], LOD of different collections); Data &
Compressing that can compact data for speeding up the following tasks, by using
a variety of techniques such as those described in [13, 14, 11]; and Text & KB
Pre-processing that prepares the textual data and KB resources for the linking
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stage, by applying techniques such as textual contents filtering, classification,
stemming, and named entities recognition [40, 41, 42, 43, 44].

Then, the Linking stage connects the movement data to the KB resources to
generate semantic annotations. The specific tasks and techniques employed for
solving this problem vary with the nature of the movement description facet.
For example, Spatio-Temporal Matching is a crucial task to link movement data
to facets like space and events, by taking into account the geographic extensions
of places that are visited or where events take place, along with their operation
times. In this case, Textual Matching may help to refine the matchings, before
applying the final task of Refinement & Disambiguation. Entity linking [45, 44,
46] and other techniques can also be used in this stage.

Algorithm 1 is a customization of the proposed semantic enrichment process

Algorithm 1: Link movement segments to co-located resources

input : S = {s0, ..., sn}; // Pre-processed movement segments

R = {r0, ..., rm}; // Pre-processed resources set

τs ∈ R
+; // Spatial distance threshold in meters

τt ∈ R
+; // Textual similarity threshold

output: SA; // Semantic annotations of movement segments in S

1 begin
2 SA← ∅; // Semantic Annotations (SA) set initially empty

3 SJ ← (Πs←S.∗,r←R.∗,geoDist(S ⋊⋉(geoDist←dist(s.geom,r.geom))≤τs R));
4 foreach s ∈ S do
5 k ← 0; // Initialize best matching measures for s

6 minDist← τs;
7 maxSim← τt;
8 foreach (s, r, geoDist) ∈ SJ do
9 if geoDist ≤ minDist then

10 textSim← textualSimilarity(s.ppText, r.ppText);
11 if textSim ≥ maxSim then
12 if geoDist < minDist ∨ textSim > maxSim then
13 k ← 0; // Better matching resource r found

14 minDist← geoDist;
15 maxSim← textSim;

16 k++ ; // Increment number of matchings

17 bestMatching[k]← r; // Add matching r

18 while k > 0 do
19 k−− ; // Create semantic annotations for segment s

20 SA← SA ∪ (s, visits, bestMatching[k]);

21 return SA;
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for linking movement segments that are individual positions or stops to PoIs. It
exploits spatial proximity and textual similarity [47, 48, 49] to match movement
segments with geo-referenced KB resources, and generate semantic annotations
for the former linked to the latter. It employs the thresholds τs ∈ [0,∞] and
τt ∈ [0, 1] (τs, τt ∈ R) to filter the resources most likely to match each move-
ment segment according to some geographic distance function, and some text
similarity function, respectively. The spatial join of line 3) returns the pairs
of movement segment (s) and resource (r) that are closer than τs along with
the distance between them. Then, for each segment s ∈ S the algorithm looks
for the pairs (s,r) that are the closest in space, and among them those whose
textual similarity is the highest (lines 4 to 17). Finally, the set bestMatching of
resources satisfying these conditions with respect to segment s is used to create
the semantic annotations for s (lines 18 to 20).

In this version, Algorithm 1 generates semantic annotations of segments with
the property visits. The investigation of methods to generate annotations for
other properties (e.g., comesFrom and goesTo for moves, hasGoal for stops
and moves) is theme for future work. Nevertheless, notice that a number of
optimizations and customizations can be easily done in this algorithm. For
example, if tuples resulting of the spatial join of line 3 are grouped according
to s, and the tuples for each s are put in ascending order of geoDist, then the
second loop can be interrupted when geoDist > minDist. In addition, line 9
can be pushed down to be executed after the two line bellow it, to semantically
annotate each movement segment s with the textually most similar resource(s)
that are the closest to s. This algorithm can also be adapted to connected
movement segments with PoI that are just mentioned or events that are visited
or mentioned in the movement data associated with text. Recently proposed
spatio-textual similarity joins [50, 51] can also be considered to speed-up the
data processing. In addition, a variety of entity linking techniques [40, 45,
44, 46] can be employed to better refine and disambiguate generated links from
movement segments to KB resources.

4.2. General Systems Architecture for Semantic Enrichment and Analysis

Figure 4 illustrates a general system architecture to realize the proposed
approach for semantic enrichment and analyses of movement data. Firstly, the
Baquara2 ontology (or another one serving as a conceptual model for movement
data enrichment and analysis) must be loaded in a KB handled by a Knowledge
Management System. Secondly, domain specific knowledge (e.g., ontologies and
LOD) with the same spatio-temporal scope as the movement data to be enriched
and analyzed must be selected, and customized if necessary. The domain knowl-
edge selection and customization can be done, for example, by using SPARQL
endpoints or REST APIs of a variety of LOD collections available on the Web.
Thirdly, the Semantic Enrichment Process described in Section 4.1 must be ex-
ecuted to generate the semantic annotations for the movement data using the
collected domain specific knowledge.

The resulting semantically enriched movement data can be represented as
a collection of RDF/RDFS triples, and maintained for Querying & Reasoning

16



DBMS Spatial-Temporal Data Manager 

Spatio-temporal 

Data 

Spatial 

Data 

Knowledge Management System 

Semantic 

Annotations of 

Movement Data 

•visits 

•hasGoal 

•hasBehavior 

•hasTransportMeans 
•   

•   

•   

Baquara2 

Ontology 

Legacy 

Ontologies 

Knowledge 

Selection & 

Customization 

LOD 

Selection 

LOD 

Collections 

Triplification 

Semantic Enrichment Process Querying & Reasoning 

Exportation to DB 

Ontologies 

LOD 

Data 

Warehousing 

Data Mining 

Conventional 

Data Domain Specific  

Knowledge 

Querying with 

SQL and 

Geographic 

Extensions 

Figure 4: General architecture for semantic enrichment and analysis of movement data

in the KB. This KB can be queried by using languages such as SPARQL and
geoSPARQL. It can also be analyzed or further enriched by using a variety
of reasoners that can be connected to the KB. The general architecture of Fig-
ure 4 also includes a conventional (e.g., relational) Database Management System
(DBMS) and a Spatio-Temporal Data Manager. Triplification can be used to con-
vert spatio-temporal data (e.g., movement data) from these systems into RDF
triples, for allowing their processing in the KB whenever necessary or conve-
nient. Conversely, Exportation to DB can be used to convert RDF triples of
the KB into conventional, spatial, and spatio-temporal data managed by sys-
tems that efficiently support Querying with SQL and Geographic Extensions, Data
Warehousing, and Data Mining. This architecture allows data processing in the
KB and/or conventional and spatio-temporal database, to render flexibility for
the semantic enrichment process, as well as for querying, reasoning, data ware-
housing, and data mining with the semantically enriched movement data.

5. Experiments

The viability of the proposed approach to semantically enrich and analyze
movement data has been investigated in two case studies, using data extracted
from Flickr and Twitter, respectively, and LOD from DBpedia and Linked-
GeoData. Specializations of the semantic enrichment process described in Sec-
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tion 4.1 have been implemented on PostGIS10, and applied to derive semantic
annotations for stops and individual positions of moving objects. The resulting
semantically annotated movement data supports queries in SQL with geographic
extensions on PostGIS. They can also be converted into RDF triples, and stored
in a KB compliant with the Baquara2 ontology, to be queried with SPARQL
and geoSPARQL, among other possibilities.

5.1. Flickr

Sample Flickr data for experiments were extracted from CoPhIR11, by fil-
tering tuples with spatio-temporal points inside Brazil, and eliminating moving
objects positions sequences (MOPS) having any subsequence with speed higher
than 500 km/h. The resulting raw data collection, that consists in 14,504 posi-
tions of 564 distinct users, was segmented in 2,143 user’s trails (by just breaking
each MOPS in a daily basis, as more sophisticated methods for trajectories re-
constructing are beyond the scope of this paper). The positions are associated
with 12,443 distinct tags. The total number of textual annotations is 117,146.
Thus, each spatio-temporal sample point is associated to 8.08 tags in average.
The user’s daily trails were further segmented in 971 stops, each one corre-
sponding to a period of at least 30 minutes without moving more than 500
meters. These stops are associated to 6,278 distinct tags, in a total of 45,768
(stop,tag) pairs, i.e., around 47 different tag values associated to each stop, in
average. Figure 5 illustrates the distribution of the obtained trails across Brazil
(left side), and the tags associated to a particular stop in the city of Rio. We
have verified by visual inspection that the (sometimes inaccurate) coordinates
usually refer to the position of the user when taking the picture, but sometimes
to the pictured object itself.

Figure 5: CoPhIR Flickr trails across Brazil (left), and close to Corcovado in Rio (right)

10http://postgis.net/
11http://cophir.isti.cnr.it
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Figure 6: Linking a Flickr user tagged position to a geo-referenced labeled LOD resource

The Flickr users’ positions have been semantically enriched with 97,242 re-
sources of DBpedia and LinkedGeoData associated to geographic coordinates
inside an MBR fitting the Brazilian territory, and having at least a label. The
linking of these resources with Flickr positions was done with a variation of
Algorithm 1 that employs Euclidean distance as geographic distance with a
threshold τs = 1 km to match the positions. For the pairs position-resource
within 1 kilometer from each other, the set of tags associated to the position is
then compared with the set of labels of the resource, by using soft-TFIDF [49]
to compose Jaro-Winkler [48] similarities of pairs (tag,label) that are above
the textual threshold τt in a unique similarity measure for the respective pair
(position,resource). Figure 6 illustrates the linking criteria with the textual sim-
ilarities considered between tags and labels of a pair (position,resource) referring
to the place called Corcovado in the city of Rio. Finally, Figure 7 illustrates a
situation in which the similarity between tags and labels is crucial to link the
moving object’s position to the correct resource. This position is in a densely
populated area, and its spatial coordinates are not precise enough to decide
what is the best matching among the many resources in the surroundings.

5.2. Twitter

Another variation of Algorithm 1 has been run on geo-referenced tweets
whose geographic coordinates are inside an MBR fitting the Brazilian territory,
which were collected during World Cup 2014 (6 June 2014 to 7 July 2014), via
the Twitter API12. These 57,099,806 tweets were first filtered to take the ones
originated from FourSquare, because they include mentions to named places
where the FourSquare users have checked-in. Such names might be extracted by
applying, for example, state-of-the-art named entity recognition (NER) methods
[41, 42, 52] to textual contents of the tweets. However, these methods presented
low precision and recall in our preliminary experiments. Further experiments

12https://dev.twitter.com/docs/api
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Figure 7: Example of position-resource link enabled by Soft-TF-IDF textual similarity

with such methods on all collected tweets are left to future work. The 1,183,354
selected tweets have been compared with 97,242 LOD instances of LinkedGeo-
Data whose coordinates are inside the same MBR fitting the Brazilian territory,
in July 21 2014. The linking algorithm associates a tweet with a LinkedGeo-
Data resource (e.g., an instance of shop) when the coordinates of the resource
are up to τs meters away from the tweet, and the LinkedGeoData resource has
at least a label value whose Jaro-Winkler similarity [49] with the name of the
tweet location is higher than τt.

The first experiments with Twitter data just filtered the matchings satisfying
the spatial and textual thresholds (τs and τt, respectively), i.e., without doing
the refinements of lines 4 to 17 of Algorithm 1. Since the choice of algorithms
and parameters setting are often crucial for performance, in the following we
present and comment several results that help to understand how the change of
algorithm details as well as spatial and textual parameters affects the number
of resources that can potentially be linked, thus giving directions for properly
choosing these values. Figure 8 shows the distribution of the percentage of
the tweets associated with at least one LOD resource for distinct values of
the thresholds τs and τt. The percentage of tweets with at least one resource
in a radius of τs meters (column τt = 0) jumps from 0.35% to 79, 24% by
increasing τs from 1 to 1024 meters. Nevertheless, values of the textual threshold
τt between 0.8 and 1 (range that properly filters similarities in our observations)
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eliminate a considerable percentage of matchings. Figure 9 presents the average
number of associated LOD resources per tweet for the same scales of values
for τs and τt as those of Figure 8. Notice that τt ≥ 0.8 results in an average
number of associations per tweet equal to 1 (in bold) or close to 1, meaning
no or few ambiguities (the same movement segment associated to distinct LOD
resources), respectively. However, for values of τs close to 1 km, almost half
of the associations constitute ambiguities. On the other hand, filtering with
low values for τs and high values for τt eliminates ambiguities, but may also
eliminate a considerable number o valid matchings.

Figure 8: Percentage of tweets associated with at least one LOD resource

Figure 9: Average number of associated LOD resources per tweet
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Figure 10 shows that the vast majority of the associated tweets are linked to
just 1 LOD resource for τs = 16 meters and τt = 0.9 (left side), and that there
are ambiguities in almost half of the associated tweets for τs = 1024 meters
and τt = 0.8. It suggests that the textual similarity can play just a limited
role on disambiguation. Notwithstanding, textual similarity can be crucial to
make correct links, as in the scenario illustrated by Figure 11, in which the best
matching resource is not the geographically closest to the tweet.

Figure 10: Distribution of the number of associated resources to tweets

Figure 11: Example of a tweet position linked to most similarly labeled place

The experiments have been repeated with the same Twitter data and LOD as
input, but performing the refinements of lines 4 to 17 of Algorithm 1 to link each
movement segment ms only to the resource(s) that are the closest to ms in the
geographic space, and whose location name is most similar to at least a label of
that resource(s). Figure 12 presents the average number of associated resources
per tweet for different values of τs and τt. In these results, the number of
ambiguities do not vary monotonically with variations in τs and τt, because the
refinement phase optimize the results for minimum τs and maximum τt, and the
number of matching resources can vary for such optimized values. Notice that
the average number of associated resources per tweet has decreased to values
equal or closer to 1 than those in Figure 9, even for high values of τs. In fact,
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the total number of ambiguities have been reduced to less than 0.5% for τs = 1
km and τt = 0.8, and is around 0.01% for τs = 16 m and τt = 0.9. In addition,
some slight gains in the execution time have been observed in experiments that
use the refinement portion of Algorithm 1, compared to just filtering by τs and
τt. It happens because the textual similarity is only calculated in Algorithm 1
when a closer resource than the previously matched one(s) is found in line 9.

Figure 12: Average number of associated LOD resources per tweet (refined)

Finally, Figure 13 presents the distribution of the top LOD resources linked
to tweets collected during World Cup 2014, and whose geographic coordinates
are inside the MBR fitting the Brazilian territory. The associations have been
produced by using Algorithm 1, with τs = 16 meters, and τt = 0.9. The
LOD instances appearing in Figure 13 (e.g., dbp:Object100002684) are vis-
ited PoIs (instances) directly associated to tweets by the algorithm. The LOD
classes appearing in this figure (e.g., geovcab:spatial#Feature) have been
indirectly associated to the tweets, by considering the property rdf:type of
each associated LOD instance. Notice that the classes with the highest fre-
quency are general ones such as geovcab:spatial#Feature, lgd:meta/Node,
and lgd:ontology/Amenity. It happens because one LOD instance can be
linked via rdf:type to many classes, and general classes are more prominent
values of rdf:type in LOD collections such as DBPedia and LinkedGeoData.
However, each LOD instance is usually associated to many classes (both gen-
eral and specific ones), and most instances have at least one association with
a specific class. Therefore, the high frequency of general classes does not
hinder the ability to make interesting queries referring to more specific ones
such as lgd:ontology/Restaurant, lgd:ontology/Shop, dbpo:Stadium, and
lgd:ontology/FastFood (kind of restaurant). The direct matchings with LOD
instances and indirect matchings with their types obtained in our experiments
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proved helpful to bring forth interesting results for a variety of queries, such as
the ones presented in the following subsection.

Figure 13: Top frequent LOD resources associated with tweets collected during the World
Cup 2014 in Brazil
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5.3. Example Queries

Baquara2 ontology compliant knowledge bases (KBs) built with movement
data extracted from sources such as Flickr and Twitter, and semantically en-
riched with LOD of collections such as DBPedia and LinkedGeoData can be
stored in an RDF triples repository such as that of Virtuoso13, which supports
SPARQL and GeoSPARQL. Of course, besides Algorithm 1, further process-
ing is necessary for producing hierarchies of semantically annotated movement
segments as described in Section 2. A variety of methods and tools can help
perform this task [53, 29, 30, 13, 14, 11, 31].

The following SPARQL queries complement the geoSPARQL ones presented
in [38], by providing examples involving semantic constraints in multiple levels of
movement segments hierarchies. Consider that the prefix bq refers to the URI
of the Baquara2 ontology14, and that LOD from different sources have been
pre-processed to consolidate the properties of resources linked by the sameAs

property. The property hasDuration is available for movement segments in the
Baquara2 ontology to avoid having to calculate the movement segment duration
in minutes in queries by using its time span.

Query 1 Select the social media user’s trails with at least one stop to visit a
mountain called Corcovado in the city of Rio, followed by one stop in a
marketplace, where he/she does at least one finer stop in a restaurant.

SELECT ?t WHERE {

?t a bq:Trail.

?sc bq:father ?t; a bq:Stop; bq:ord ?sc_ord;

bq:visits ?corcovado.

?corcovado a <http://schema.org/Mountain>;

rdfs:label "Corcovado";

<http://dbpedia.org/property/location> ?rio.

?rio a <http://dbpedia.org/ontology/City>;

rdfs:label "Rio de Janeiro".

?sm bq:father ?t; a bq:Stop; bq:ord ?sm_ord;

bq:visits ?mp.

?mp a <http://linkedgeodata.org/ontology/Marketplace>.

?sr bq:father ?sm; a bq:Stop; bq:visits ?r.

?r a <http://linkedgeodata.org/ontology/Restaurant>.

FILTER(?sc_ord < ?sm_ord)}

Query 2 Determine the percentage of European’s trails in Brazil that make at
least a stop in a nature reserve, where he/she does at least one finer stop
in a tourist shop.

13http://virtuoso.openlinksw.com
14Prefix bq:<http://www.seek-project.eu/Baquara02>
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SELECT COUNT(DISTINCT ?ts) / COUNT(DISTINCT ?t) WHERE {

?ts a bq:Trail; bq:isOfMOclass bq:European; bq:visits ?b.

?t a bq:Trail; bq:isOfMOclass bq:European; bq:visits ?b.

?b a <http://dbpedia.org/ontology/Country>;

rdfs:label "Brazil".

?sr bq:father ?ts; a bq:Stop; bq:visits ?r.

?r a <http://linkedgeodata.org/ontology/NatureReserve>.

?hs bq:father ?r; a bq:Stop; bq:visits ?s;

?s <http://linkedgeodata.org/ontology/TouristShop>.}

Query 3 Select the Cities with the largest number of trails inside them, with
at least one stop in a Marketplace, that is preceded by a stop in a Hotel,
and followed by a stop in a Nightclub, that lasts at least 2 hours. The
stop in the Marketplace must be detailed in at least one stop in a Pub.

SELECT ?cityLabel, COUNT(DISTINCT ?t) AS ?nts WHERE {

?t a bq:Trail; bq:visits ?city.

?city a <http://linkedgeodata.org/ontology/City>;

rdfs:label ?cityLabel.

?sm bq:father ?t; a bq:Stop; bq:ord ?sm_ord;

bq:visits ?mp.

?mp a <http://linkedgeodata.org/ontology/Marketplace>.

?sh bq:father ?t; a bq:Stop; bq:ord ?sh_ord;

bq:visits ?h.

?h a <http://linkedgeodata.org/ontology/Hotel>.

?snc bq:father ?t; a bq:Stop; bq:ord ?snc_ord;

bq:hasDuration ?snc_dur; bq:visits ?nc.

?nc a <http://linkedgeodata.org/ontology/Nightclub>.

?sp bq:father ?sm; a bq:Stop; bq:visits ?p.

?p a <http://linkedgeodata.org/ontology/Pub>.

FILTER((?snc_dur >= 120) && (?snc_ord > ?sm_ord) &&

(?sh_ord < ?sm_ord))}

GROUP BY ?cityLabel ORDER BY DESC(?nts)

6. Related Work

The present article extends and improves a previous work [38], that intro-
duced the Baquara ontology, and firstly exploited links between movement data
and LOD. First, it generalizes movement segments hierarchies to allow many
levels of refinement. Secondly, it details on the Baquara2 ontology and on the
semantic linking process, providing also a customization of this process in the
form of an algorithm to link movement segments with visited PoIs. Thirdly, it
provides further experimental results with bigger amounts of social media data
for assessing the effectiveness of the proposed linking algorithm.
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A core contribution of this work is the conceptual model conveyed by the
Baquara2 ontology, which enables knowledge-based semantic description and
analysis of movements in several abstraction levels. A pioneering work on
conceptual modeling of spatio-temporal objects is MADS (Modeling Applica-
tion Data with Spatio-temporal features) [54]. MADS extends the basic ER
model with spatio-temporal constructs. The key MADS premise is that spa-
tial and temporal concepts are orthogonal. MADS uses the object-relationship
paradigm, including the features of the ODMG (Object Database Management
Group) data model, and provides spatial and temporal data types, attributes,
and relationships. It offers a wide range of conceptual constructs to model the
spatio-temporal world. A more recent contribution with focus on conceptual
modeling of trajectories (spatio-temporal objects changing their geographical
positions but not their shapes) comes from Spaccapietra et al. [7]. This model
represents semantic trajectories as stops and moves, i.e., trajectory segments
in which the object is stationary or moving, respectively. It has been the first
attempt to embed semantics in the movement representation, but it lacks gener-
ality since other relevant semantic aspects are not explicitly taken into account.
An extension of the “Stop-Move” model towards overcoming these limitations
comes from the CONSTAnT conceptual model [16], which defines several se-
mantic dimensions for movement analysis (e.g., goal, behavior).

Although the conceptual modeling of trajectories have seen a “convergence”
mainly to the “Stop-Move” model [7], ontologies for movement data did not
find so far an agreed approach. Focusing only on the works most related to
our approach, we recall, for example, Yan et al. [14]. The ontology proposed in
that work includes three modules: the Geometric Trajectory Ontology describes
the spatio-temporal features of a trajectory; the Geographic Ontology describes
the geographic objects; and the Domain Application Ontology describes the
thematic objects of the application. These ontology modules are integrated into
a unique ontology that supports conjunctive queries in a traffic application.

The work presented in [55] introduces a design pattern for semantic trajec-
tories to enable the publishing as Linked Data. They describe the geo-ontology
design pattern in OWL expressing the basic features of a semantic trajectory
like the spatio-temporal information as a sequence of fixes and the semantic
information like Points of Interest visited and device information.

The proposal of [6] exploits a movement ontology for querying and mining
trajectory data enriched with geographic and application information. Here the
ontology has been used to infer application-dependent behavior from raw and
mined trajectory data. A pioneering work on movement patterns is instead
the one of Dodge et al. [36] where authors propose a taxonomy of movement
patterns distinguishing generic patterns (e.g. moving clusters, co-location) that
represents any form of movement behavior and can be extracted applying generic
data mining algorithms from behavioral patterns (e.g. flock, leadership) where
the movement has a clear semantics and can be considered higher level move-
ment patterns. A recent survey on semantic trajectory modeling and analysis
is reported in [13].

However, these works do not address the automatic enrichment of trajec-
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tories with semantically precise information about specific places (e.g., restau-
rants, hotels, touristic spots), events (e.g., sport events, cultural events), and
other relevant entities of the open dynamic world in which trajectories occur.
In this article, movement segments are linked to specific concepts and/or in-
stances via ontological relationships that can describe their precise semantics.
Such semantic enrichment requires lots of continuously updated information,
with well-defined and widely agreed semantics.

The conjugated use of textual and spatial information in social networks
is another growing research theme. The recent work [56] proposes a method
to exploit spatial proximity and users’ common interests for querying location-
based social networks. The problem is clearly NP-complete and the authors
propose two efficient algorithms that explore the search space using two distinct
criteria, that give good results in terms of performance compared to the state
of the art.

Entity linking of social media data (e.g., tweets) is also a growing research
theme, because in this context the task is particularly challenging: the text is
noisy, short, and informal [42, 41]. Entity linking has been largely explored on
the Web, mainly relying on the context around the entity [57, 58, 59]. How-
ever, these methods cannot be applied to tweets due to the insufficient context
information. The interesting article [60] proposes a graph-based framework to
collectively link all the named entity mentions in all the tweets posted by a
user, with the assumption that each user has an underlying topic of interest
distribution over various named entities.

In the field of semantic extraction from text, the challenge is to find patterns
or associations in the text, in particular the co-occurrence of terms. An example
of these kind of approach is [61], that proposes a generic framework for mining
semantic associations in text. They base their idea on a co-occurrence graph
and a set of primitives to mine four kinds of semantic associations, namely:
topical anchors, semantic siblings, topical markers, and topic expansions.

7. Conclusions and Future Work

Vast amounts of linked open data (LOD) about real world entities and events
have been fed and continuously updated on the Web. However, their potential to
leverage movement understanding has not been fully exploited yet. This article
proposes the Baquara2 knowledge-based framework as a bridge between move-
ment analysis and knowledge bases, by allowing movement data and associated
knowledge to be connected and queried together. It unleashes the use of grow-
ing collections of ontologies and LOD available in the Web to help semantically
enrich and analyze a wide variety of movement data. The major contributions
of this article are: (i) an ontology to support semantic enrichment and analy-
sis of movement data, in several abstraction levels and according with several
domain specific semantic facets; (ii) a customizable process to automatically
create semantic annotations of movement data based on concepts and instances
of existing knowledge bases (e.g., legacy ontologies, LOD collections) organized
in semantic facets; (iii) a customization of the proposed process in the form of
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an algorithm that connects movement data to PoIs based on spatial proximity
and lexical similarity; and (iv) experimental results that show the viability of
the proposal in case studies with real data available in the Web. Though this
paper focus on knowledge management in engines such as triple stores, the latter
constitute just an alternative means to handle movement data and knowledge.
The semantically enriched movement data produced by using Baquara2 can be
stored and efficiently processed in alternative kinds of spatio-temporal database
management systems.

In our future work we plan to: (i) further evaluate the performance and
the effectiveness of the proposed framework in several application domains; (ii)
collect data and judgments of volunteers to serve as ground true for analyzing
the quality of the semantic annotations generated by the proposed methods,
with measures such as precision and recall; (iii) develop efficient and effective
methods to derive precise semantic annotations from different movement data,
ontologies, and LOD collections; and (iv) investigate ways to use the semantic
enriched movement data generated in accordance with the proposed framework
in data warehousing and data mining.
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idis, Building Real World Trajectory Warehouses, in: MobiDE, ACM, 2008,
pp. 8–15.

31



[29] J. A. M. R. Rocha, V. C. Times, G. Oliveira, L. O. Alvares, V. Bogorny,
DB-SMoT: A direction-based spatio-temporal clustering method, in: IEEE
Conf. of Intelligent Systems, IEEE, 2010, pp. 114–119.

[30] V. Bogorny, H. Avancini, B. C. de Paula, C. R. Kuplich, L. O. Alvares,
Weka-STPM: a Software Architecture and Prototype for Semantic Trajec-
tory Data Mining and Visualization, T. GIS 15 (2) (2011) 227–248.

[31] F. Moreno, A. Pineda, R. Fileto, V. Bogorny, SMoT+: Extending the
SMoT Algorithm for Discovering Stops in Nested Sites, Computing and
Informatics 33 (2) (2014) 327–342.

[32] P. Rigaux, M. Scholl, A. Voisard, Spatial databases - with applications to
GIS, Elsevier, 2002.

[33] F. Baader, D. Calvanese, D. L. McGuinness, D. Nardi, P. F. Patel-Schneider
(Eds.), The Description Logic Handbook: Theory, Implementation, and
Applications, Cambridge University Press, 2003.
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ABSTRACT

Publishing data about individuals, in a privacy-preserving
way, has led to a large body of research. Meanwhile, algo-
rithms for anonymizing datasets, with relational or trans-
action attributes, that preserve data truthfulness, have at-
tracted significant interest from organizations. However, se-
lecting the most appropriate algorithm is still far from triv-
ial, and tools that assist data publishers in this task are
needed. In response, we develop SECRETA, a system for
analyzing the effectiveness and efficiency of anonymization
algorithms. Our system allows data publishers to evalu-
ate a specific algorithm, compare multiple algorithms, and
combine algorithms for anonymizing datasets with both re-
lational and transaction attributes. The analysis of the algo-
rithm(s) is performed, in an interactive and progressive way,
and results, including attribute statistics and various data
utility indicators, are summarized and presented graphically.

1. INTRODUCTION
Publishing data about individuals is essential for applica-

tions, ranging from marketing to healthcare. Several mar-
keting studies, for example, seek to find product combina-
tions that appeal to customers with specific demographic
profiles, while a large class of medical studies aims to dis-
cover associations between patient demographics and dis-
eases. To enable these applications, data must be published
in a way that preserves privacy and utility.

Towards this goal, numerous algorithms that prevent the
disclosure of individuals’ private and sensitive information,
while maintaining data truthfulness (i.e., generate data that
can be analyzed at a record level), have been proposed
[4,6,7,10]. These algorithms work by transforming attribute
values in a dataset (e.g., replacing them with more general
values), and are applicable to either relational or transaction
(set-valued) attributes. For example, an individual’s year of
birth is modeled as a relational attribute, while his/her pur-
chased items are modeled as a transaction attribute. Fur-
thermore, these algorithms can be combined, using a recent
approach [9], to anonymize datasets with both relational and

∗More details about the demo, together with additional
screen shots, are available at: http://secreta.uop.gr/.
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transaction attributes, referred to as RT -datasets.
While there is a growing interest for publishing protected

and truthful data from governmental [8] and industrial orga-
nizations [1], selecting the most appropriate algorithm, for a
given dataset and publishing scenario, remains a challenging
and error-prone task. This is because both the effectiveness
and efficiency of algorithms depend on: (a) data character-
istics (e.g., the distribution of values in an attribute), (b)
various input parameters which affect the level of privacy
and utility (e.g., hierarchies that govern data transforma-
tion), and (c) data utility requirements (e.g., the need to
accurately answer a certain query workload, or to adhere to
constraints on the way values are transformed).
To assist data publishers in this task, we propose SEC-

RETA, the first system for evaluating and comparing
anonymization algorithms for relational, transaction, and
RT datasets. Our system integrates 9 popular algorithms
under a common, benchmark-oriented framework, and it al-
lows data publishers to apply and analyze the performance
of one or more of these algorithms. SECRETA operates in
two modes, namely Evaluation and Comparison.
The Evaluation mode can be used to configure and eval-

uate the effectiveness of a given algorithm, with respect to
data utility and privacy, as well as its efficiency. For cap-
turing data utility, we employ several information loss mea-
sures [7, 12] and support data utility requirements. These
requirements can be expressed using queries and/or utility
constraints [7], which are specified by data publishers or gen-
erated automatically. Furthermore, SECRETA enables the
use of 20 different combinations of algorithms to anonymize
RT -datasets. The selection and management of these com-
binations is performed in an intuitive way that allows pre-
serving different aspects of data utility.
The Comparison mode offers data publishers the ability

to design and execute benchmarks for comparing multiple
anonymization algorithms. These benchmarks facilitate an
interactive and progressive comparison of sets of algorithms,
with respect to their utility and efficiency. The results of the
comparative analysis are summarized and presented graph-
ically, allowing for fast and intuitive understanding of the
effectiveness and efficiency of different algorithms.
To our knowledge, SECRETA is the only system that

permits a comprehensive evaluation and comparison of re-
cent anonymization techniques. The Cornell Anonymization
Toolkit [11] demonstrates a single algorithm for relational
data, also supported by SECRETA, while TIAMAT [3] does



not support algorithms for transaction data, nor methods for
anonymizing RT -datasets. Moreover, none of these systems
employs utility requirements. We believe that the distinctive
features of SECRETA can greatly assist data publishers in
making informed decisions on publishing anonymized data.

2. OVERVIEW OF SECRETA
This section describes the components of our system,

which we broadly divide into frontend and backend com-
ponents. The frontend offers a Graphical User Interface
(GUI), which enables users to: (a) issue anonymization re-
quests, and (b) visualize and store experimental results. The
backend consists of components for servicing anonymization
requests and for conducting experimental evaluations. The
architecture of SECRETA is presented in Figure 1.
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Figure 1: Architecture of SECRETA

2.1 Frontend of SECRETA
The frontend is implemented using the QT framework

(https://qt-project.org). Using the provided GUI, users
can: (a) select datasets for anonymization, (b) specify hi-
erarchies and query workloads, (c) select and configure
anonymization algorithms, (d) execute experiments and vi-
sualize the experimental results, and (e) export anonymized
datasets and experimental results, in a variety of formats.
In what follows, we detail the components of the frontend.

Dataset Editor: It enables users to select datasets for
anonymization. The datasets can have relational and/or
transaction attributes, and they need to be provided in a
Comma-Separated Values (CSV) format. Once a dataset is
loaded to the Dataset Editor, the user can modify it (edit
attribute names and values, add/delete rows and attributes,
etc.) and store the changes. The user can also generate
data visualizations, such as histograms of attributes. Figure
2 shows a loaded dataset and some visualizations.

Configuration Editor: It allows users to select hierar-
chies and to specify utility and privacy policies. Hierarchies
are used by all anonymization algorithms, except COAT [7]
and PCTA [5], whereas utility and privacy policies are only
used by these two algorithms to model such requirements.
Hierarchies and policies can be uploaded from a file, or auto-
matically derived from the data, using the algorithms in [7].

Queries Editor: This component allows specifying query
workloads, which will be used to evaluate the utility of
anonymized data in query answering. The system supports
the same type of queries as [12], and uses Average Relative
Error (ARE) [12] as a defacto utility indicator. The query

workloads can be loaded from a file and edited by the user,
or be inserted directly using the GUI (see Figure 2).

Experimentation Interface Selector: This component
selects the operation mode of SECRETA. Figure 3 shows an
interface of the Evaluation mode, in which users can evaluate
a given algorithm, while Figure 4 shows an interface of the
Comparison mode, which allows users to compare multiple
algorithms. Through these interfaces, users can select and
configure the algorithm(s) to obtain the anonymized data,
store the anonymized dataset(s), and generate visualizations
that present the performance of the algorithm(s).

Plotting Module: This module is based on the QWT li-
brary (http://qwt.sourceforge.net/) and supports a se-
ries of data visualizations that help users analyze their data
and understand the performance of anonymization algo-
rithms, when they are applied with different configuration
settings. Specifically, users can visualize information about:
(a) the original/anonymized dataset (e.g., histograms of at-
tributes, relative difference of the frequency between an orig-
inal and a generalized value), and (b) anonymization results,
for single and varying parameter execution. In single pa-
rameter execution, the results are derived with fixed, user-
specified parameters and include frequencies of generalized
values in relational or set-valued attributes, runtime, etc. In
varying parameter execution, the user selects the start/end
values and step of a parameter that varies, as well as fixed
values for other parameters. The plotted results include data
utility indicators and runtime vs. the varying parameter.

Data Export Module: This module allows exporting
datasets, hierarchies, policies, and query workloads, in CSV
format, and graphs, in PDF, JPG, BMP or PNG format.

2.2 Backend of SECRETA
The backend of our system is implemented in C++. For

each mode of operation, SECRETA invokes one or more
instances of the Anonymization Module with the specified
algorithm and parameters. The anonymization results are
collected by the Method Evaluator/Comparator component
and forwarded to the Experimentation Module. From there,
results are forwarded to the Plotting Module, for visualiza-
tion, and/or to the Data Export Module, for data export.

Policy Specification Module: This module invokes algo-
rithms that automatically generate hierarchies [10], as well
as the strategies in [7], which generate privacy and utility
policies. The hierarchies and/or policies are used by the
Anonymization Module (to be described later).

Method Evaluator/Comparator: This component im-
plements the functionality that is necessary for support-
ing the interfaces of the Evaluation and of the Comparison
mode. Based on the selected interface, anonymization al-
gorithm(s) and parameters, this component invokes one or
more instances (threads) of the Anonymization Module. Af-
ter all instances finish, the Method Evaluator/Comparator
component collects the anonymization results and forwards
them to the Experimentation Module.

Anonymization Module: This component is responsible
for executing an anonymization algorithm with the specified
configuration. SECRETA supports 9 algorithms; 4 of them
are applicable to datasets with relational atrtributes (Incog-



Figure 2: Main screen of SECRETA

Figure 3: Evaluation mode: Method evaluation screen of SECRETA

nito [6], Cluster [9], Top-down [4], and Full subtree bottom-
up), and 5 to datasets with transaction attributes (COAT
[7], PCTA [5], Apriori, LRA and VPA [10]). Addition-
ally, it supports 3 bounding methods (Rmerger, Tmerger,
RTmerger) [9], which enable the anonymization of RT -
datasets by combining two algorithms, each designed for a
different attribute type (e.g., Incognito and COAT).

Experimentation Module: This module is responsible for
producing visualizations of the anonymization results and of
the performance of the anonymization algorithm(s), in the
case of single and varying parameter execution. For visu-
alizations involving the computation of ARE, input is used
from the Queries Editor module. The produced visualiza-
tions are presented to the user, through the Plotting Module,
and can be stored to disk, using the Data Export module.

3. DEMONSTRATION PLAN
During the demonstration, attendees will be able to use

SECRETA to: (a) create, edit and analyze a dataset, and (b)
execute two different scenarios that demonstrate the modes,
functionality range, and potential of the system.

Using the Dataset Editor: The demonstration will start
by allowing the user to load a ready-to-use RT -dataset. Af-
ter that, the user will be able to edit the attribute names
of the dataset, as well as the values in some records. These
operations can be performed directly from the input area
(top-left pane in Figure 2), and the user may overwrite the
existing dataset with a modified one, or export it to a file.
Subsequently, the user will analyze the dataset by plotting
histograms of the frequency of values in any attribute (bot-
tom pane in Figure 2).

Using the Configuration and Queries Editor: The
user will load a predefined hierarchy from a file. This hi-
erarchy is fully browsable and editable, through the hierar-
chy area (top-mid pane in Figure 2). Then, the user will



Figure 4: Comparison mode: Methods comparison screen of SECRETA

load a preconstructed query workload from a file, edit the
query values using the query workload area (top-right pane
in Figure 2), and follow either of the two following scenarios.

Evaluating a method for RT -datasets: In this scenario,
the users will configure, apply, and evaluate a method, in a
series of steps. First, they will use the “Method evaluation”
interface (Figure 3) and set the values for parameters k,m, δ,
by inputting them directly in the form, or by using the cor-
responding slider (top-left pane in Figure 3). Then, they
may select two algorithms, one for anonymizing the rela-
tional attributes, and one for the transaction attribute, and
a bounding method for combining the selected algorithms.

Next, the users will initiate the anonymization process.
When this process ends, a message box with a summary of
results will be presented and the anonymized dataset will be
displayed in the output area (middle pane in Figure 3). Last,
the users will select a number of data visualizations. These
visualizations will be presented in the plotting area (bottom
pane in Figure 3) and may illustrate any combination of the
following: (a) ARE scores for various parameters (e.g., for
varying δ and fixed k and m), (b) the time needed to execute
the algorithm and its different phases, (c) the frequency of all
generalized values, in a selected relational attribute, and (d)
the relative error between the frequency of the transaction
attribute values, in the original and the anonymized dataset.

Comparing methods for RT -datasets: In this scenario,
the users will compare multiple anonymization methods. Us-
ing the“Methods comparison” interface (shown in Figure 4),
they will: (a) select algorithms for anonymizing each type of
attributes, as well as a bounding method, (b) set the values
for parameters that will be fixed, as described above (top-left
pane in Figure 4), and (c) choose a varying parameter (top-
mid pane in Figure 4), along with its start/end value and
step. The choices for (a) to (c) comprise a configuration,
which will be added into the experimenter area (top-right
pane in Figure 4). Similar configurations will be created by
the users for at least another method. After the methods are
applied, the users will select various graphs, which will be
displayed in the plotting area (bottom pane in Figure 4).

4. CONCLUSION
In this paper, we presented SECRETA, a system that

helps data publishers analyze the performance of anonymiza-
tion algorithms and make informed decisions on publishing
anonymized data. Our system allows evaluating and com-
paring a range of different algorithms, in an interactive and
progressing way. In the future, we will extend our system,
by incorporating additional algorithms, such as those in [2].
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Abstract. Publishing datasets about individuals that contain both re-
lational and transaction (i.e., set-valued) attributes is essential to sup-
port many applications, ranging from healthcare to marketing. However,
preserving the privacy and utility of these datasets is challenging, as it
requires (i) guarding against attackers, whose knowledge spans both at-
tribute types, and (ii) minimizing the overall information loss. Existing
anonymization techniques are not applicable to such datasets, and the
problem cannot be tackled based on popular, multi-objective optimiza-
tion strategies. This work proposes the first approach to address this
problem. Based on this approach, we develop two frameworks to offer
privacy, with bounded information loss in one attribute type and mini-
mal information loss in the other. To realize each framework, we propose
privacy algorithms that effectively preserve data utility, as verified by
extensive experiments.

1 Introduction

Privacy-preserving data mining has emerged to address privacy concerns related
to the collection, analysis, and sharing of data and aims at preventing the disclo-
sure of individuals’ private and sensitive information from the published data.
Publishing datasets containing both relational and transaction attributes, RT-
datasets for short, is essential in many real-world applications. Several marketing
studies, for example, need to find product combinations that appeal to specific
types of customers. Consider the RT -dataset in Fig. 1a, where each record cor-
responds to a customer. Age, Origin and Gender are relational attributes, whereas
Purchased-products is a transaction attribute that contains a set of items, repre-
senting commercial transactions. Such studies may require finding all customers
below 30 years old who purchased products E and F. Another application is in
healthcare, where several medical studies require analyzing patient demographics
and diagnosis information together. In such RT -datasets, patients features (e.g.,
demographics) are modeled as relational attributes and diagnosis as a transac-
tion attribute. In all these applications, the privacy protection of data needs
to performed without adding fake or removing truthful information [5,16]. This
precludes the application of ǫ-differential privacy [3], which only allows releasing
noisy answers to user queries or noisy summary statistics, as well as suppression
[19], which deletes values prior to data release.



Relational attributes Transaction attribute
Id Name Age Origin Gender Purchased-products

0 John 19 France Male E F B G
1 Steve 22 Greece Male E F D H
2 Mary 28 Germany Female B C E G
3 Zoe 39 Spain Female F D H
4 Ann 70 Algeria Female E G
5 Jim 55 Nigeria Male A F H

(a)

Relational attributes Transaction attribute
Id Age Origin Gender Purchased-products

0 [19:22] Europe Male E F (A,B,C,D) G
1 [19:22] Europe Male E F (A,B,C,D) H
2 [28:39] Europe Female E (A B,C D) G
3 [28:39] Europe Female F (A,B,C,D) H
4 [55:70] Africa All E G
5 [55:70] Africa All F (A,B,C,D) H

(b)

Fig. 1: (a) An RT -dataset with patient demographics and IDs of purchased products,
and (b) a 2-anonymous dataset with respect to relational attributes and 22-anonymous
with respect to the transaction attribute. Identifiers Id and Name are not published.

A plethora of methods can be used to preserve the privacy of datasets con-
taining only relational or only transaction attributes [9,12,15,18]. However, there
are currently no methods for anonymizing RT -datasets, and simply anonymizing
each attribute type separately, using existing methods (e.g., [9,12,15,18]), is not
enough. This is because information concerning both relational and transaction
attributes may lead to identity disclosure (i.e., the association of an individ-
ual to their record) [15]. Consider, for example, the dataset in Fig. 1a which
is anonymized by applying the methods of [18] and [8] to the relational and
transaction attributes, as shown in Fig. 1b. An attacker, who knows that Jim is
a 55-year-old Male from Nigeria who purchased F, can associate Jim with record
5 in Fig. 1b. Thwarting identity disclosure is essential to comply with legisla-
tion, e.g., HIPAA, and to help future data collection. At the same time, many
applications require preventing attribute disclosure (i.e., the association of an
individual with sensitive information). In medical data publishing, for example,
this ensures that patients are not associated with sensitive diagnoses [17].

Furthermore, anonymized RT -datasets need to have minimal information
loss in relational and in transaction attributes. However, these two requirements
are conflicting, and the problem is difficult to address using multi-objective op-
timization strategies [4]. In fact, these strategies are either inapplicable or incur
excessive information loss, as we show in Section 3.

Contributions. Our work makes the following specific contributions:

– We introduce the problem of anonymizing RT -datasets and propose the first
approach to tackle it. Our privacy model prevents an attacker, who knows
the set of an individual’s values in the relational attributes and up tom items
in the transaction attribute, from linking the individual to their record.

– We develop an approach for producing (k, km)-anonymous RT -datasets with
bounded information loss in one attribute type and minimal information loss
in the other. Following this approach, we propose two frameworks which em-
ploy generalization [15] and are based on a three-phase process: (i) creating
k-anonymous clusters with respect to the relational attributes, (ii) merging
these clusters in a way that helps anonymizing RT -datasets with low infor-
mation loss, and (iii) enforcing (k, km)-anonymity to each merged cluster.

– We propose a family of algorithms to implement the second phase in each
framework. These algorithms operate by building clusters, which can be
made (k, km)-anonymous with minimal information loss, and preserve dif-
ferent aspects of data utility.



Relational attributes Transaction attribute
Id Age Origin Gender Purchased-products

0 [19:22] Europe Male D E (B,D) G
1 [19:22] Europe Male E E (B,D) H

2 [28:39] Europe Female (B,C,F) (D,E) G
3 [28:39] Europe Female (B,C,F) (D,E) H

4 [55:70) Africa All (A,E,F) G
5 [55:70) Africa All (A,E,F) H

(a)

Relational attributes Transaction attribute
Id Age Origin Gender Purchased-products

0 [19:70] All All E F (A,B,C,D) G
1 [19:70] All All E F (A,B,C,D) H
2 [19:70] All All E (A,B,C,D) G
3 [19:70] All All F (A,B,C,D) H
4 [19:70] All All E G
5 [19:70] All All F (A,B,C,D) H

(b)

Relational attributes Transaction attribute
Id Age Origin Gender Purchased-products

0 [19:39] Europe All E F (B,C,D) G
1 [19:39] Europe All E F (B,C,D) H
2 [19:39] Europe All E (B,C,D) G
3 [19:39] Europe All F (B,C,D) H

4 [55:70) Africa All (A,E,F) G
5 [55:70) Africa All (A,E,F) H

(c)

Relational attributes Transaction attribute
Id Age Origin Gender Purchased-products

0 [19:70] All All E F (A,B,D) G
1 [19:70] All All E F (A,B,D) H
4 [19:70] All All E G
5 [19:70] All All F (A,B,D) H

2 [28:39] Europe Female (B,C,F) (D,E) G
3 [28:39] Europe Female (B,C,F) (D,E) H

(d)

Fig. 2: The (2, 22)-anonymous datasets from applying (a) Rfirst, and (b) Tfirst to
the dataset of Fig. 1a, and (c) RmergeR, and (d) RmergeT , to the clusters of Fig. 2a

– We investigate the effectiveness of our approach by conducting experiments
on two real-world RT -datasets. Our results verify that the proposed ap-
proach is effective at preserving data utility.

Paper organization. Section 2 defines concepts used in this work. Section 3
clarifies why popular multi-objective optimization strategies are unsuited for en-
forcing (k, km)-anonymity and formulates the target problems. Sections 4 and 5
present our approach and an instance of it. Sections 6 and 7 present experiments
and discuss related work, and Section 8 concludes the paper.

2 RT -datasets and their anonymity

RT -datasets. An RT-dataset D consists of records containing relational at-
tributes R1, . . . , Rv, which are single-valued, and a transaction attribute T ,
which is set-valued. For convenience, we consider that: (i) identifiers have been
removed from D, and (ii) a single transaction attribute T is contained in D1.

(k, km)-anonymity. We propose (k, km)-anonymity to guard against identity
disclosure. To prevent both identity and attribute disclosure, (k, km)-anonymity
can be extended, as we explain in Section 5.

Before defining (k, km)-anonymity, we associate each record r in an RT -
dataset D with a group of records G(r), as shown below.

Definition 1. For a record r ∈ D, its group G(r) is a set of records that con-
tains r and each record q ∈ D, such that q[R1, . . . , Rv] = r[R1, . . . , Rv] and q[T ]∩
I = r[T ] ∩ I, where I is any set of m or fewer items of r[T ]2.

Group G(r) contains r and all records that are indistinguishable from r to an
attacker, who knows the values of r in relational attributes and up to m items

1 Multiple transaction attributes T1, . . . , Tu can be transformed to a single transaction
attribute T , whose domain contains every item in the domain of T1, . . . , Tu, preceded
by the domain name, i.e., dom(T ) = {d.t | d = Ti and t ∈ dom(Ti), i ∈ [1, u]}.

2 Expression r[A] is a shortcut for the projection πA(r).



in the transaction attribute. The size of G(r), denoted with |G(r)|, represents
the risk of associating an individual with a record r. Thus, to provide privacy,
we may lower-bound |G(r)|. This idea is captured by (k, km)-anonymity.

Definition 2. A group of records G(r) is (k, km)-anonymous, if and only if
|G(r)| ≥ k, for each record r in G(r). An RT-dataset D is (k, km)-anonymous,
if and only if the group G(r) of each record r ∈ D is (k, km)-anonymous.

For example, in Fig. 2a groups {0,1} (=G(0)=G(1)), {2,3} (=G(2)=G(3)) and
{4,5} (=G(4)=G(5)) are (2, 22)-anonymous, rendering the whole dataset (2, 22)-
anonymous. Note that in each group, all records have the same values in the
relational attributes, as required by Definition 1, but do not necessarily have the
same items in the transaction attribute Purchased-products (see Fig. 2b).

The notion of (k, km)-anonymity for RT -datasets extends and combines re-
lational k-anonymity [15] and transactional km-anonymity [17].

Proposition 1. Let D[R1, . . . , Rv] and D[T ] be the relational and transaction
part of an RT-dataset D, respectively. If D is (k, km)-anonymous, then D[R1, . . . ,

Rv] is k-anonymous and D[T ] is km-anonymous.

Proposition 1 shows that (k, km)-anonymity provides the same protection
as k-anonymity [15], for relational attributes, and as km-anonymity [17], for
transaction attributes. Unfortunately, the inverse does not hold. That is, an
RT -dataset may be k and km but not (k, km)-anonymous. For instance, let
D be the dataset of Fig. 1b. Note that D[Age,Origin,Gender] is 2-anonymous and
D[Purchased-products] is 22-anonymous, but D is not (2, 22)-anonymous.

Generalization. We employ the generalization functions defined below.

Definition 3. A relational generalization function R maps a value v in a re-
lational attribute R to a generalized value ṽ, which is a range of values, if R is
numerical, or a collection of values, if R is categorical.

Definition 4. A transaction generalization function T maps an item u in the
transaction attribute T to a generalized item ũ. The generalized item ũ is a
non-empty subset of items in T that contains u.

The way relational values and transactional items are generalized is funda-
mentally different, as they have different semantics [19]. Specifically, a general-
ized value bears atomic semantics and is interpreted as a single value in a range
or a collection of values, whereas a generalized item bears set semantics and is
interpreted as any non-empty subset of the items mapped to it [12]. For instance,
the generalized value [19:22] in Age, in the record 0 in Fig. 2a, means that the ac-
tual Age is in [19, 22]. Contrary, the generalized item (B, D) in Purchased-products

means that B, or D, or both products were bought. Given a record r, the func-
tion R is applied to a single value v ∈ R, and all records in the k-anonymous
group G(r) must have the same generalized value in R. On the other hand, the
function T is applied to one of the potentially many items in T , and the records
in the km-anonymous G(r) may not have the same generalized items.



Data utility measures. In this work, we consider two general data utility mea-
sures; Rum, for relational attributes, and Tum, for the transaction attribute.
These measures satisfy Properties 1, 2 and 3.

Property 1. Lower values in Rum and Tum imply better data utility.

Property 2. Rum is monotonic to subset relationships. More formally, given
two groups G and G′ having at least k records, and a relational generalization
function R, it holds that Rum(R(G) ∪R(G′)) ≤ Rum(R(G ∪G′)).

Property 2 suggests that data utility is preserved better, when we generalize
the relational values of small groups, and is consistent with prior work on re-
lational data anonymization [2,6]. Intuitively, this is because the group G ∪ G′

contains more distinct values in a relational attribute R than G or G′, and thus
more generalization is needed to make its values indistinguishable.

A broad class of measures, such asNCP, the measures expressed as Minkowski
norms [6], Discernability [1], and the Normalized average equivalence class size
metric [9], satisfy Property 2 [6], and can be used as Rum.

Property 3. Tum is anti-monotonic to subset relationships. More formally, given
two groups G and G′ having at least k records, and a transaction generalization
function T that satisfies Definition 4 and (i) maps each item in the group it is
applied to a generalized item that is not necessarily unique, and (ii) constructs
the mapping with the minimum Tum, it holds that Tum(T (G) ∪ T (G′)) ≥
Tum(T (G ∪G′)).

Property 3 suggests that generalizing large groups can preserve transaction
data utility better, and is consistent with earlier works [12,17]. Intuitively, this
is because, all mappings between items and generalized items constructed by
T when applied to G and G′ separately (Case I) can also be constructed when
T is applied to G ∪ G′ (Case II), but there can be mappings that can only be
considered in Case II. Thus, the mapping with the minimum Tum in Case I
cannot have lower Tum than the corresponding mapping in Case II.

3 Challenges of enforcing (k, km)-anonymity

Lack of optimal solution. Constructing a (k, km)-anonymous RT -dataset
D with minimum information loss is far from trivial. Lemma 1 follows from
Theorem 1 and shows that there is no (k, km)-anonymous version of D with
minimum (i.e., optimal) Rum and Tum, for any D of realistic size.

Theorem 1. Let DR and DT be the optimal (k, km)-anonymous version of an
RT-dataset D with respect to Rum and Tum, respectively. Then, no group in
DR contains more than 2k − 1 records, and DT is comprised of a single group.

Proof. (Sketch) The proof that no group in DR contains more than 2k−1 records
is based on Property 2, and has been given in [6]. The proof that DT is comprised
of a single group is similar and, it is based on Property 3.



Lemma 1. There is no optimal (k, km)-anonymous version D of an RT-dataset
D with respect to both Rum and Tum, unless |D| ∈ [k, 2k − 1].

Inadequacy of popular optimization strategies. Constructing useful
(k, km)-anonymous RT -datasets requires minimizing information loss with re-
spect to both Rum and Tum. Such multi-objective optimization problems are
typically solved using the lexicographical, the conventional weighted-formula, or
the Pareto optimal approach [4]. We will highlight why these approaches are not
adequate for our problem.

Lexicographical. In this approach, the optimization objectives are ranked and
optimized in order of priority. In our case, we can prioritize the lowering of
information loss in (i) the relational attributes (i.e., minimal Rum), or (ii) the
transaction attribute (i.e., minimal Tum).

Given an RT -dataset D and anonymization parameters k and m, an algo-
rithm that implements strategy (i) is Rfirst. This algorithm partitions D into
a set of k-anonymous groups C, with respect to the relational attributes (e.g.,
using [18]), and applies T to generalize items in each group of records in C, sepa-
rately (e.g., using [17]). Symmetrically, to implement strategy (ii), we may use an
algorithm Tfirst, which first partitions D into a set of km-anonymous groups
(e.g., using the LRA algorithm [17]), and then applies a relational generalization
function (see Definition 3) to each relational attribute, in each group.

Both Rfirst and Tfirst enforce (k, km)-anonymity, but produce vastly
different results. For instance, Figs. 2a and 2b show (2, 22)-anonymous versions
of the dataset in Fig. 1a, produced by Rfirst and Tfirst, repectively. Observe
that Rfirst did not generalize the relational attributes as heavily as Tfirst

but applied more generalization to the transaction attribute. This is because,
Rfirst constructs small groups, and does not control the grouping of items.
Contrary, the groups created by Tfirst contain records, whose items are not
heavily generalized, unlike their values in the relational attributes. In either
case, the purpose of producing anonymized RT -datasets that allow meaningful
analysis of relational and transaction attributes together, is defeated.

Conventional weighted-formula. In this approach, all objectives are combined
into a single one, using a weighted formula. The combined objective is then op-
timized by a single-objective optimization algorithm. For example, a clustering-
based algorithm [13] would aim to minimize the weighted sum of Rum and
Tum. However, this approach works only for commensurable objectives [4]. This
is not the case for Rum and Tum, which are fundamentally different and have
different properties (see Section 2). Therefore, this approach is not suitable.

Pareto optimal. This approach finds a set of solutions that are non-dominated
[4], from which the most appropriate solution is selected by the data publisher,
according to their preferences. However, the very large number of non-dominated
solutions that can be constructed by flexible generalization functions, such as
those in Definitions 3 and 4, render this approach impractical.

Problem formulation. To construct a (k, km)-anonymous version of an RT -
dataset, we either upper-bound the information loss in relational attributes and



Algorithm: Rum-bound

// Initial cluster formation
1 {C1, . . . , Cn} := ClusterFormation(D, k)
2 D := {C1, . . . , Cn}
3 if Rum(D) > δ then return false

// Cluster merging
4 D := Rmerge(D, T , δ)

// (k, km)-anonymization
5 for each cluster C ∈ D do

6 D := (D \ C) ∪ T (C)

7 return D

Algorithm: Tum-bound

// Initial cluster formation
1 {C1, . . . , Cn} := ClusterFormation(D, k)
2 D := {C1, · · · , Cn}
3 if Tum(T (D)) ≤ δ then return D

// Cluster merging
4 D := Tmerge(D, T , δ)

// (k, km)-anonymization
5 for each cluster C ∈ D do

6 D := (D \ C) ∪ T (C)

7 if Tum(D) > δ then return false

8 return D

seek to minimize the information loss in the transaction attribute (Problem 1),
or upper-bound the information loss in the transaction attribute and seek to
minimize the information loss in relational attributes (Problem 2).

Problem 1. Given an RT -dataset D, data utility measures Rum and Tum, pa-
rameters k and m, and a threshold δ, construct a (k, km)-anonymous version D
of D, such that Rum(D) ≤ δ and Tum(D) is minimized.

Problem 2. Given an RT -dataset D, data utility measures Rum and Tum, pa-
rameters k and m, and a threshold δ, construct a (k, km)-anonymous version D
of D, such that Tum(D) ≤ δ and Rum(D) is minimized.

Threshold δ must be specified by data publishers, as in [6]. Thus, constructing
D might be infeasible for an arbitrary δ. Solving Problem 1 or Problem 2 ensures
that D preserves privacy and utility, but it is NP-hard (proof follows from [12]).

4 Anonymization approach

We propose an approach that overcomes the deficiencies of the aforementioned
optimization approaches and works in three phases:

Initial cluster formation: k-anonymous clusters with respect to relational at-
tributes, which incur low information loss, are formed.

Cluster merging : Clusters are merged until the conditions set by Problems 1 or
2 are met.

(k, km)-anonymization: Each cluster becomes (k, km)-anonymous, by generaliz-
ing the its items with low Tum.

Based on our approach, we developed two anonymization frameworks, Rum-

bound and Tum-bound, which address Problems 1 and 2, respectively. Rum-

bound seeks to produce a dataset with minimal Tum and acceptable Rum,
and implements the phases of our approach, as follows.

Initial cluster formation (Steps 1–3): Algorithm Rum-bound clusters D, using
a function ClusterFormation, which can be implemented by any generaliza-
tion-based k-anonymity algorithm [9,18,2]. This function produces a set of k-



anonymous clusters C1, . . . , Cn, from which a dataset D containing C1, . . . , Cn,
is created (Step 2). The dataset D must have a lower Rum than δ, since sub-
sequent steps of the algorithm cannot decrease Rum (see Property 2). If the
dataset D does not satisfy this condition, it cannot be a solution to Problem 1,
and false is returned (Step 3).

Cluster merging (Step 4): This phase is the crux of our framework. It is performed
by a function Rmerge, which merges the clusters of D to produce a version
that can be (k, km)-anonymized with minimal Tum and without violating δ. To
implementRmerge we propose three algorithms, namely RmergeR,RmergeT
and RmergeRT , which aim at minimizing Tum using different heuristics.

(k, km)-anonymization (Steps 5–7): In this phase, D is made (k, km)-anonymous,
by applying a transaction generalization function T to each of its clusters.

Tum-bound, on the other hand, focuses on Problem 2 and aims at creating
a dataset with minimal Rum and acceptable Tum. This framework has the
following major differences from Rum-bound.

• At Step 3, after the formation of D, Tum-bound checks if D has lower Tum
than the threshold δ. In such case, D is a solution to Problem 2.

• At Step 4, function Tmerge merges clusters until the Tum threshold is
reached, or no more merging is possible. To implement Tmerge we propose
three algorithms: TmergeR, TmergeR and TmergeRT , which aim at min-
imizing Rum using different heuristics.

• At Step 7, Tum-bound checks if Tum(D) > δ; in this case, we cannot satisfy
Problem 2 conditions and, thus, return false.

Cluster-merging algorithms. We now present three algorithms that imple-
ment function Rmerge, which is responsible for the merging phase of Rum-

bound (Step 4). Our algorithms are based on different merging heuristics. Specif-
ically, RmergeR merges clusters with similar relational values, RmergeT with
similar transaction items and RmergeRT takes a middle line between these
two algorithms. In all cases, relational generalization is performed by a set of
functions G = {L1, . . . ,Lv}, one for each relational attribute (Definition 3) and
transaction generalization is performed by function T (Definition 4).

RmergeR selects the cluster C with the minimum Rum(C) as a seed (Step
2). Cluster C contains relational values that are not highly generalized and is
expected to be merged with a low relational utility loss. The algorithm locates the
cluster C ′ with the most similar relational values to C (Step 3) and constructs a
temporary dataset Dtmp that reflects the merging of C and C ′ (Step 4). If Dtmp

does not violate the Rum threshold, it is assigned to D (Step 5).

RmergeT starts by selecting the same seed C as RmergeR (Step 2) and
seeks a cluster C ′ that contains similar transaction items to C and, when merged
with C, results in a dataset with Rum no higher than δ. To this end, RmergeT
merges C with every other cluster Ci inD\C and orders the clusters by increasing
Tum(T (C ∪ Ci)) (Step 3). This allows efficiently finding the best merging for
minimizing Tum that does not violate Rum(D) ≤ δ. The algorithm considers



Algorithm: RmergeR

1 while D changes do

2 Select, as a seed, the cluster C ∈ D
with minimum Rum(C)

3 Find the cluster C′ ∈ D that

minimizes Rum(G(C ∪ C′)) .
4 Dtmp := ((D \ C) \ C′) ∪ G(C ∪ C′)
5 if Rum(Dtmp) ≤ δ then

D := Dtmp

6 return D

Algorithm: RmergeT

1 while D changes do

2 Select, as a seed, the cluster C ∈ D with
minimum Rum(C)
// Find the appropriate cluster C′ to be

merged with C
3 Let {C1, . . . , Ct} be the set of clusters in

D \ C ordered by increasing
Tum(T (C ∪ Ci)), i ∈ [1, t)

4 for i := 1 to t do // Test if C′ = Ci

5 Dtmp := ((D \ C) \ Ci) ∪ G(C ∪ Ci)

6 if Rum(Dtmp) ≤ δ then // C′ is Ci

7 D := Dtmp

8 exit the for loop

9 return D
Algorithm: RmergeRT

1 while D changes do

2 Select, as a seed, the cluster C ∈ D with minimum Rum(C)

3 Let {C1, . . . , Ct} (resp. {Ĉ1, . . . , Ĉt}) be the set of clusters in D \ C ordered by

increasing Rum(G(C ∪ Ci)) (resp. Tum(T (C ∪ Ĉi))), i ∈ [1, t)
// Find the appropriate cluster C′ to be merged with C

4 for i := 1 to t do

5 Find cluster C′, that has the i-th minimum sum of indices u + v s.t.

Cu ∈ {C1, . . . , Ct} and Cv ∈ {Ĉ1, . . . , Ĉt}
6 Dtmp := ((D \ C) \ Ci) ∪ G(C ∪ Ci)
7 if Rum(Dtmp) ≤ δ then

8 D := Dtmp

9 exit the for loop

10 return D

the clusters with increasing Tum(T (C ∪Ci)) scores. The first cluster that gives
a dataset with acceptable Rum is used for merging (Steps 4–5).

RmergeRT combines the benefits of RmergeR andRmergeT . It selects the
same seed cluster C as RmergeT , and constructs two orderings, which sort the
generalized merged clusters in ascending order of Rum and Tum, respectively
(Step 3). Then, a cluster C ′ that is as close as possible to C, based on both
orderings (i.e., it has the i-th minimum sum (u + v), where u and v are the
indices of C ′ in the {C1, . . . , Ct} and orderings {Ĉ1, . . . , Ĉt} repsectively), is
found (Step 5). The next steps of RmergeRT are the same as in RmergeT .

We now discussTmergeR,TmergeR, andTmergeRT , used inTum-bound.
These algorithms perform cluster merging, until D satisfies the Tum threshold,
or all possible mergings have been considered. The pseudocode of RmergeR is
the same as that of TmergeR, except that Step 5 in RmergeR is replaced by
the following steps. Note that D is returned if it satisfies the Tum threshold,
because Rum cannot be improved by further cluster merging (Property 2).

5 if Tum(Dtmp) ≤ δ then

6� D := Dtmp

7� return D

The pseudocode of TmergeR and TmergeRT can be derived by replacing
the same steps with Steps 5 and 7 in TmergeR and TmergeRT , respectively.
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Fig. 3: Hierarchies for the dataset of Fig. 1a

The runtime cost of anonymization is O(F + |C|2·(KR + KT )), where F is
the cost for initial cluster formation, |C| the number of clusters in D, and KR
and KT the cost of generalizing the relational and transaction part of a cluster.

5 Instantiating and extending the frameworks

Our frameworks can be parameterized by generalization functions, data utility
measures, and initial cluster formation algorithms. This section presents such
instantiations and strategies to improve their efficiency, as well as extensions of
our frameworks to prevent both identity and attribute disclosure.

Generalization functions. We employ the local recoding [18] and set-based
generalization [8,12]. As an example, the dataset in Fig. 1b has been created by
applying these functions to the dataset in Fig. 1a, using the hierarchies in Fig. 3.

Data utility measures. To measure data utility in relational and transac-
tion attributes, we used Normalized Certainty Penalty (NCP) [18] and Utility
Loss (UL) [12], respectively. The NCP for a generalized value ṽ, a record r,

and an RT -dataset D, is defined as: NCPR(ṽ) =
{

0, |ṽ| = 1
|ṽ|/|R|, otherwise ,NCP(r) =

∑

i∈[1,v]

wi·NCPRi
(r[Ri]) andNCP(D) =

∑
r∈D

NCP(r)

|D| resp., where |R| denotes the

number of leaves in the hierarchy for a categorical attribute R (or domain size for
a numerical attribute R), |ṽ| denotes the number of leaves of the subtree rooted
at ṽ in the hierarchy for a categorical R (or the length of the range for a numer-
ical R), and wi ∈ [0, 1] is a weight that measures the importance of an attribute.
The UL for a generalized item ũ, a record r, and an RT -dataset D, is defined as:

UL(ũ) = (2|ũ|− 1) ·w(ũ), UL(r) =
∑
∀ũ∈r

UL(ũ)

2σ(r)−1
and UL(D) =

∑
∀r∈D

UL(r)

|D| resp.,

where |ũ| is the number of items mapped to ũ, w(ũ) ∈ [0, 1] a weight reflecting
the importance of ũ [12], and σ(r) the sum of sizes of all generalized items in r.

Initial cluster formation with Cluster. The initial cluster formation
phase should be implemented using algorithms that create many small clusters,
with low Rum, because this increases the chance of constructing a (k, km)-
anonymous dataset with good data utility. Thus, we employ Cluster, an algo-
rithm that is instantiated with NCP and local recoding, and it is inspired by

the algorithm in [2]. The time complexity of Cluster is O( |D|
2

k · log(|D|)).

Efficiency optimization strategies. To improve the efficiency of cluster-
merging algorithms, we compute Rum(Dtmp) incrementally, thereby avoiding
to access all records in Dtmp, after a cluster merging. This can be performed for
all measures in Section 2, but we illustrate it for NCP . We use a list λ of tuples
<|C|,NCP(rc))>, for each cluster C in Dtmp and any record rc in C, which is

initialized based on D. Observe that NCP(Dtmp) =

∑
∀C∈Dtmp

(|C|·NCP(rc))

|D| , and



Algorithm: Cluster

1 C := ∅
// Create clusters of size k

2 while |D| ≥ k do

3 Select, as a seed, a random record s from D
4 Add s and each record r ∈ D having one of the lowest k−1 values in NCP(G({s, r})) to

cluster C
5 Add cluster C to C and remove its records from D

// Accommodate the remaining |D| mod k records
6 for each record r ∈ D do

7 Add r to the cluster C ∈ C that minimizes NCP(G(C ∪ r))

8 Apply G to the relational values of each cluster in C
// Extend clusters

9 for each cluster C ∈ C do

10 Let S be the set of clusters in C with the same values in relational attributes as C.
11 Extend C with the records of S and remove each cluster in S from C.

12 return C

it can be updated, after C and C ′ are merged, by adding: (|C|+|C′|)·NCP(rc∪c′ )
|D| −

|C|·NCP(rc)−|C
′|·NCP(rc′ )

|D| . This requires accessing only the records in C ∪ C ′.

The efficiency of RmergeT , RmergeRT , TmergeR, and TmergeRT can
be further improved by avoiding computing Tum(T (C ∪C1)), . . . ,Tum(T (C ∪
Ct)). For this purpose, we merge clusters using Bit-vector Transaction Distance

(BTD). The BTD for records r1, r2 is defined as BTD(r1, r2) = ones(b1⊻b2)+1
ones(b1∧b2)+1 ·

ones(b1 ∨ b2), where b1 and b2 are the bit-vector based representations of r1[T ]
and r2[T ], ⊻, ∧ and ∨ are the Boolean operators, for XOR, AND, and OR, and
the function ones counts the number of 1 bits in a bit-vector. The BTD of a
cluster C is defined as BTD(C) = max{BTD(r1, r2)| for all r1, r2 ∈ C}. BTD
helps enforcing (k, km)-anonymity with minimal Tum, as it favors the grouping
of records with a small number of items, many of which are common.

Preventing both identity and attribute disclosure. To prevent both
types of disclosure, we propose the concept of (k, ℓm)-diversity, defined below.

Let G(r) be a group of records and G(r′) be a group with the same records
as G(r) projected over {R1, . . . , Rv, T

′}, where T ′ contains only the nonsensitive
items in T . G(r) is (k, ℓm)-diverse, if and only if G(r′) is (k, km)-anonymous,
and an attacker, who knows up to m nonsensitive items about an individual,
cannot associate any record in G(r) to any combination of sensitive items, with
a probability greater than 1

ℓ . An RT -dataset D is (k, ℓm)-diverse, if and only if
the group G(r) of each record r ∈ D is (k, ℓm)-diverse.

(k, ℓm)-diversity forestalls identity disclosure, and, additionally, the inference
of any combination of sensitive items, based on ℓm-diversity [17]. Extending
our anonymization frameworks to enforce (k, ℓm)-diversity requires: (i) applying
Tum to nonsensitive items, and (ii) replacing the transaction generalization
function T , which enforces km-anonymity to each cluster, with one that applies
ℓm-diversity. The ℓm-diversity version of AA [17] was used as such a function.

6 Experimental evaluation

In this section, we evaluate our algorithms in terms of data utility and efficiency,
and demonstrate the benefit of choices made in their design.



Dataset |D| Rel. att. |dom(T )| Max, Avg # items/record

Informs 36553 5 619 17, 4.27

YouTube 131780 6 936 37, 6.51

Table 1: Description of the datasets

Experimental setup. We implemented all algorithms in C++ and applied
them to Informs (https://sites.google.com/site/informsdataminingcontest)
and YouTube (http://netsg.cs.sfu.ca/youtubedata) datasets, whose charac-
teristics are shown in Table 14. The default parameters were k=25, m=2, and
δ=0.65, and hierarchies were created as in [17]. Our algorithms are referred to
in abbreviated form (e.g., RmR for RmergeR) and were not compared against
prior works, since they cannot (k, km)-anonymize RT -datasets. The algorithms
that enforce (k, ℓm)-diversity are named after those based on (k, km)-anonymity.
All experiments ran on an Intel i5 at 2.7 GHz with 8 GB of RAM.

Data utility. We evaluated data utility on Informs and YouTube using
k=25 and k=100, respectively, and varied δ in [X, 1), where X is the NCP

of the dataset produced by Cluster, for Rum-bound, or the UL, for Tum-

bound. Data utility is captured using ARE [9,12,16], which is invariant of the
way our algorithms work and reflects the average number of records that are re-
trieved incorrectly, as part of query answers. We used workloads of 100 queries,
involving relational, transaction, or both attribute types, which retrieve random
values and/or sets of 2 items by default [9,12]. Low ARE scores imply that ano-
nymized data can be used to accurately estimate the number of co-occurrences
of relational values and items. This statistic is an important building block of
several data mining models.

Figs. 4a to 4g demonstrate the conflicting objectives of minimizing informa-
tion loss in relational and transaction attributes, and that Rum-bound can
produce useful data. By comparing Fig. 4a with 4c, and Fig. 4d with 4g, it can
be seen that a small δ forces all algorithms to incur low information loss in the
relational attributes, whereas a large δ favors the transaction attribute. Also,
NCP is at most δ, in all tested cases, and data remain useful for queries in-
volving both attribute types (see Figs. 4b, 4e, and 4f). We performed the same
experiments for the Tum-bound and present a subset of them in Fig. 4h. Note
that, increasing δ (i.e., the bound for UL), favors relational data, and that the
information loss in the transaction attribute is low. Similar observations can be
made for the (k, lm)-diversity algorithms (see Fig. 5).

Next, we compared RmR, RmT , and RmRT . As shown in Fig. 4, RmR in-
curred the lowest information loss in the transaction attribute, and the highest in
the relational attributes, andRmT had opposite trends.RmRT allows more accu-
rate query answering than RmR, in relational attributes, and than RmT , in the
transaction attribute, as it merges clusters, based on both attribute types. Simi-
lar results were obtained for YouTube (see Figs. 4d-4g), from comparing TmT ,

4 Informs contains the relational attributes {month of birth, year of birth, race, years
of education, income}, and the transaction attribute diagnosis codes. YouTube con-
tains the relational attributes {age, category, length, rate, #ratings, #comments},
and the transaction attribute related videos.
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Fig. 4: ARE for queries involving (x, y) relational values and items. Figs. (a)-(c) are for
Informs; (d)-(g) for YouTube (Rum-bound). Fig. (h) is for Informs (Tum-bound)

TmR, and TmRT (see e.g., Fig. 4h), and from comparing the (k, lm)-diversity al-
gorithms (see Figs. 5). Figs. 6a and 6b show the size of the largest cluster created
by RmR, RmT , and RmRT , for varying δ. RmR created the largest clusters, as it
merges many clusters with similar relational values. These clusters have low UL,
as shown in Figs. 6c and 6d. Furthermore, Figs. 6a and 6c, show that RmRT cre-
ated slightly larger clusters than RmT , which have lower UL scores. The results
for TmT , TmR, and TmRT and the (k, lm)-diversity algorithms were similar.

Efficiency. We studied the impact of dataset size using random subsets of
Informs, whose records were contained in all larger sets. As can be seen in
Fig. 7a, RmT outperformed RmR and RmRT , and it was more scalable, due
to the use of the BTD measure. RmRT was the slowest, because it computes
two cluster orderings. TmT , TmR, and TmR perform similarly to RmR, RmT ,
and RmRT (their results were omitted). Fig. 7a shows the cost of Cl. We also
studied the impact of k using the largest dataset of the previous experiment.
Fig. 7b shows that the runtime of RmR, RmT , and RmRT improves with k, as
fewer clusters are merged. RmT was up to 2.2 times more efficient than RmR

and RmRT was the least efficient. Fig. 7b shows that the runtime of Cl improves
with k. The cost of the (k, lm)-diverse algorithms was similar (omitted).

Benefits of algorithmic choices. To show that BTD helps efficiency with-
out degrading data utility, we developed the baseline algorithmsRmTUL,RmTUL,
TmTUL, and TmRTUL, which do not perform the optimization of Section 5. Due
to their high runtime, a subset of Informs with 4K records was used. Observe
in Figs. 7c and 7e that RmT and RmRT have the same UL scores with their
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Fig. 6: Max. cluster size for (a) Informs, and (b) YouTube, and UL for (c) Informs
and (d) YouTube (Rum-bound)

corresponding baseline algorithms, but are at least 10 times more efficient and
scalable with respect to δ. Similar observations can be made from Figs. 7d and
7f, for TmR and TmRT . Last, we show that UL decreases monotonically, as our
algorithms merge clusters. Figs. 7g-7h show the results with δ = 1 for the dataset
used in the previous experiment. The fact that UL never increases shows that
avoiding to compute UL(T (Dtmp)) after a cluster merge does not impact data
utility but helps efficiency. The (k, lm)-diversity algorithms performed similarly.

7 Related work
Preventing identity disclosure is crucial in many real-world applications [5,11]
and can be achieved through k-anonymity [15]. This privacy principle can be
enforced through various generalization-based algorithms (see [5] for a survey).
Thwarting attribute disclosure may additionally be needed [14,19,17], and this
can be achieved by applying other privacy models, such as l-diversity [14], to-
gether with k-anonymity.

Privacy-preserving transaction data publishing requires new privacy models
and algorithms, due to the high dimensionality and sparsity of transaction data
[19,7,17]. km-anonymity is a model for protecting transaction data against at-
tackers, who know up to m items about an individual [17]. Under this condition,
which is often satisfied in applications [17,16,11], an individual cannot be asso-
ciated with fewer than k records in the dataset. km-anonymity can be enforced
using several algorithms [17,12,8], which can be incorporated into our frame-
works. However, km-anonymity does not guarantee protection against stronger
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attackers, who know that an individual is associated with exactly certain items
[17,16]. This is because, by excluding records that have exactly these items from
consideration, the attackers may be able to increase the probability of associat-
ing an individual with their record to greater than 1

k (although not necessarily
1). A recent method [20] can guard against such attackers while preserving data
utility based on a nonreciprocal recoding anonymization scheme. To thwart both
identity and attribute disclosure in transaction data publishing, [17] proposes
ℓm-diversity, which we also employ in our frameworks.

Our frameworks employ generalization, which incurs lower information loss
than suppression [17] and helps preventing identity disclosure, contrary to buck-
etization [7]. Also, we seek to publish record-level and truthful data. Thus, we
do not employ ǫ-differential privacy [3], nor disassociation [16]. However, the
relationship between (k, km)-anonymization and relaxed differential privacy def-
initions is worth investigating to strengthen protection. For instance, Li et al.
[10] proved that safe k-anonymization algorithms, which perform data group-
ing and recoding in a differentially private way, can satisfy a relaxed version of
differential privacy when preceded by a random sampling step.

8 Conclusions

In this paper, we introduced the problem of anonymizing RT -datasets and pro-
posed the first approach to protect such datasets, along with two frameworks for
enforcing it. Three cluster-merging algorithms were developed, for each frame-
work, which preserve different aspects of data utility. Last, we showed how our
approach can be extended to prevent both identity and attribute disclosure.
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ABSTRACT

Among the basic research tools for (bio)medical science are
epidemiological studies that typically involve a number of
hospitals, clinics, and research centres scattered around the
world, and are often referred to as multi-centre studies. Clear-
ly, the effectiveness and importance of a multi-centre study
increases with the number of participating centres and en-
rolled patients, but at the same time this natural distribu-
tion in the production of research data requires sophisti-
cated data/knowledge management infrastructures to sup-
port the participating units. This kind of infrastructure is
not only expensive to build and maintain, but also can-
not be reused as it is often tailored to a specific study.
In this work, we present a cloud-based system, that al-
lows users without any computer science background to de-
sign, deploy, and administer platforms aimed for managing,
sharing, and analysing clinical data from multi-centre stud-
ies. The proposed system provides a zero-administration,
zero-cost online data/knowledge management tool that (i)
enhances re-usability by introducing study templates, (ii)
supports (bio)medical needs through specialised data types
able to capture specialised knowledge like repeated thera-
pies or treatments, and (iii) emphasises data filtering/export
through an expressive yet simple graphical query engine.

1. INTRODUCTION
Large-scale epidemiological studies typically involve a num-

ber of different stakeholders, including hospitals, clinics, and
research centres, physically distributed around the world,
and are often referred to as multi-centre studies. These stud-
ies are invaluable as they collect large amounts of data from
different regions, correlate them, and draw useful conclu-
sions on important research questions. However, the phys-
ical distribution of the participants and the asynchronous
nature of data acquisition pose a number of issues including
the collection, organisation, and processing of data.
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To tackle data/knowledge fragmentation and address the
issues arising from the coordination of geographically dis-
tributed participants, a number of platforms, that focus
on the storage and management of (bio)medical data and
knowledge, have been proposed [2, 4, 5, 6]. However, all
these platforms are either designed for a specific task or study
[2, 4, 6] (and are thus unusable in any other study), or re-
quire significant computing infrastructure and an expert in
Information Technology (IT) for setup and tuning [5]. Typ-
ically, reconfiguring an existing platform for another study
or setting one up from scratch results in (i) time-consuming
meetings between scientists of different principles trying to
understand each other’s needs and (ii) resource-consuming
IT infrastructure, that requires outsourcing to IT specialists
and regular maintenance/upgrades to keep up with techno-
logical requirements. Due to these issues, a great number
of multi-centre studies that lack the resources are still per-
formed by resorting to manual procedures, such as collect-
ing data on paper, exchanging data by post (either as hard
copies, or as electronic copies stored in removable media), or
emailing enormous (often outdated) spreadsheet files with
(often sensitive) patient data among participants. There-
fore, concerns like data freshness/integrity, participant coor-
dination and degree of involvement, and timeliness of results
are lost between versioning in exchanged spreadsheets, hard
copies of patient data, and unanswered email requests.
In this work, we present a cloud-based service for manag-

ing, sharing, and organising clinical and patient data from
multi-centre studies. The proposed system covers all the
functional requirements posed by multi-centre studies, and
enables researchers to easily organise and share data and
knowledge generated by the research activity. We propose
an innovative, integrated framework for creating platforms
for multi-centre studies that enables users with no prior IT
knowledge to (i) design and launch, in an easy and trans-
parent way, platforms tailored to the specific needs of their
studies, (ii) perform basic and advanced user management
tasks (manage users, assign user privileges and permissions,
perform access control on data), (iii) record, organise and
manage clinical/patient data by resorting to a number of
built-in and customisable data entry forms, and (iv) search
and filter information by using a powerful yet simple point-
and-click mechanism that poses restrictions on the stored
data and extracts the requested information in a number of
formats/outputs including raw data, pie/column charts, and
ready-to-process spreadsheets. Due to the cloud infrastruc-
ture, computational resources are allocated on demand, pro-
viding elasticity and fault-tolerance in a way that is trans-
parent to the end-user.
The contributions of this work are twofold:



Figure 1: Platform creation and editing.

• We propose a cloud-based, zero-cost, zero-administration
tool that offers both fundamental and advanced user and
data/knowledge management functionality for multi-centre
studies. To the best of our knowledge, this is the first
cloud-based system that focuses on multi-centre studies
and allows users to deploy their own platforms within
minutes, alleviating the need to rely on expensive custom-
made solutions that require IT infrastructure and skills to
maintain.

• We present the architectural considerations and solutions
behind the proposed tool, and describe a number of novel
services that allow users without any prior IT knowledge
to create, administer, launch, and use personalised plat-
forms.

Our system is currently under beta testing for multi-centre
studies led by the Hellenic Society for Chemotherapy and the
University Hospital Attikon, and has already been used by
more than 12 public hospitals in Greece.

The rest of the paper is organised as follows. Section 2 de-
scribes the implemented services and functionality, outlines
the system architecture and describes a demonstration plan
to be presented at the conference, while Section 3 discusses
related work.

2. SYSTEM OVERVIEW
Our system supports three different types of users that

correspond to three data access privileges. More specifically,
we have (i) IT administrators (ITAs) that are responsible
for the update and maintenance of the system and have ac-
cess (edit, delete, or filter) to all data in the database, (ii)
study administrators (SAs) that are typically in charge of an
ongoing study and may access all data related to the specific
study, and (iii) participants in an ongoing study that may
access only the data added by them.

2.1 Supported Functionality

Questions and platforms. Questions are the backbone
of multi-centre studies. To support the set of questions of
a particular multi-centre study, we introduce the concept of
platforms. Technically, a platform is a custom-made set of
questions, together with all necessary user administration
and data/knowledge components of a study. Platforms are
typically created and administered by the SA. More specif-
ically, the SA is able to (a) design and launch a new plat-
form by inputting a platform name and defining a number
of study questions and (b) rearrange, or delete questions
through drag-and-drop actions. For each question, the SA
specifies three key elements: the data type, the question text,
and the question values. This process is performed with the
design tool of Figure 1. Our system supports all standard

Figure 2: Platform branching logic.

data types such as strings, integers, dates, decimal, etc. Ad-
ditionally, it supports titles, multiple choices, lists and com-
plex data types.

Titles are used to introduce new questionnaire sections.

Multiple choices restrict possible answers to a fixed set.

Lists allow data input from dynamic, custom-made drop-
down menus that the SA dynamically creates, stores, and
edits during the platform design or maintenance. These
lists may be shared across different studies of the same
user and are used to ensure data consistency, enhance
data integrity, and enforce validation of input. To define
a new list, the SA specifies its unique name and defines
its contents. Subsequently, when specifying a question,
the SA sets the data type to list and selects one of the
stored drop-down lists. For example in Figure 1, the third
question specified is a user-defined list of hospitals partic-
ipating in a study.

Complex datatypes support medical operations that involve
groups of recurring questions – as in treatment plans or
therapeutic protocols which usually consist of a set of
medicines with periodically recorded data (e.g., name,
start/end dates, outcome). The advantages of creating
complex data types include better data modelling and
knowledge capture, and thus richer query possibilities,
and flexibility in the design of studies with complex/repeat-
ing medical processes.

Branching logic. SAs may also specify the branching logic
of questions. This functionality allows SAs to specify the
values in questions that are required to enable or disable
following ones. For example in Figure 2, the SA specified
that if the answer to the question Received drugs (Id = 4) is
yes, the questions Drug name and Dosage (Id = 5 and Id = 6,
respectively) should be enabled.

Templates. Typically, specific parts of a study may be used
(as they are or with minor modifications) in other studies.
For example, demographic data are a typical resuable part
of many biomedical multi-centre studies since they hardly
change among different studies. To support this reusability,
the system offers the SA the possibility to create platform
templates that may be used across different studies. Figure 3
shows a platform template meant for demographic data.

Editing an existing template involves two different sce-
narios: (i) simple editing that includes adding, deleting and
modifying questions or their branching logic, and (ii) struc-
tural editing that relates to the modification of question or-
der or data types. Such editing could affect the consistency
of stored data/knowledge or cause compatibility problems
between the stored data/knowledge and the new template
and is thus limited to actions that do not cause such issues.
For instance in Figure 1, the SA is not allowed to change
Patient name to integer.



Figure 3: An example template for demographic data.

Figure 4: The filtering tool.

Filtering and chart tools. SAs are able to extract infor-
mation from a study, while participants may only extract
information added by them. Such information may be re-
trieved and presented as (i) a set of tuples (using the filtering
tool), and (ii) a graph (using the chart tool).

The filtering tool (Figure 4) uses a powerful yet easy-to-
use query issuing mechanism that allows users to (i) filter
and retrieve and (ii) export to a third-party application
stored records by applying constraints with simple point-
and-click interactions. Data filter and export involves a
two-step process. In the first step the user defines the query
output by checking the questions that will be used for data
projection (i.e., data to be exported). In the second step,
he applies one or more filtering conditions on the data. The
filtering conditions are introduced by presenting all distinct
values stored for a specific question and allowing the user
to define the ones that satisfy the filtering criteria. In this
way, he may define conjunctions and disjunctions both on
the questions and on the stored data. The query result may
then be exported in a spreadsheet, or presented as a list of
tuples. In Figure 4, the SA has selected to export the results
for Hospitals, Clinics, and Patient names (notice the checked
boxes in the first column) for all records that were input
between 01/01/2008 and 01/05/2011 in Attiko or Laiko hos-
pital and involve patients between 40 and 60 years of age
(notice the specified constraints).
The filtering tool is able to capture the complex data types

described earlier, allowing the user to (i) set more than one
filters for every complex data type and (ii) include con-
structs like concurrent episodes of a diagnosis or treatment.
Examples of supported queries include:

• Show patients older than 40 years of age with temperature
greater than 38, who were diagnosed with microorganisms
(Pseudomonas and Candida). Notice that the names of the
microorganisms are values already stored in the database.

• Show patients between 40 and 60 years of age, who live in
(England or France or Greece), have been diagnosed with

Figure 5: Using the chart tool with two variables.

microorganisms ((Pseudomonas and Candida) or (Pseudo-
monas and Salmonella) or (Citrobacter)), have undertaken
therapy with (Ampicillin or Cefotaxime), and had progress
as the eventual outcome of their condition. Notice the
application of Boolean operators both on the questions,
and on the data stored for each question.

• Show patients who suffer from Massive hemoptysis, had an
initial episode of Bacteremia and accepted a dose between
2 and 4mg of antibiotic Amikacin, and subsequently had
a second episode of Bacteremia. Notice that the query is
applied to a complex data type (recurring episodes/treat-
ments as described above).

The chart tool (Figure 5) may be used to extract and
present information from stored data directly as a pie, col-
umn, bar, or donut chart. It supports the creation of single
and multiple variable graphs depending on the constraints
defined by the user. In this way the user may dynamically
create graphs for queries with a single variable like “how
many patients in the database are male/female”, but also
for queries with multiple variables like “how many patients
are male/female in each hospital that participates in the
study” (shown in Figure 5).

2.2 System Architecture
The main idea of the system is to allow users to design

and build platforms, through a series of simple and adaptive
processes. This can be done transparently through simple-
to-follow wizards from users without any IT training, while
the cloud-based architecture automatically adapts to the re-
sources and infrastructure by relying on cloud elasticity.

The cloud functionality is provided by the open-source
platform ownCloud (http://owncloud.org/), setup over a
medium-sized computing infrastructure available at the uni-
versity campus. Figure 6 presents a high-level view of the
system architecture and the different types of modules im-
plemented. The Cloud API is responsible for performing
all necessary communication with the ownCloud platform
and provides elasticity services, while the storage manager
performs all necessary storage/retrieval operations to the
data/knowledge base backend. Our backend implementa-
tion uses the LAMP framework as the backend infrastruc-
ture, while the rest of the modules have been developed using
Javascript, PHP, and JQuery.

The Study Manager module is responsible for the cre-
ation, editing, and management of studies, and consists of a
number of modules utilised to (i) manage the participants
and the stored data associated with a study and (ii) fil-
ter/extract data requested by a SA. The Platform Manager



Figure 6: A high-level view of the architecture.

is used to create, edit, and manage platforms and templates
utilised by different studies. The User Manager module is
utilised by the ITA to create and manage the SAs, and also
by the SAs to create and manage the participants (and their
roles) in a specific study. The Security and Access Control
Module enforces the security policies for the system and con-
trols access privileges over the stored data. Security features
include certificate and password-based authentication, sin-
gle sign-on policy, and role-based user management. Finally,
the User Interface module is responsible for identifying the
hardware used to connect to the sytem (PC, tablet, smart
phone) and adjust the viewing components accordingly.

Apart from the poster presentation we also plan to demon-
strate the functionality of the system at the conference.
The interested reader may find more information about the
project at www.uop.gr/~trifon/CloudStudy/.

3. RELATED WORK
Over the years, many solutions aiming at the manage-

ment and sharing of (bio)medical information have been
proposed; in what follows we focus on approaches related
to electronic patient record (EPR) systems specifically de-
signed for multi-centre studies. Most of the proposed sys-
tems focus on a specific study, and put forward architec-
tures and services tailored to the problem at hand. [10]
presents an information system that may be used to man-
age multi-centre studies for cancer. Similarly, MSBase [3]
introduces a web platform for collecting prospective data
on patients with multiple sclerosis, while [2] presents a sys-
tem for HIV/AIDS prevention and treatment. Finally, a
number of EPR systems [4, 8, 9, 6], platforms (e.g., [5],
HICDEP – http://www.hicdep.org/), and projects (e.g.,
CASCADE – http://www.ctu.mrc.ac.uk/cascade/, CO-
BRED – http://www.cobred.eu/) have also been launched
for supporting (i) different types of focused multi-centre
studies [6] and (ii) clinical/biomedical data integration [7,
12, 11, 1].

The large number of existing specialised systems and the
needs dictated by each different multi-centre study led re-
searchers to the design of systems that are able to support
classes of functionalities needed in multi-centre studies. The
most prominent paradigms in this line of work are the RED-
Cap project [5] and the Qure system [6]. REDCap pro-
vides a principled way of designing, constructing, and man-
aging databases that are able to support multi-centre stud-
ies. However, to deploy a system for a specific study, the
study coordinator needs to get in touch with the REDCap
project, and inform the IT specialist on the specific needs
and requirements of the study at hand. Subsequently, af-
ter an iterative and possibly long process of refinement and
corrections in the database design, the REDCap IT expert
will deploy the database and the users will be able to enter
the data. Obviously, any subsequent changes in the speci-
fications will result in the redesign of the database and the
porting of the inserted data in the new database. On the
other hand, the Qure system, while supporting online cre-
ation of study questionnaires, offers (i) limited data types
(e.g., does not offer custom drop-down lists or complex data
types), (ii) no data export functionality (e.g., pie/column
charts, spreadsheets, SPSS compatible output), (iii) a query
engine with limited expressiveness, and (iv) runs on dedi-
cated hardware with no adaptation policy (e.g., elasticity of
resources) and low quality-of-service guarantees.
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Abstract—The publication of trajectory data opens up new
directions in studying human behavior, but it is challenging to
perform in a privacy-preserving way. This is mainly because, the
identities of individuals, whose movement is recorded in the data,
can be disclosed, even after removing identifying information.
Existing works to anonymize trajectory data offer privacy, but at
a high data utility cost. This is because, they either do not produce
truthful data, which is important in many applications, or are
limited in their privacy specification component. This paper
proposes an approach that overcomes these shortcomings by
adapting km-anonymity to trajectory data and by using distance-
based generalization. We also develop an effective and efficient
anonymization algorithm, which is based on the apriori principle.
Our experiments verify that this algorithm preserves data utility
well, and it is fast and scalable.

I. INTRODUCTION

The widespread use of GPS-enabled smartphones and

location-based social networking applications, such as

Foursquare (https://foursquare.com), opens up new opportu-

nities in understanding human behavior through the analysis

of collected mobility data. However, the publication of these

data, which correspond to trajectories of personal movement

(i.e., ordered lists of locations visited by individuals), can lead

to identity disclosure, even if identifying information (ID) is

not published [23]. The values that, in combination, may lead

to identity disclosure are called quasi-identifiers (QI) [24],

[22]. For example, let us assume that a location-based social

network service, publishes the movement of users during a

day in form of checkins in various locations. An example of

this data is shown in Fig. 1a. If Mary’s colleague, John, knows

that sometime that day, Mary checked in at locations a and d,

he cannot associate Mary with her record (trajectory), as both

trajectories t1 and t3 include the locations a and d. But if John

knew that Mary first visited d and then a, he can accurately

link Mary with her trajectory t1.

This example highlights not only the need to transform a set

of user trajectories T to prevent identity disclosure, based on

partial location knowledge held by adversaries, but also the dif-

ference from well-studied set-valued data anonymity models,

like km-anonymity [26] and privacy-constrained anonymiza-

tion [17], [11]. In these models, value ordering is not sig-

nificant; thus records are represented as unordered sets of

items. For instance, if an adversary knew that someone visited

location c and then e, they could link this individual only to

record t1 (Fig. 1b). On the other hand, if T was a set-valued

dataset, records t1, t2 and t4 would have items c and e, hiding

this individual’s identity among 3 records. Consequently, for

id trajectory

t1 (d, a, c, e)
t2 (b, a, e, c)
t3 (a, d, e)
t4 (b, d, e, c)
t5 (d, c)
t6 (d, e)

(a)

a

b
c

d

e

t2t1

(b)

Fig. 1: (a) the original database T (b) visual representation of

trajectories t1 and t2

any set of n items in a trajectory, there are n! possible quasi-

identifiers.

This difference makes anonymizing trajectory datasets more

challenging, as it drastically increases the number of poten-

tial quasi-identifiers. Existing methods operate either by (i)

anonymizing each trajectory as a whole, thereby not assuming

any specific background knowledge of attackers [1], [2], [18],

[21], or (ii) by anonymizing parts of the user trajectories

by considering attackers who can effectively link specific

locations to individuals in order to re-identify them [25], [28].

The first category of approaches are based on clustering and

perturbation [1], [2], [21], while the second category employs

generalization and suppression of quasi-identifiers [19], [28],

[20], [25].

The main drawback of clustering-based approaches is that

they may lose information about the direction of movement

of co-clustered trajectories, as well as cause excessive in-

formation loss, due to space translation. Moreover, applying

perturbation to datasets, creates data that are not truthful and

cannot be used in several applications [9]. Similarly, existing

generalization-and-suppression based methods [19], [28], [20],

[25] have the following limitations. First, they assume that

quasi-identifiers are known to the data publisher prior to

anonymization [28], [25] (e.g., defined by users) or that any

combination of locations can act as a quasi-identifier [19].

Second, they require a location taxonomy to be specified by

data publishers [20], based on locations’ semantics. However,

this taxonomy may not well reflect the distance between

locations and therefore the anonymized data may incur a high

amount of information loss. Last, some approaches assume

that each location can be classified as either sensitive or non-

sensitive [20]. In practice, however, this assumption may not

hold, as location sensitivity depends on context (e.g. visiting

a hospital may be sensitive for a patient, but not for a doctor).

Our proposed approach addresses the aforementioned short-
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comings by adapting km-anonymity [26] to trajectory data

and by applying generalization in a way that minimizes the

distance between the original and the anonymized user trajec-

tories. km-anonymity is a privacy model that was proposed

to limit the probability of identity disclosure in transaction

data publishing. The benefit of this model is that it does not

require detailed knowledge of quasi-identifiers, or a distinc-

tion between sensitive and non-sensitive information, prior to

publication. At the same time, our approach avoids the use for

a location taxonomy and generalizes trajectories in a way that

preserves data utility.

The rest of the paper is organized as follows. Section II

discuss related work. Section III formulates the problem and

Section IV presents our anonymization algorithm. Section V

presents the experimental evaluation of our algorithm in terms

of utility and efficiency. Finally, Section VI concludes the

paper.

II. RELATED WORK

k-anonymity is a privacy model that prevents identity dis-

closure, by requiring at least k records of a dataset to have

the same values over QI [24], [23], [16], [12], [13], [27].

Thus, a k-anonymous dataset upperbounds the probability of

associating an individual to their record by 1
k

. To enforce k-

anonymity, most works [22], [14], [15], [10] employ gener-

alization, which replaces a QI value with a more general but

semantically consistent value, or suppression, which removes

QI values prior to data publishing.

The k-anonymity principle has been recently considered in

the context of publishing user trajectories, leading to several

trajectory anonymization methods [4]. These methods operate

either by (i) anonymizing each trajectory as a whole [1],

[2], [18] or (ii) by anonymizing parts of the user trajectories

by considering attackers who can link specific locations to

individuals in order to perform identity disclosure [25], [28].

The approaches of the first category operate by grouping

original trajectories into clusters of k members in a way

that each trajectory within a cluster becomes indistinguishable

from the other trajectories in the cluster. One such method,

called NWA [1], enforces (k, δ)-anonymity to anonymize user

trajectories by generating cylindrical volumes of radius δ that

contain at least k trajectories. Each trajectory that belongs

to an anonymity group (cylinder), generated by NWA, is

protected from identity disclosure, due to the other trajectories

that appear in the same group. To produce the cylindrical

volumes, the anonymity algorithm proposed in [1] identifies

trajectories that lie close to each other in time and employs

space translation.

The second category of approaches considers attackers with

background knowledge on ordered sequences of places of

interest (POIs) visited by specific individuals. Terrovitis et

al. [25] proposed an approach to prohibit multiple attackers,

each knowing a different set of POIs, from associating these

POIs to fewer than k individuals in the released dataset.

To achieve this, the authors developed a suppression-based

method that aims at removing the least number of POIs

from user trajectories so that the remaining trajectories are k-

anonymous with respect to the knowledge of each adversary.

Yarovoy et al. [28] proposed a k-anonymity based approach

for publishing user trajectories by considering time as a

quasi-identifier and supporting privacy personalization. Unlike

previous work that assumed that all users share a common

quasi-identifier, [28] assumes that each user has a different set

of POIs and times for which he or she requires protection,

thereby enabling each trajectory to be protected differently.

To achieve k-anonymity, this approach uses generalization and

creates anonymization groups that are not necessarily disjoint.

A recent approach, proposed by Monreale et al. [19],

extends the l-diversity principle to trajectories by assuming

that each location is either nonsensitive (acting as a QI) or

sensitive. This approach applies c-safety to prevent adversaries

from linking sensitive locations to trajectories with a probabil-

ity greater than c. To enforce c-safety, the proposed algorithm

applies generalization to replace original POIs with general-

ized ones based on a location taxonomy. If generalization alone

cannot enforce c-safety, suppression is used.

Contrary to related work on trajectory anonymization ap-

proaches operating through data generalization or suppression

of quasi-identifiers, our method makes the realistic assumption

that an adversary may have knowledge of up to m locations

that a user has visited. To protect the trajectories, we em-

ploy a distance-based generalization approach that does not

depend on a pre-specified location taxonomy. Moreover, in

this work we refrain from classifying locations as sensitive or

nonsensitive (QI), and prevent identity disclosure, based on

any combination of up to m locations.

Recently, differential privacy [8] methods were proposed to

anonymize sequential datasets [6], [7]. These methods focus

on specific data analytic tasks, such as query answering or

frequent pattern mining [3] and work by adding noise to the

data. Thus, they harm data truthfulness, which is essential to

preserve in many data analysis tasks [17].

III. PROBLEM FORMULATION

Let L be a set of locations (points of interest, touristic sites,

shops, etc.).

Definition 1: A trajectory t is an ordered list of locations

(l1, . . . , ln), where li ∈ L, 1 ≤ i ≤ n. The size of the

trajectory t = (l1, . . . , ln), denoted by |t|, is the number of

its locations, i.e., |t| = n.

A trajectory represents the locations and the order these

locations are visited by a moving object (individual, bus, taxi,

etc.). In our setting a location may also model points in space

(1D, 2D, 3D, etc.) and even incorporate a temporal dimension.

Definition 2: A trajectory s = (λ1, . . . , λν) is a subtrajectory

of or is contained in trajectory t = (l1, . . . , ln), denoted by

s ⊑ t, if and only if |s| ≤ |t| and there is a mapping f such

that λ1 = lf(1), . . . , λν = lf(ν) and f(1) < · · · < f(ν).

Thus, a subtrajectory is formed by removing some locations

from the original trajectory, while maintaining the order of

the remaining locations. For instance, the trajectory (a, e) is

contained in t1 = (d, a, c, e) (Fig. 1).

Definition 3: Given a set of trajectories T , the support of a

subtrajectory s, denoted by sup(s, T ), is defined as the number
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of distinct trajectories in T that contain s.

In other words, the support of a subtrajectory s measures the

number of trajectories in a dataset that s is contained in. For

example, for the dataset in Fig. 1a, we have sup((a, e), T ) =
3. Naturally, by considering locations as unary trajectories, the

support can also be measured for the locations of a dataset.

In this work, we adapt the notion of km-anonymity to

trajectory data, as explained below.

Definition 4: A set of trajectories T is km-anonymous if and

only if every subtrajectory s of every trajectory t ∈ T , which

contains m or fewer locations (i.e., |s| ≤ m), is contained in

at least k distinct trajectories of T .

Definition 4 ensures that an attacker, who knows any

subtrajectory s of size m of an individual, cannot associate

the individual to fewer than k trajectories (i.e., the probability

of identity disclosure, based on s, is at most 1
k

).

Example 1: Consider the dataset of trajectories T depicted in

Fig. 1a. T is 21-anonymous and 13-anonymous. However, it

is not 22-anonymous, as the subtrajectory (d, a) is contained

only in the trajectory t1 of T .

To explain the way we generalize trajectories, we define the

notion of generalized location as follows.

Definition 5: A generalized location {l1, . . . , lv}, is defined

as a set of at least two locations l1, . . . , lv ∈ L.

A generalized location is interpreted as any of it’s locations.

Therefore, if a trajectory t in an anonymized version T ′ of T
contains a generalized location {l1, . . . , lv}, then the trajectory

t in T contains exactly one location among l1, . . . , lv .

To enforce km-anonymity, we either generalize a location l
to a generalized location that contains l or leave l intact.

We are interested in generalization transformations that

distort as little as possible the initial dataset T . A common way

to measure the distortion of a transformation is to measure the

distance between the original and the transformed dataset [25],

[21], [28]. In our case, the distance between the initial and

the anonymized dataset is defined as the average of the dis-

tances of their corresponding trajectories. In turn, the distance

between the initial and the anonymized trajectory is defined

as the average of the distance between their corresponding

locations. In more detail, we have.

Definition 6: Let l be a location that will be generalized to

the generalized location {l1, . . . , lv}. The location distance

between l and {l1, . . . , lv}, denoted by Dloc(l, {l1, . . . , lv}),
is defined as:

Dloc(l, {l1, . . . , lv}) = avg
{

EuclDist(l, li) | 1 ≤ i ≤ v
}

where EuclDist is the Euclidean distance. The trajectory dis-

tance between t = (l1, . . . , ln) and its generalized counterpart

t′ = (l′1, . . . , l
′
n), denoted by Dtraj (t, t

′), is defined as:

Dtraj (t, t
′) = avg

{

Dloc(li, l
′
i) | 1 ≤ i ≤ n

}

Finally, the trajectory dataset distance between T =
{t1, . . . , tu} and its generalized counterpart T ′ = {t′1, . . . , t

′
u}

Algorithm: SEQANON

Input: A dataset T and anonymization parameters k and m

Output: A km-anonymous dataset T ′ corresponding to T

1 T ′ := T // Initialize output

2 for i := 1 to m do
3 Let S be the set of subtrajectories s of T with size i such

that sup(s, T ′) < k sorted by increasing support
4 for each s ∈ S do

5 while sup(s, T ′) < k do
6 Find the location l1 of s with the minimum

support in T ′

7 Find the location l2 6= l1 with the minimum
distance from l1

8 Replace all occurrences of l1 and l2 in T ′ and s

with {l1, l2}

9 return T ′

(where the trajectory ti is generalized to trajectory t′i, 1 ≤ i ≤
u), denoted by D(T , T ′), is defined as:

D(T , T ′) = avg
{

Dtraj (ti, t
′
i) | 1 ≤ i ≤ u

}

For example, let a, a1, a2 and b be locations and let

EuclDist(a, a1) = 1 and EuclDist(a, a2) = 2. If location

a is generalized to the generalized location {a, a1, a2} the

location distance Dloc(a, {a, a1, a2}) = (0 + 1 + 2)/3 = 1.

Also, if trajectory (a, b) is generalized to ({a, a1, a2}, b) the

trajectory distance Dtraj ((a, b), ({a, a1, a2}, b)) = (1 + 0)/2.

Note that the distances in Definition 6 can be normalized

by dividing each of them with the maximum distance between

locations in T .

The problem we consider can be expressed as follows.

Problem 1: Given a dataset of trajectories T construct a km-

anonymous version T ′ of T such that D(T , T ′) is minimized.

In the rest of the paper, we present and evaluate a method

to tackle Problem 1.

IV. ANONYMIZATION ALGORITHM

Given an input set of trajectories T , we will present a

method that transforms T into a km-anonymous set of tra-

jectories T ′ corresponding to T by generalizing the locations

of the trajectories that do not satisfy the km-anonymity metric.

The proposed anonymization method is illustrated in Al-

gorithm SEQANON that takes as input a trajectories dataset

T and the anonymization parameters k and m and returns

the km-anonymous counterpart T ′ of T . The algorithm works

in an apriori, bottom up fashion. Initially, it considers and

generalizes the subtrajectories in T of size 1 (i.e., single

locations) that have low support. Then, SEQANON continues

by progressively increasing the size of the subtrajectories it

considers.

In more detail, SEQANON proceeds as follows. First, SE-

QANON initializes T ′ (Step 1). Then, Steps 2 – 2 follow

the apriori principle. Step 3 computes set S containing the

subtrajectories s of T having size i (i.e., having i locations)

and lower support than the anomymization parameter k (i.e.,

sup(s, T ′) < k). SEQANON considers the lower support

subtrajectories of S first. This tactic improves the efficiency of
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subT. sup

(d, a) 1

(c, e) 1

(b, a) 1

(a, d) 1

(b, d) 1

(a)

id trajectory

t′1 (d, {a, b}, c, e)
t′2 ({a, b}, {a, b}, e, c)
t′3 ({a, b}, d, e)
t′4 ({a, b}, d, e, c)
t′5 (d, c)
t′6 (d, e)

(b)

id trajectory

t′1 (d, {a, b, c}, {a, b, c}, e)
t′2 ({a, b, c}, {a, b, c}, e, {a, b, c})
t′3 ({a, b, c}, d, e)
t′4 ({a, b, c}, d, e, {a, b, c})
t′5 (d, {a, b, c})
t′6 (d, e)

(c)

Fig. 2: (a) Set S for subtrajectories of size i = 2 and the respective supports, (b) Transformed dataset T ′ after the processing

of subtrajectory (d, a), and (c) The final 22-anonymous result T ′

the method and the quality of the results. Remedying the lower

support subtrajectories commonly benefits higher support sub-

trajectories while at the same time, their generalization does

not significantly affect the dataset. Continuing, for every such

trajectory s ∈ S , the algorithm finds the location l1 of s with

the minimum support (Step 6). Similarly to subtrajectories,

we consider lower support locations first. Then, the algorithm

searches the locations of T to detect the closest location

l2 to l1 (Step 7). Finally, SEQANON generalizes l1 and l2
by constructing the generalized location {l1, l2} and replaces

every occurrence of l1 and l2 with the generalized location

{l1, l2} (Step 8). The algorithm repeats Steps 6 – 8 until

the support of the subtrajectory s exceeds the anonymization

parameter k.

The following is an example of SEQANON in operation.

Example 2: We will demonstrate the operation of SEQANON

with input the dataset T of Fig. 1a and k = m = 2. The

intermediate steps are illustrated in Fig. 2. The first iteration

of the for loop (Steps 2 – 2) considers the subtrajectories of

size i = 1. It is not hard to verify that all size 1 locations

have support greater than k = 2, thus, the algorithm proceeds

to i = 2. For this case, Step 3 computes the set of low support

subtrajectories S (illustrated in Fig. 2a). SEQANON considers

subtrajectory s = (d, a), which is the first subtrajectory in S .

Then, Step 6 sets l1 = a (since a is the lowest support location

of (d, a)) and Step 7 sets l2 = b (since location b is closer to a
– see also the map of Fig. 1b). Finally, Step 8 replaces a and b
with the generalized location {a, b} in s and all the trajectories

of T ′. After these replacement, we have s = (d, {a, b}) while

T ′ is depicted in Fig. 2b. Since, for the changes values of s
and T ′ we still have sup(s, T ′) < k, the while loop (Steps

5 – 8) is executed again. This time l1 = {a, b}, l2 = c and

after the replacements T ′ is depicted in Fig. 2c. The remaining

steps of the algorithm SEQANON do not change T ′, thus, Fig.

2c illustrates the final output.

Complexity analysis. Algorithm SEQANON executes the for

loop (Steps 2 – 8). For each iteration of this loop, set S
is constructed and explored. The size of S is, in the worst

case, O(|L|i), where |L| is the size of the location set used

in T and i is the loop counter. The above bound is a very

crude approximation. O(|L|i) is the size of S when all size i
subtrajectories have support lower than k. This is hardly the

case; the actual sutrajectories s with sup(s, T ′) < k are a

small fraction of O(|L|i). This number depends heavily on

the dataset T and the value of the anonymization parameter

k. To have a more precise bound we multiply with the factor

p(i, k, T ) which measures the probability of a subtrajectory

of size i having support less than k in dataset T . Thus, the

size of S is bounded by O(p(i, k, T ) · |L|i). For each element

s of S the while loop (Steps 5 – 8) is executed. This loop

takes O(|s|) = O(i) time in the worst case (i.e., when we are

going to generalize all locations of the trajectory). Overall,

each iteration of the for loop takes O(i ·p(i, k, T ) · |L|i) time.

Thus, in total, the complexity of the SEQANON algorithm is

O
(

m
∑

i=1

(i · p(i, k, T ) · |L|i)
)

= O
(

m · p(k, T ) · |L|m
)

where

p(k, T ) averages p(1, k, T ), . . . , p(m, k, T ).

V. EXPERIMENTAL EVALUATION

In this section, we evaluate our algorithm in terms of data

utility and efficiency.

Experimental setup. We implemented our algorithm in C++

and tested it on an Intel Core i7 at 2.2 GHz with 6 GB of

RAM. We generated synthetic trajectories of moving objects

on Oldenburg city map using Brinkhoff’s generator [5]. This

setting has been used by many works [1], [21], [28], [25]. We

then normalized trajectories so that all coordinates take values

in a 103×103 map and we simulated trajectories corresponding

to these routes as follows. The map was divided into 100

regions using a uniform grid. An object visits a sequence of

regions in a certain order. The centroids of the visited regions

model the locations in the trajectories of T . The average

length of the generated trajectories is 4.72. The default number

of locations of L and trajectories of T are 100 and 18,143

respectively. Unless otherwise stated, m is set to 2.

Data utility. To measure data utility, we evaluated the number

of published original locations and the number of generalized

locations. For the generalized locations, we also measure their

average size and distance. Initially, we vary the anonymization

parameter k in [2, 100]. Our results are summarized in Fig. 3.

In Fig. 3a, we present the number of the original locations

published (i.e., locations that were not generalized) as a

function of k. As expected, increasing k led to fewer original

locations published. In Fig. 3b, we illustrate the number of

generalized locations. When k increases, more locations are

grouped together to ensure km-anonymity, leading to fewer

generalized locations. As an immediate result, the average

number of locations in a generalized location increased, as

shown in Fig. 3c. Finally, we present the average distance



5

2

5

8

11

2 10 25 50 75 100

N
u
m

b
er

o
f

k

original locations

(a)

6

9

13

16

19

2 10 25 50 75 100

k

generalized locations

(b)

5

8

11

14

16

2 10 25 50 75 100

k

locations per

generalized location

(avg)

(c)

2

4

8

12

16

2 10 25 50 75 100

P
er

ce
n
t

(%
)

o
f

k

trajectories distance

percent (avg)

(d)

Fig. 3: number of (a) original (non generalized) locations published and (b) generalized locations published, (c) average number

of generalized locations size, (d) average percent of distance in generalized locations

0

20

40

60

80

100

1 2 3 4

N
u
m

b
er

o
f

m

original locations

(a)

0

2

5

8

11

14

1 2 3 4

m

generalized locations

(b)

0

10

20

30

40

50

1 2 3 4

m

locations per

generalized location

(avg)

(c)

0

10

20

30

40

1 2 3 4

P
er

ce
n
t

(%
)

o
f

m

trajectories distance

percent (avg)

(d)

Fig. 4: number of (a) original (non generalized) locations published and (b) generalized locations published, (c) average number

of generalized locations size, (d) average percent of distances in generalized locations

2

3

4

5

6

2 5 10 15 18

N
u
m

b
er

o
f

|T |(·103)

original locations

(a)

7

9

12

14

2 5 10 15 18

|T |(·103)

generalized locations

(b)

6

8

10

12

14

2 5 10 15 18

|T |(·103)

locations per

generalized location

(avg)

(c)

5

6

7

8

2 5 10 15 18

P
er

ce
n
t

(%
)

o
f

|T |(·103)

trajectories

distance percent

(avg)

(d)

Fig. 5: number of (a) original (non generalized) locations published and (b) generalized locations published, (c) average number

of generalized locations size, (d) average percent of distances in generalized locations

of all locations inside each generalized location from original

location in L. We normalize this distance as a percentage of

the maximum possible distance (i.e., the distance between the

furthermost points). This percentage quantifies the distance

distortion in a generalized location. In Fig. 3d, we illustrate

the distance percentage as a function of k. When k increases,

more locations are grouped together in the same generalized

location, leading to more distortion. As our algorithm focuses

in minimizing the distance of locations in each generalized

location, distortion is relatively low and increases slowly.

To show the impact of m on utility, we set k = 5 and

varied m in [1,4]. Since our dataset has an average of 4.72

locations per trajectory, m = 3 (respectively, m = 4) means

that the adversary knows approximately 65% (respectively,

85%) of a user’s locations. So, for m = 3 and m = 4,

we expect significant information loss. On the contrary, for

m = 1, all locations have support greater than k = 5, so no

generalization is performed and no generalized locations are

created. As m increases, more generalizations are performed,

in order to eliminate subtrajectories with low support. This

leads to fewer generalized locations with larger sizes. These

results are shown in Figs 4a-4d.

Also, we evaluated the impact of dataset size on data utility,

using various random subsets of the original dataset containing

2,000, 5,000, 10,000, and 15,000 records. In Fig. 5a, we illus-

trate the number of original locations published for variable

dataset sizes. For larger datasets, this number increases, as

the support of single locations is higher. Consequently, the

support of subtrajectories increases, and fewer locations are

generalized. This leads to more generalized locations, with

lower average size, and lower distance, as can be seen in

Figs 5b-5d.

Efficiency. We studied the impact of the anonymization pa-

rameters k and m, and the dataset size on efficiency. To

highlight the impact on efficiency of the apriori principle

used by our algorithm, we created a version of Algorithm
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SEQANON, denoted by SEQANON F, which does not use the

apriori principle. In this version, we removed the for loop from

Step 2 of SEQANON and set i = m. In other words, Algorithm

SEQANON F tries to eliminate directly subtrajectories of size

m with low support. At first, we evaluated our algorithm using

various k values, as in the experiments above. As we illustrate

in Fig. 6a, the execution time increases with k. As expected,

greater values for k lead to more subtrajectories with a lower

support than k, resulting in a S of increased size (see also Step

3 of SEQANON). Similarly, m has the same affect on execution

time. As m increases, our algorithm performs more iterations

(Steps 2-2 of Algorithm SEQANON). In Fig. 6b, we show

the impact of m on efficiency. Our algorithm significantly

outperforms SEQANON F, verifying that the apriori principle

improves the efficiency rate for larger m values. Finally, in

Fig. 6c, we illustrate the impact of dataset size in the execution

time of SEQANON. As expected, larger datasets require longer

processing time, since SEQANON needs to process more

records.

VI. CONCLUSIONS

In this paper, we proposed a new approach to publishing

trajectory data in a way that prevents identity disclosure. Our

approach makes realistic privacy assumptions, as it adapts km-

anonymity to trajectory data, and allows the production of

truthful data that preserve important data utility characteristics,

as it employs distance-based generalization. We also developed

an anonymization algorithm that performs well in terms of data

utility preservation, and it is fast and scalable, due to the use

of apriori principle.
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Abstract. The proliferation of GPS-enabled devices (e.g., smartphones and tablets) and location-
based social networks has resulted in the abundance of trajectory data. The publication of such
data opens up new directions in analyzing, studying and understanding human behavior. However,
it should be performed in a privacy-preserving way, because the identities of individuals, whose
movement is recorded in trajectories, can be disclosed even after removing identifying information.
Existing trajectory data anonymization approaches offer privacy but at a high data utility cost, since
they either do not produce truthful data (an important requirement of several applications), or are
limited in their privacy specification component. In this work, we propose a novel approach that
overcomes these shortcomings by adapting km-anonymity to trajectory data. To realize our approach,
we develop three efficient and effective anonymization algorithms that are based on the apriori prin-
ciple. These algorithms aim at preserving different data characteristics, including location distance
and semantic similarity, as well as user-specified utility requirements, which must be satisfied to en-
sure that the released data can be meaningfully analyzed. Our extensive experiments using synthetic
and real datasets verify that the proposed algorithms are efficient and effective at preserving data
utility.

Keywords. privacy, anonymity, trajectories, spatial data, km-anonymity, utility constraints

1 Introduction

The widespread adoption of GPS-enabled smartphones and location-based social network-
ing applications, such as Foursquare (https://foursquare.com), opens up new op-
portunities in understanding human behaviour through the analysis of collected mobility
data. However, the publication of these data, which correspond to trajectories of personal
movement (i.e., ordered lists of locations visited by individuals), can lead to identity disclo-
sure, even if directly identifying information, such as names or SSN of individuals, is not
published [33].

The values that, in combination, may lead to identity disclosure are called quasi-identifiers
(QI) [32, 34]. For example, let us assume that a location-based social network service pub-
lishes the movement of users during a day in the form of checkins in various locations. An
example of these data is shown in Figure 1a. If Mary’s colleague, John, knows that Mary
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id trajectory
t1 (d, a, c, e)
t2 (b, a, e, c)
t3 (a, d, e)
t4 (b, d, e, c)
t5 (d, c)
t6 (d, e)

(a)

a

b
c

d

e

t2t1

(b)

Figure 1: (a) the original database T (b) visual representation of trajectories t1 and t2

checked in at locations a and d, he cannot associate Mary with her record (trajectory), as
both trajectories t1 and t3 include the locations a and d. But if John knew that Mary first
checked in at location d and then at a, he can uniquely associate Mary with the trajectory
t1.

This example highlights not only the need to transform a set of user trajectories T to
prevent identity disclosure based on partial location knowledge held by attackers, but also
the difference from well-studied set-valued data anonymity models, like km-anonymity
[36] and privacy-constrained anonymization [18, 24]. In these models, value ordering is
not significant; thus, records are represented as unordered sets of items. For instance, if
an attacker knows that someone checked in first at the location c and then at e, they could
uniquely associate this individual with the record t1 (Figure 1b). On the other hand, if T
was a set-valued dataset, three records, namely t1, t2 and t4, would have the items c and e.
Thus, the individual’s identity is “hidden” among 3 records. Consequently, for any set of n
items in a trajectory, there are n! possible quasi-identifiers.

This difference makes preventing identity disclosure in trajectory data publishing more
challenging, as the number of potential quasi-identifiers is drastically increased. Exist-
ing methods operate either by anonymizing (i) each trajectory as a whole, thereby not
assuming any specific background knowledge of attackers [1, 2, 26, 29], or (ii) parts of
trajectories, thereby considering attackers who aim to re-identify individuals based on spe-
cific locations [35, 39]. The first category of methods are based on clustering and pertur-
bation [1, 2, 29], while the second category employs generalization and suppression of quasi-
identifiers [27, 39, 28, 35]. The main drawback of clustering-based methods is that they may
lose information about the direction of movement of co-clustered trajectories and cause ex-
cessive information loss, due to space translation. Moreover, applying perturbation may
create data that are not truthful and cannot be used in several applications [14]. Similarly,
existing generalization-and-suppression based methods [27, 39, 28, 35] have the following
limitations. First, they assume that quasi-identifiers are known to the data publisher prior
to anonymization [35, 39], or that any combination of locations can act as a quasi-identifier
[27]. Second, they require a location taxonomy to be specified by data publishers [28] based
on location semantics. However, such a taxonomy may not exist, or may not accurately re-
flect the distance between locations. In both cases, the anonymized data will be highly
distorted. Last, some approaches assume that each location can be classified as either sen-
sitive or non-sensitive [28]. In practice, however, this assumption may not hold, as location
sensitivity usually depends on context (e.g., visiting a hospital may be considered as sensi-
tive for a patient, but not for a doctor).

Recently, another class of approaches that aims at limiting the amount of information
about the presence or absence of any individual trajectory has been proposed [5, 7, 9].
These approaches enforce a well-established privacy model, called differential privacy [12],

TRANSACTIONS ON DATA PRIVACY 7 (2014)



Apriori-based algorithms for km-anonymizing trajectory data 167

by employing perturbation. Specifically, they release a noisy summary of the original data
that can be used in specific analytic tasks, such as frequent sequential pattern mining [3].
While being able to offer strong privacy guarantees, these approaches do not preserve data
truthfulness, since they rely on perturbation.

1.1 Contributions

In this work, we propose a novel approach for publishing trajectory data, in a way that pre-
vents identity disclosure, and three effective and efficient algorithms to realize it. Specifi-
cally, our work makes the following contributions.

First, we adapt km-anonymity [35, 36] to trajectory data. km-anonymity is a privacy model
that was proposed to limit the probability of identity disclosure in transaction data pub-
lishing. The benefit of this model is that it does not require detailed knowledge of quasi-
identifiers, or a distinction between sensitive and non-sensitive information, prior to data
publishing.

Second, we develop three algorithms for enforcing km-anonymity on trajectory data. These
algorithms generalize data in an apriori-like fashion (i.e., apply generalization to increas-
ingly larger parts of trajectories) and aim at preserving different aspects of data utility. Our
first algorithm, called SEQANON, applies distance-based generalization, effectively creating
generalized trajectories with locations that are close in proximity. For instance, SEQANON

would favor generalizing a together with b, because b is the closest location to a, as can be
seen in Fig. 1b. SEQANON does not require a location taxonomy and aims at preserving
the distance between original locations. Thus, it should be used when accurate semantic
information about locations is not available1. Clearly, however, the presence of accurate, se-
mantic location information should also be exploited, as it can help the preservation of data
utility. For example, assume that a and c represent the locations of restaurants, whereas b
represents the location of a coffee shop. In this case, generalizing a together with c would
be preferred, because c is a restaurant that is also not very far from a. To take into ac-
count both the distance and the semantic similarity of locations, we propose an algorithm,
called SD-SEQANON. This algorithm produces generalized trajectories, whose locations
are typically slightly more distant but much more semantically similar than those created
by SEQANON. Both SEQANON and SD-SEQANON allow generalizing any locations to-
gether, as they aim to minimize information loss. In several applications, however, data
publishers have specific utility requirements, which dictate how locations must be general-
ized to ensure that the anonymized dataset is practically useful [24]. For instance, assume
that the anonymized version of the dataset in Fig. 1a needs to be used to enable the ac-
curate counting of the number of restaurants, in which individuals checked in. To satisfy
this requirement, generalizing together a and b must be prohibited, because the resultant
generalized location {a, b} can be interpreted as either a restaurant or a coffee shop. On the
other hand, the generalization of a together with any other restaurant is allowable, and the
generalization that incurs the minimum information loss should be preferred. To account
for such utility requirements, we propose a third algorithm, called U-SEQANON. This al-
gorithm aims at satisfying utility constraints and uses both generalization and suppression.
Third, we investigate the effectiveness and efficiency of our approach through experi-

ments on a synthetic dataset, generated using the Brinkhoff’s generator [6], and on a real
dataset, derived from a location-based social networking website [10]. The results of these

1A preliminary version of this work that discusses the SEQANON algorithm appeared in the PriSMO work-
shop, which was held in conjunction with IEEE MDM 2013.
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experiments verify that our approach is able to anonymize trajectory data, under various
privacy and utility requirements, with a low level of information loss. In addition, they
show that our algorithms are fast and scalable, due to the use of the apriori principle.

1.2 Organization

The rest of the paper is organized as follows. Section 2 discusses related work. Section
3 presents some preliminary concepts related to trajectory data anonymization, as well as
the privacy and utility objectives of our algorithms. Section 4 presents our anonymization
algorithms, and Section 5 an experimental evaluation of them. Last, we conclude the paper
in Section 6.

2 Related work

Privacy-preserving trajectory data publishing has attracted significant attention, due to the
pervasive use of location-aware devices and location-based social networks, which led to
a tremendous increase in the volume of collected data about individuals [4]. One of the
main concerns in trajectory data publishing is the prevention of identity disclosure, which
is the objective of the k-anonymity privacy model [33, 34]. k-anonymity prevents identity
disclosure by requiring at least k records of a dataset to have the same values over QI.
Thus, a k-anonymous dataset upperbounds the probability of associating an individual
with their record by 1

k
. To enforce k-anonymity most works [15, 20, 21, 23, 32] employ

generalization, which replaces a QI value with a more general but semantically consistent
value, or suppression, which removes QI values prior to data publishing.
k-anonymity has been considered in the context of publishing user trajectories, leading to

several trajectory anonymization methods [4]. As mentioned in Section 1, these methods
operate by anonymizing either entire trajectories [1, 2, 26], or parts of trajectories (i.e., se-
quences of locations) that may lead to identity disclosure [35, 39]. In the following, we dis-
cuss the main categories of trajectory anonymization works, as well as how our approach
differs from them.

2.1 Clustering and perturbation

Methods based on clustering and perturbation are applied to time-stamped trajectories.
They operate by grouping original trajectories into clusters (cylindrical tubes) of at least k
trajectories, in a way that each trajectory within a cluster becomes indistinguishable from
the other trajectories in the cluster. One such method, called NWA [1], enforces (k, δ)-
anonymity to anonymize user trajectories by generating cylindrical volumes of radius δ
that contain at least k trajectories. Each trajectory that belongs to an anonymity group
(cylinder), generated by NWA, is protected from identity disclosure, due to the other tra-
jectories that appear in the same group. To produce the cylindrical volumes, the algorithm
in [1] identifies trajectories that lie close to each other in time and employs space transla-
tion. Trujillo-Rasua and Domingo-Ferrer [37] performed a rigorous analysis of the (k, δ)-
anonymity model, which shows that this model is not able to hide an original trajectory
within a set of k-indistinguishable, anonymized trajectories. Thus, the algorithms in [1, 2]
may not provide meaningful privacy guarantees, in practice. An effective algorithm for
enforcing k-anonymity on trajectory data was recently proposed by Domingo-Ferrer et al.
[11]. The algorithm, called SwapLocations, creates trajectory clusters using microaggregation
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and then permutes the locations in each cluster to enforce privacy. The experimental eval-
uation in [11] demonstrates that SwapLocations is significantly more effective at preserving
data utility than NWA [1]. Finally, Lin et al. [22] guarantees k-anonymity of published data,
under the assumption that road-network data are public information. Their method uses
clustering-based anonymization, protecting from identity disclosure.

Contrary to the methods of [1, 2, 11, 22], our work (a) does not consider time-stamped
trajectories, and (b) applies generalization to derive an anonymized dataset.

2.2 Generalization and suppression

Differently to the methods of Section 2.1, this category of methods considers attackers with
background knowledge on ordered sequences of places of interest (POIs) visited by specific
individuals. Terrovitis et al. [35] proposed an approach to prohibit multiple attackers, each
knowing a different set of POIs, from associating these POIs to fewer than k individuals in
the published dataset. To achieve this, the authors developed a suppression-based method
that aims at removing the least number of POIs from user trajectories, so that the remaining
trajectories are k-anonymous with respect to the knowledge of each attacker.

Yarovoy et al. [39] proposed a k-anonymity based approach for publishing user trajecto-
ries by considering time as a quasi-identifier and supporting privacy personalization. Un-
like previous approaches that assumed that all users share a common quasi-identifier, [39]
assumes that each user has a different set of POIs and times requiring protection, thereby
enabling each trajectory to be protected differently. To achieve k-anonymity, this approach
uses generalization and creates anonymization groups that are not necessarily disjoint.

A recent approach, proposed by Monreale et al. [27], extends the l-diversity principle to
trajectories by assuming that each location is either nonsensitive (acting as a QI) or sensi-
tive. This approach applies c-safety to prevent attackers from linking sensitive locations to
trajectories with a probability greater than c. To enforce c-safety, the proposed algorithm
applies generalization to replace original POIs with generalized ones based on a location
taxonomy. If generalization alone cannot enforce c-safety, suppression is used.
Assuming that each record in a dataset is comprised of a user’s trajectory and user’s sensi-

tive attributes, Chen et al. [8] propose the (K,C)L-privacy model. This model protects from
identity and attribute linkage by employing local suppression. In this paper, the authors
assume that an adversary knows at most L locations of a user’s trajectory. Their model
guarantees that a user is indistinguishable from at least K − 1 users, while the probability
of linking a user to his/her sensitive values is at most C.

Contrary to the methods of [8, 27, 35, 39], our work (a) assumes that an attacker may know
up to m user locations, which is a realistic assumption in many applications, and (b) does
not classify locations as sensitive or nonsensitive, which may be difficult in some domains
[36].

2.3 Differential privacy

Recently, methods for enforcing differential privacy [12] on trajectory data have been pro-
posed [5, 7, 9]. The objective of these methods is to release noisy data summaries that are
effective at supporting specific data analytic tasks, such as count query answering [7, 9] and
frequent pattern mining [5]. To achieve this, the method in [9] uses a context-free, taxonomy
tree, for identifying the set of counting queries that should be supported by the noisy sum-
mary, while the method in [5] employs a prefix-tree to generate candidate patterns, used in
the construction of the data summary.
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The method proposed in [7] was shown to be able to generate summaries that permit
highly accurate count query answering. This method, referred to as NGRAMS, works in
three steps. First, it truncates the original trajectory dataset by keeping only the first ℓmax

locations of each trajectory, where ℓmax is a parameter specified by data publishers. Larger
ℓmax values improve efficiency but deteriorate the quality of the frequencies, calculated
during the next step. Second, it uses the truncated dataset to compute the frequency of
n-grams (i.e., all possible contiguous parts of trajectories that are comprised of 1, or 2, ... ,
or n locations). Third, this method constructs a differentially private summary by inserting
calibrated Laplace noise [12] to the frequencies of n-grams.

Contrary to the methods of [5, 7, 9], our work publishes truthful data at a record (individ-
ual user) level, which is required by many data analysis tasks [24]. That is, our work retains
the number of locations in each published trajectory and the number of published trajec-
tories in the anonymized dataset. Furthermore, our method is able to preserve data utility
significantly better than these methods, as shown in our extensive experiments. Thus, our
approach can be used to offer a better privacy/utility trade-off than the methods of [5, 7, 9].

3 Privacy and utility objectives

In this section, we first define some preliminary concepts that are necessary to present
our approach, and then discuss the privacy and utility objectives of our anonymization
algorithms.

3.1 Preliminaries

Let L be a set of locations (e.g., points of interest, touristic sites, shops). A trajectory rep-
resents one or more locations in L and the order in which these locations are visited by a
moving object (e.g., individual, bus, taxi), as explained in the following definition.

Definition 1. A trajectory t is an ordered list of locations (l1, . . . , ln), where li ∈ L, 1 ≤ i ≤ n.
The size of the trajectory t = (l1, . . . , ln), denoted by |t|, is the number of its locations, i.e., |t| = n.

Note that, in our setting, a location may model points in space. A part of a trajectory,
which is formed by removing some locations while maintaining the order of the remaining
locations, is a subtrajectory of the trajectory, as explained below.

Definition 2. A trajectory s = (λ1, . . . , λν) is a subtrajectory of or is contained in trajectory
t = (l1, . . . , ln), denoted by s ⊑ t, if and only if |s| ≤ |t| and there is a mapping f such that
λ1 = lf(1), . . . , λν = lf(ν) and f(1) < · · · < f(ν).

For instance, the trajectory (a, e) is a subtrajectory of (or contained in) the trajectory t1 =
(d, a, c, e) in Figure 1. Clearly, (a, e) can be obtained from t1 by removing d and c.

Definition 3. Given a set of trajectories T , the support of a subtrajectory s, denoted by sup(s, T ),
is defined as the number of distinct trajectories in T that contain s.

In other words, the support of a subtrajectory s measures the number of trajectories in a
dataset that s is contained in. For example, for the dataset in Figure 1a, we have sup((a, e), T ) =
3. Note that the support does not increase when a subtrajectory is contained multiple times
in a trajectory. For instance, sup((a, e), {(a, e, b, a, e)}) = 1. Naturally, by considering loca-
tions as unary trajectories, the support can also be measured for the locations of a dataset.

In this work, we adapt the notion of km-anonymity [35, 36] to trajectory data, as explained
below.
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Definition 4. A set of trajectories T is km-anonymous if and only if every subtrajectory s of
every trajectory t ∈ T , which contains m or fewer locations (i.e., |s| ≤ m), is contained in at least
k distinct trajectories of T .

Definition 4 ensures that an attacker who knows any subtrajectory s of size m of an indi-
vidual, cannot associate the individual to fewer than k trajectories (i.e., the probability of
identity disclosure, based on s, is at most 1

k
). The privacy parameters k and m are specified

by data publishers, according to their expectations about adversarial background knowl-
edge, or certain data privacy policies [18, 35, 36].

The following example illustrates a dataset that satisfies km-anonymity.

Example 1. Consider the trajectory dataset that is shown in Figure 1a. This dataset is 21-anony-
mous, because every location (i.e., subtrajectory of size 1) appears at least 2 times in it. This dataset
is also 13-anonymous, because every subtrajectory of size 3 appears only once in it. However, the
dataset is not 22-anonymous, as the subtrajectory (d, a) is contained only in the trajectory t1.

Note that, unlike k-anonymity, the km-anonymity model assumes that an attacker pos-
sesses background knowledge about subtrajectories, which are comprised of at most m
locations. That is, an attacker knows at most m locations that are visited by an individual,
in a certain order. Clearly, m can be set to any integer in [0,max{|t|

∣

∣ t ∈ T }]. Setting m
to 0 corresponds to the trivial case, in which an attacker has no background knowledge.
On the other hand, setting m to max{|t|

∣

∣ t ∈ T }, can be used to guard against an attacker
who knows the maximum possible subtrajectory about an individual (i.e., that an indi-
vidual has visited all the locations in their trajectory, and the order in which they visited
these locations). In this case, km-anonymity “approximates” k-anonymity, but it does not
provide the same protection guarantees against identity disclosure. This is because km-
anonymity does not guarantee protection from attackers who know that an individual has
visited exactly the locations, contained in a subtrajectory of size m. For example, assume
that a dataset is comprised of the trajectories {(a, d, e), (a, d, e), (a, d)}. The dataset satisfies
23-anonymity, hence it prevents an attacker from associating an individual with any of the
subtrajectories (a, d), (a, e), and (d, e). However, the dataset is not 2-anonymous, hence
an attacker who knows that an individual has visited exactly the locations a and d, in this
order, can uniquely associate the individual with the trajectory (a, d).
The km-anonymity model is practical in several applications, in which it is extremely

difficult for attackers to learn a very large number of user locations [35]. However, km-
anonymity does not guarantee that all possible attacks, based on background knowledge,
will be prevented. For example, km-anonymity is not designed to prevent collaborative at-
tacks, in which (i) two or more attackers combine their knowledge in order to re-identify
an individual, or (ii) an attacker possesses background knowledge about multiple trajec-
tories in T . Such powerful attack schemes can only be handled within stronger privacy
principles, such as differential privacy (see Section 2). However, applying these principles
usually results in significantly lower data utility, compared to the output of our algorithms,
as shown in our experiments. In addition, as we do not deal with time-stamped trajectories,
time information is not part of our privacy model. In the case of time-stamped trajectory
data publishing, time information can be used by attackers to perform identity disclosure,
and privacy models to prevent this are the focus of [8, 39]. For the same reason, we do
not deal with attacks that are based on both time and road-network information (e.g., the
inference route problem [22]). These attacks can be thwarted using privacy models, such as
strict k-anonymity [22].

To explain the way we generalize trajectories, we define the notion of generalized location,
as explained below.
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Definition 5. A generalized location {l1, . . . , lv} is defined as a set of at least two locations
l1, . . . , lv ∈ L.

Thus, a generalized location is the result of replacing at least two locations in Lwith their
set. A generalized location is interpreted as exactly one of the locations mapped to it. For
example, the generalized location {a, b} may be used to replace the locations a and b in
Figure 1a. This generalized location will be interpreted as a or b. Therefore, if a trajectory
t′ in an anonymized version T ′ of T contains a generalized location {l1, . . . , lv}, then the
trajectory t in T contains exactly one of the locations l1, . . . , lv .

To enforce km-anonymity, we either replace a location l with a generalized location that
contains l, or leave l intact. Thus, a generalized trajectory t′ is an ordered list of locations
and/or generalized locations. The size of t′, denoted by |t′|, is the number of elements of
t′. For instance, a generalized trajectory t′ = ({a, b}, c) is comprised of one generalized
location {a, b} and a location c, and it has a size of 2.

We are interested in generalization transformations that produce a transformed dataset
T ′ by distorting the original dataset T as little as possible, A common way to measure
the distortion of a transformation is to measure the distance between the original and the
transformed dataset [29, 35, 39]. In our case, the distance between the original and the
anonymized dataset is defined as the average of the distances of their corresponding trajec-
tories. In turn, the distance between the initial and the anonymized trajectory is defined as
the average of the distance between their corresponding locations.

The following definition illustrates how the distance between locations, trajectories, and
datasets T and T ′ can be computed.

Definition 6. Let l be a location that will be generalized to the generalized location {l1, . . . , lv}.
The location distance between l and {l1, . . . , lv}, denoted by Dloc(l, {l1, . . . , lv}), is defined as:

Dloc(l, {l1, . . . , lv}) = avg
{

d(l, li) | 1 ≤ i ≤ v
}

where d is the Euclidean distance. The trajectory distance between t = (l1, . . . , ln) and its gener-
alized counterpart t′ = (l′1, . . . , l

′
n), denoted by Dtraj (t, t

′), is defined as:

Dtraj (t, t
′) = avg

{

Dloc(li, l
′
i) | 1 ≤ i ≤ n

}

Finally, the trajectory dataset distance between T = {t1, . . . , tu} and its generalized counterpart
T ′ = {t′1, . . . , t

′
u} (where the trajectory ti is generalized to trajectory t′i, 1 ≤ i ≤ u), denoted by

D(T , T ′), is defined as:

D(T , T ′) = avg
{

Dtraj (ti, t
′
i) | 1 ≤ i ≤ u

}

For example, let a, a1, a2 and b be locations and let d(a, a1) = 1 and d(a, a2) = 2. If location
a is generalized to the generalized location {a, a1, a2} the location distanceDloc(a, {a, a1, a2}) =
(0 + 1 + 2)/3 = 1. Also, if trajectory (a, b) is generalized to ({a, a1, a2}, b) the trajectory dis-
tance Dtraj ((a, b), ({a, a1, a2}, b)) = (1 + 0)/2 = 1/2.
Note that the distances in Definition 6 can be normalized by dividing each of them with

the maximum distance between locations in T .

3.2 Problem statement

As discussed in Introduction, the objective of our approach is to enforce km-anonymity
to a trajectory dataset, while preserving data utility. However, there are different aspects
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of data utility that data publishers may want to preserve. To account for this, we have
developed three anonymization algorithms, namely SEQANON, SD-SEQANON, and U-
SEQANON, which generalize locations in different ways.

The SEQANON algorithm aims at generalizing together locations that are close in proxim-
ity. The distance between locations, in this case, is expressed based on Definition 6. Thus,
the problem that SEQANON aims to solve can be formalized as follows.

Problem 1. Given an original trajectory dataset T , construct a km-anonymous version T ′ of T
such that D(T , T ′) is minimized.

Note that Problem 1 is NP-hard (the proof follows easily from observing that Problem 1
contains the NP-hard problem in [35] as a special case), and that SD-SEQANON is a heuris-
tic algorithm that may not find an optimal solution to this problem.

The SD-SEQANON algorithm considers both the distance and the semantic similarity of
locations, when constructing generalized locations. Thus, it exploits the availability of se-
mantic information about locations to better preserve data utility. Following [27], we as-
sume that the semantic information of locations is provided by data publishers, using a
location taxonomy. The leaf-level nodes in the taxonomy correspond to each of the loca-
tions of the original dataset, while the non-leaf nodes represent more general (abstract)
location information.

Given a location taxonomy, we define the notion of semantic dissimilarity for a generalized
location, as explained in the following definition. A similar notion of semantic dissimilarity,
for relational values, was proposed in [38].

Definition 7. Let l′ = {l1, . . . , lv} be a generalized location and H be a location taxonomy. The
semantic dissimilarity for l′ is defined as:

SD(l′) =
CCA({l1, . . . , lv})

|H|

where CCA({l1, . . . , lj}) is the number of leaf-level nodes in the subtree rooted at the closest com-
mon ancestor of the locations {l1, . . . , lv} in the location taxonomy H, and |H| is the total number
of leaf-level nodes inH.

Thus, locations that belong to subtrees with a small number of leaves are more semanti-
cally similar. Clearly, the SD scores for generalized locations that contain more semanti-
cally similar locations are lower.

Example 2. An example location taxonomy is illustrated in Figure 2. The leaf-level nodes a to e
represent the locations (i.e., specific restaurants and coffee houses), while the non-leaf nodes represent
the general concepts Restaurants and Coffee shops. We also have CCA({a, c, e}) = 3, as the
subtree rooted at Restaurants has three leaf-level nodes, and |H| = 5, as the taxonomy in Figure 2
has 5 leaf-level nodes. Thus, the semantic dissimilarity for the generalized location {a, c, e}, denoted
with SD({a, c, e}), is 3

5 = 0.6. Similarly, we can compute SD({a, d}) = 5
5 = 1, which is greater

than SD({a, c, e}) because a and d are more semantically dissimilar (i.e., restaurants and coffee
shops, instead of just restaurants).

We now define the criteria that are used by the SD-SEQANON algorithm to capture both
the distance and semantic similarity between locations, trajectories, and datasets T and T ′.
The computation of these criteria is similar to those in Definition 6.
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Figure 2: A location taxonomy

Definition 8. Let l be a location that will be generalized to l′ = {l1, . . . , lv}. The combined
location distance between l and l′, denoted by Cloc(l, l

′), is defined as:

Cloc(l, l
′) = avg

{

d(l, li) · SD(l′) | 1 ≤ i ≤ v
}

,where SD(l′) takes values in (0, 1]

where d is the Euclidean distance and SD is the semantic dissimilarity. Note that the above for-
mula is a conventional weighted-formula, where similarity and distance are combined into the
Cloc(l, l

′). Thus, the combined objective is then optimized by the single-objective optimization met-
ric Cloc(l, l

′). Using conventional weighted-formulas is an effective approach for addressing multi-
objective optimization problems, as discussed in [13]. The combined trajectory distance between
t = (l1, . . . , ln) and its generalized counterpart t′ = (l′1, . . . , l

′
n), denoted by Ctraj (t, t

′), is defined
as:

Ctraj (t, t
′) = avg

{

Cloc(li, l
′
i) | 1 ≤ i ≤ n

}

Finally, the combined trajectory dataset distance between T = {t1, . . . , tu} and its generalized
counterpart T ′ = {t′1, . . . , t

′
u} (where the trajectory ti is generalized to trajectory t′i, 1 ≤ i ≤ u),

denoted by C(T , T ′), is defined as:

C(T , T ′) = avg
{

Ctraj (ti, t
′
i) | 1 ≤ i ≤ u

}

We now define the problem that the SD-SEQANON algorithm aims to solve, as follows.

Problem 2. Given an original trajectory dataset T , construct a km-anonymous version T ′ of T
such that C(T , T ′) is minimized.

Note that Problem 2 can be restricted to Problem 1, by allowing only instances where
SD(l′) = 1, for each generalized location l′ that is contained in a trajectory of T ′. Thus,
Problem 2 is also NP-hard. The SD-SEQANON algorithm aims to derive a (possibly sub-
optimal) solution to Problem 2 by taking into account both the distance and the semantic
similarity of locations, when constructing generalized locations.

However, in several applications, there are specific utility requirements that must be taken
into account to ensure that the published dataset is practically useful. In what follows, we
explain our notion of utility constraints, which is used to capture the utility requirements
of data publishers, and explain when the utility constraints are satisfied. Subsequently, we
discuss the practical importance of utility constraints in applications. Our definitions are
similar to those proposed in [24] for transaction data.
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utility constraints locations
u1 {b, c}
u2 {a, d, e}

(a)

id trajectory
t′1 (d, {a, b, c}, {a, b, c}, e)
t′2 ({a, b, c}, {a, b, c}, e, {a, b, c})
t′3 ({a, b, c}, d, e)
t′4 ({a, b, c}, d, e, {a, b, c})
t′5 (d, {a, b, c})
t′6 (d, e)

(b)
id trajectory
t′1 ({a, d, e}, {a, d, e}, {b, c}, {a, d, e})
t′2 ({b, c}, {a, d, e}, {a, d, e}, {b, c})
t′3 ({a, d, e}, {a, d, e}, {a, d, e})
t′4 ({b, c}, {a, d, e}, {a, d, e}, {b, c})
t′5 ({a, d, e}, {b, c})
t′6 ({a, d, e}, {a, d, e})

(c)

Figure 3: (a) An example utility constraint set U . (b) A 22-anonymous dataset T ′ that does
not satisfy the utility constraint set U . (c) A 22-anonymous dataset T ′ that satisfies U .

Definition 9. A utility constraint u is a set of locations {l1, . . . , lv}, specified by data publishers.
A utility constraint set U = {u1, . . . , up} is a partition of the set of locations L, which contains
all the specified utility constraints u1, . . . , up.

Definition 10. Given a utility constraint set U = {u1, . . . , up}, a generalized dataset T ′ that
contains a set of generalized locations {l′1, . . . , l

′
n}, and a parameter δ, U is satisfied if and only if

(i) for each generalized location l′ ∈ {l′1, . . . , l
′
n}, and for each utility constraint u ∈ U , l′ ⊆ u or

l′ ∩ u = ∅, and (ii) at most δ% of the locations in L have been suppressed to produce T ′, where δ is
a parameter specified by data publishers.

The first condition of Definition 10 limits the maximum amount of generalization each lo-
cation is allowed to receive, by prohibiting the construction of generalized locations whose
elements (locations) span multiple utility constraints. The second condition ensures that
the number of suppressed locations is controlled by a threshold. When both of these con-
ditions hold, the utility constraint set U is satisfied. Note that we assume that the utility
constraint set is provided by data publishers, e.g., using the method in [24]. The example
below illustrates Definitions 9 and 10.

Example 3. Consider the utility constraint set U = {u1, u2}, shown in Figure 3a, and assume that
δ = 5. The dataset, shown in Figure 3b, does not satisfy U , because the locations in the generalized
location {a, b, c} are contained in both u1 and u2. On the other hand, the dataset in Figure 3c
satisfies U , because the locations of every generalized location are all contained in u1.

In the following, we provide two examples of real-life applications to justify the impor-
tance of utility constraints. The first example comes from the business domain, and it is
related to the Octopus card, used for payment at various sites (e.g., at convenience stores
and service stations) in Hong Kong. Data published by the Octopus card company must
preserve privacy and, at the same time, allow meaningful analysis by data recipients, such
as owners of specific shops or certain public authorities [35]. The analysis of data recipi-
ents often involves counting the number of trajectories that are associated with a particular
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type of locations, such as coffee shops and bus stations when data recipients are coffee shops
owners and public transport authorities, respectively. The second example comes from the
healthcare domain, and it is related to publishing the locations (e.g., healthcare institutions,
clinics, and pharmacies) visited by patients [25]. To support medical research studies, it is
important that the published data permit data recipients to accurately count the number of
trajectories (or equivalently the number of patients) that are associated with specific loca-
tions, or types of locations.

Observe that the number of trajectories that contain a generalized location l′ = (l1, . . . , ln),
in the generalized dataset T ′, is equal to the number of trajectories that contain at least one
of the locations l1, . . . , ln, in the original dataset T . This is because a trajectory t ∈ T that
contains at least one of these locations corresponds to a trajectory t′ ∈ T ′ that contains
l′. Thus, the number of trajectories in T that contain any location in a utility constraint
u ∈ U can be accurately computed from the generalized dataset T ′, when U is satisfied,
as no other location will be generalized together with the locations in u. Therefore, the
generalized data that satisfy U will be practically useful in the aforementioned applications.

We now define the problem that U-SEQANON aims to solve, as follows.

Problem 3. Given an original trajectory dataset T , a utility constraint set U , and parameters k,
m and δ, construct a km-anonymous version T ′ of T such that D(T , T ′) is minimized and U is
satisfied with at most δ% of the locations of T being suppressed.

Thus, a solution to Problem 3 needs to satisfy the specified utility constraints, without
suppressing more than δ% of locations, and additionally incur minimum information loss.
Note that Problem 3 is NP-hard (it can be restricted to Problem 1, by allowing only instances
where U contains an single utility constrained with all locations in L and δ = 100) and that
U-SEQANON is a heuristic algorithm that may not solve Problem 3 optimally.

4 Anonymization algorithms

In this section, we present our SEQANON, SD-SEQANON, and U-SEQANON anonymiza-
tion algorithms, which aim at solving Problems 1, 2, and 3, respectively.

4.1 The SEQANON algorithm

The pseudocode of the SEQANON algorithm is illustrated in Algorithm SEQANON. The
algorithm takes as input a trajectory dataset T , and the anonymization parameters k and
m, and returns the km-anonymous counterpart T ′ of T . The algorithm employs the apri-
ori principle and works in a bottom up fashion. Initially, it considers and generalizes the
subtrajectories of size 1 (i.e., single locations) in T which have low support. Then, the
algorithm continues by progressively increasing the size of the subtrajectories it considers.
In more detail, SEQANON proceeds as follows. First, it initializes T ′ (Step 1). Then, in

Steps 2 – 8, it considers subtrajectories of size up to m, iteratively. Specifically, in Step 3, it
computes the set S , which contains all subtrajectories in T that have size i (i.e., that have
i locations) and support lower than k (i.e., sup(s, T ′) < k). SEQANON considers the sub-
trajectories of S that have lower support first. This heuristic improves both the efficiency
and the effectiveness of the algorithm. This is because remedying such subtrajectories does
not require a large amount of generalization, while it contributes to protecting trajectories
with higher support. Continuing, for every such trajectory s ∈ S , the algorithm finds the
location l1 of s with the minimum support (Step 6). SEQANON considers locations with
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Algorithm: SEQANON

Input: A dataset T and anonymization parameters k and m

Output: A km-anonymous dataset T ′ corresponding to T

1 T ′ := T // Initialize output

2 for i := 1 to m do
3 Let S be the set of subtrajectories s of T with size i such that sup(s, T ′) < k sorted by

increasing support
4 for each s ∈ S do
5 while sup(s, T ′) < k do
6 Find the location l1 of s with the minimum support in T ′

7 Find the location l2 6= l1 with the minimum d(l1, l2)
8 Replace all occurrences of l1 and l2 in T ′ and s with {l1, l2}

9 return T ′

low support first, as they can be generalized with low information loss. Then, in Step 7,
the algorithm searches the locations of T to detect the location l2 that has the minimum
Euclidean distance from l1. Finally, SEQANON generalizes l1 and l2 by constructing the
generalized location {l1, l2} and replaces every occurrence of l1 and l2 with the general-
ized location {l1, l2} (Step 8). The algorithm repeats Steps 6 – 8, until the support of the
subtrajectory s exceeds the value of the anonymization parameter k.

The following is an example of SEQANON in operation.

Example 4. We will demonstrate the operation of SEQANON using dataset T of Figure 1a and
k = m = 2. The intermediate steps are illustrated in Figure 4. The first iteration of the for loop
(Steps 2 – 8) considers the subtrajectories of size i = 1. It is not hard to verify that all size 1
locations have support greater (or equal) than k = 2, thus the algorithm proceeds to i = 2. For this
case, Step 3 computes the set of subtrajectories S (illustrated in Figure 4a). SEQANON considers
subtrajectory s = (d, a), which is the first subtrajectory in S . Then, the algorithm sets l1 = a,
because a is the location with the lowest support in (d, a) (Step 6), and l2 = b, because d(a, b) is
minimum, according to Figure 1b (Step 7). Finally, in Step 8 SEQANON replaces a and b with the
generalized location {a, b} in s and in all the trajectories of T ′. After these replacements, we have
s = (d, {a, b}) and the resultant T ′ shown in Figure 4b. Since, we still have sup(s, T ′) < k, the
while loop (Steps 5 – 8) is executed again. This time, l1 = {a, b} and l2 = c, and the algorithm
constructs the generalized dataset T ′, shown in Figure 4c. The remaining steps of the algorithm
SEQANON do not change T ′. Thus, the final output of SEQANON is shown in Figure 4c.

Time complexity analysis. We first compute the time needed by SEQANON to execute
the for loop (Steps 2 – 8). For each iteration of this loop, the set S is constructed, sorted,
and explored. The cost of creating and sorting this set is O(|L|i) and O(|L|i · log(|L|i)),
respectively, where |L| is the size of the location set used in T and i is the loop counter.
These bounds are very crude approximations, which correspond to the case in which all
size i subtrajectories have support lower than k. In practice, however, the number of the
subtrajectories s with sup(s, T ′) < k is a small fraction of O(|L|i), which depends heavily
on the dataset T and the value of the anonymization parameter k. The cost of exploring the
set S (Steps 4 – 8) isO(|L|i · (|L|+ |T ′|)) because, for each element of S , the algorithm needs
to consider at most O(|L|) locations and access all trajectories in T ′. Thus, each iteration
of the for loop, in Steps 2 – 8, takes O(|L|i · (log(|L|i) + |L| + |T ′|)) time, and the time
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subT. sup
(d, a) 1
(c, e) 1
(b, a) 1
(a, d) 1
(b, d) 1

(a)

id trajectory
t′1 (d, {a, b}, c, e)
t′2 ({a, b}, {a, b}, e, c)
t′3 ({a, b}, d, e)
t′4 ({a, b}, d, e, c)
t′5 (d, c)
t′6 (d, e)

(b)

id trajectory
t′1 (d, {a, b, c}, {a, b, c}, e)
t′2 ({a, b, c}, {a, b, c}, e, {a, b, c})
t′3 ({a, b, c}, d, e)
t′4 ({a, b, c}, d, e, {a, b, c})
t′5 (d, {a, b, c})
t′6 (d, e)

(c)

Figure 4: (a) Set S for subtrajectories of size i = 2 and the respective supports, (b) Trans-
formed dataset T ′ after SEQANON has processed the subtrajectory (d, a), and (c) The final
22-anonymous result T ′, produced by SEQANON.

complexity of SEQANON is O
(

m
∑

i=1

(|L|i · (log(|L|i) + |L|+ |T ′|))).

4.2 The SD-SEQANON algorithm

SD-SEQANON takes as input an original trajectory dataset T , the anonymization parame-
ters k and m, and a location taxonomy, and returns the km-anonymous counterpart T ′ of T .
The algorithm operates similarly to SEQANON, but it takes into account both the Euclidean
distance and the semantic similarity of locations, when it applies generalization to them.

The pseudocode of SD-SEQANON is provided in Algorithm SD-SEQANON. Notice that
SD-SEQANON and SEQANON differ in Step 7. This is because SD-SEQANON calculates
the product of the Euclidean distance for the locations l1 and l2, and the SD measure for
the generalized location {l1, l2} (see Definition 7). Thus, it aims at creating a generalized
location, which consists of locations that are close in proximity and are semantically sim-
ilar. The time complexity of SD-SEQANON is the same as that of SEQANON, because the
computation in Step 7 does not affect the complexity.

Algorithm: SD-SEQANON

Input: A dataset T , a locations hierarchy and anonymization parameters k and m

Output: A km-anonymous dataset T ′ corresponding to T

1 T ′ := T // Initialize output

2 for i := 1 to m do
3 Let S be the set of subtrajectories s of T with size i such that sup(s, T ′) < k sorted by

increasing support
4 for each s ∈ S do
5 while sup(s, T ′) < k do
6 Find the location l1 of s with the minimum support in T ′

7 Find the location l2 6= l1 with the minimum d(l1, l2) · SD({l1, l2})
8 Replace all occurrences of l1 and l2 in T ′ and s with {l1, l2}

9 return T ′
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4.3 The U-SEQANON algorithm

The U-SEQANON algorithm takes as input an original trajectory dataset T , anonymization
parameters k, m and δ, as well as a utility constraint set U . The algorithm differs from
SEQANON and SD-SEQANON along two dimensions. First, the km-anonymous dataset
it produces satisfies U , hence it meets the data publishers’ utility requirements. Second, it
additionally employs suppression (i.e., removes locations from the resultant dataset), when
generalization alone is not sufficient to enforce km-anonymity.

Algorithm: U-SEQANON

Input: A dataset T , utility constraint set U , and anonymization parameters k, m, and δ

Output: A km-anonymous dataset T ′ corresponding to T

1 T ′ := T // Initialize output

2 for i := 1 to m do
3 Let S be the set of subtrajectories s of T with size i such that sup(s, T ′) < k sorted by

increasing support
4 for each s ∈ S do
5 while sup(s, T ′) > 0 or sup(s, T ′) < k do
6 Find the location l1 of s with the minimum support in T ′

7 Find the utility constraint u ∈ U that contains the location l1
8 Find the location l2 6= l1, l2 ∈ u with the minimum d(l1, l2)
9 if Cannot find location l2 then

10 Suppress location l1 from T ′

11 if More than δ% of locations have been suppressed then
12 Exit: U is not satisfied

13 else
14 Replace all occurrences of l1 and l2 in T ′ and s with {l1, l2}

15 return T ′

The pseudocode of U-SEQANON is provided in Algorithm U-SEQANON. As can be seen,
the algorithm initializes T ′ (Step 1) and then follows the apriori principle (Steps 2 – 14).
After constructing and sorting S , U-SEQANON iterates over each subtrajectory in S and
applies generalization and/or suppression, until its support is either at least k or 0 (Steps
3 – 5). Notice that sup(s, T ′) = 0 corresponds to an empty subtrajectory s (i.e., the result of
suppressing all locations in s), which does not require protection. Next, U-SEQANON finds
the location l1 with the minimum support in T ′ and the utility constraint that contains it
(Steps 6 – 7). Then, the algorithm finds a different location l2, which also belongs to u and
is as close to l1 as possible, according to the Euclidean distance (Step 8). In case such a
location cannot be found (i.e., when there is a single generalized location that contains all
locations in u), U-SEQANON suppresses l2 from T ′ (Steps 9 – 10). If more than δ% of loca-
tions have been suppressed, U cannot be satisfied and the algorithm terminates (Steps 11 –
12). Otherwise, U-SEQANON generalizes l1 and l2 together and replaces every occurrence
of either of these locations with the generalized location {l1, l2} (Step 14). The algorithm
repeats Steps 2 – 14 as long as the size of the considered subtrajectories does not exceed m.
After considering the subtrajectories of size m, U-SEQANON returns the km-anonymous
dataset T ′ that satisfies U , in Step 15.

The following is an example of U-SEQANON in operation.

Example 5. We will demonstrate the operation of U-SEQANON with input the original dataset

TRANSACTIONS ON DATA PRIVACY 7 (2014)



180 Giorgos Poulis, Spiros Skiadopoulos, Grigorios Loukides, Aris Gkoulalas-Divanis

# UC
1 {b, c}
2 {a, d, e}

(a)

id trajectory
t′1 ({a, d}, {a, d}, c, e)
t′2 (b, {a, d}, e, c)
t′3 ({a, d}, {a, d}, e)
t′4 (b, {a, d}, e, c)
t′5 ({a, d}, c)
t′6 ({a, d}, e)

(b)

id trajectory
t′1 ({a, d, e}, {a, d, e}, {b, c}, {a, d, e})
t′2 ({b, c}, {a, d, e}, {a, d, e}, {b, c})
t′3 ({a, d, e}, {a, d, e}, {a, d, e})
t′4 ({b, c}, {a, d, e}, {a, d, e}, {b, c})
t′5 ({a, d, e}, {b, c})
t′6 ({a, d, e}, {a, d, e})

(c)

Figure 5: (a) Set of Utility Constraints (b) Transformed dataset T ′ after the processing of
subtrajectory (d, a), and (c) The final 22-anonymous result T ′ meeting the provided set of
UC

T , shown in Figure 1a, the utility constraint set in Figure 5a, k = m = 2, and δ = 5%. During
the first iteration of the for loop (Steps 2 – 14), U-SEQANON considers the subtrajectories of size
i = 1, which all have a support of at least 2. Thus, the algorithm considers subtrajectories of size
i = 2, and constructs the set S shown in Figure 4a (Steps 4 – 3). Then, U-SEQANON considers
the subtrajectory s = (d, a) in S , which has the lowest support in T ′ (Step 6). Next, in Steps 6
– 8, the algorithm finds the location l1 = a, which has the lowest support in T ′, and the location
l2 = d, which belongs to the same utility constraint as a and is the closest to it – see also the map in
Figure 1b. After that, the algorithm replaces a and d with the generalized location {a, d} in s and
all the trajectories of T ′ (Step 14). After these replacements, s = ({a, d}, {a, d}) and the trajectory
dataset T ′ is as shown in Figure 4b. Since the support of s in T ′ is at least k, the while loop in
Step 5 terminates and the algorithm checks the next problematic subtrajectory, s = (c, e). After
considering all problematic subtrajectories of size 2, U-SEQANON produces the 22-anonymous
dataset in Figure 5c, which satisfies U .

The time complexity of U-SEQANON is the same as that of SEQANON, in the worst case
when U is comprised of a single utility constraint that contains all locations in L, S contains
O(|L|i) subtrajectories with support in (0, k), and δ = 100. Note that the cost of suppressing
a location l1 is O(|T ′|) (i.e., the same as that of replacing the locations l1 and l2 with the
generalized location (l1, l2) in all trajectories in T ′).

5 Experimental evaluation

In this section, we provide a thorough experimental evaluation of our approach, in terms
of data utility and efficiency.

Experimental setup. We implemented our algorithms in C++ and tested them on an Intel
Core i7 at 2.2 GHz with 6 GB of RAM. In our experiments, we used both synthetic and
real datasets. The synthetic dataset, referred to as Oldenburg, was generated using the
Brinkhoff’s data generator [6] and contains synthetic trajectories of objects moving on the
Oldenburg city map. This setting has been used by many works [1, 29, 35, 39]. We normal-
ized the trajectories, so that all coordinates take values in a 103×103 map, and simulated
trajectories corresponding to these routes, as follows. The map was divided into 100 re-
gions using a uniform grid. A moving object visits a sequence of regions in a certain order.
The centroids of the visited regions model the locations in the trajectories of T . The Olden-
burg dataset contains 18, 143 trajectories, whose average length is 4.72, and 100 locations.
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In addition, we used a dataset that has been derived from the Gowalla location-based social
networking website and contains the check-ins (locations) of users between February 2009
and October 2010 [10]. In our experiments, we used aggregate locations of 86, 061 users, in
the state of New York and nearby areas. This dataset is referred to as Gowalla and contains
86, 061 trajectories, whose average length is 3.92, and 662 locations.

To study the effectiveness of our approach, we compare it against the NGRAMS method
[7], discussed in Section 2, using the implementation provided by the authors of [7]. Con-
trary to [5], the NGRAMS method was developed for count query answering. Thus, a com-
parison between the NGRAMS method and ours allows us to evaluate the effectiveness of
our approach with respect to count query answering. For this comparison, we set the pa-
rameters lmax, nmax, and e to the values 20, 5, and 0.1, respectively, which were suggested
in [7]. Unless otherwise stated, k is set to 5 and m is set to 2. The location taxonomies
were created as in [35]. Specifically, each non-leaf node in the taxonomy for the Oldenburg
(respectively, Gowalla) dataset has 5 (respectively, 6) descendants.

Measures. To measure data utility we used the Average Relative Error (ARE) measure [21],
which has become a defacto data utility indicator [24, 31]. ARE estimates the average num-
ber of trajectories that are retrieved incorrectly, as part of the answers to a workload of
COUNT queries. Low ARE scores imply that anonymized data can be used to accurately
estimate the number of co-occurrences of locations. We used workloads of 100 COUNT
queries, involving randomly selected subtrajectories with size in [1, 2], because the output
of the NGRAMS method contained very few longer trajectories (see Figure 10b).
In addition, we used Kullback–Leibler divergence (KL-divergence), an information-theoretic

measure that quantifies information loss and is used widely in the anonymization literature
[16, 19]. In our context, KL-divergence measures support estimation accuracy based on
the difference between the distribution of the support of a set of subtrajectories S, in the
original and in the anonymized data2. Let PS (respectively, QS) be the distribution of the
support of the subtrajectories in S in the dataset T (respectively, generalized dataset T ′).
The KL-divergence between PS and QS is defined as:

DKL(PS ‖ QS) =
∑

s∈S

PS ln

(

PS

QS

)

Clearly, low values in KL-divergence are preferred, as they imply that a small amount of
information loss was incurred to generalize the subtrajectories in S. Furthermore, we used
statistics on the number, size, and distance, for the locations in generalized data.

To evaluate the extent to which SD-SEQANON generalizes semantically close locations
together, we compute a semantic similarity penalty P for the generalized dataset, as follows:

P(T ′) =

∑

t′∈T ′

(

1

|t′|
·
∑

l′∈t′

SD(l′)

)

|T ′|

where t′ is a trajectory in the generalized dataset T ′, with size |t′|, and |T ′| is the number of
trajectories in T ′. P reflects how semantically dissimilar are (on average) the locations in
the trajectories in the generalized dataset. The values in P(T ′) are in [0, 1] and lower values
imply that the generalized locations in T ′ contain more semantically similar locations.

2The support of a subtrajectory s ∈ S in T ′ is computed as the support of its generalized counterpart (i.e., the
subtrajectory induced by the generalized locations of each location in s).
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To evaluate the ability of the SEQANON and NGRAMS algorithms to permit sequential
pattern mining, we employ a testing framework similar to that of Gionis et al. [17]. In
more detail, we construct random projections of the datasets produced by our algorithms,
by replacing every generalized location in it with a random location, selected from that
generalized location. Then, we use Prefixspan [30], to obtain the frequent sequential pat-
terns (i.e., the sequential patterns having support larger than a threshold) in the original,
the output of NGRAMS and the projected datasets. Next, we calculate the percentage of
the frequent sequential patterns of the original dataset that are preserved in the output of
NGRAMS and in the projected datasets. We also calculate the percentage of the frequent
sequential patterns in the output of NGRAMS and in the projected datasets that are not fre-
quent in the original dataset. Clearly, an anonymized dataset (produced by either NGRAMS

or by our algorithms) allows accurate mining, when: (i) a high percentage of its frequent
sequential patterns are frequent in the original dataset, and (ii) a low percentage of its fre-
quent sequential are not frequent in the original dataset.

5.1 Data utility

In this section, we evaluate the effectiveness of the SEQANON, SD-SEQANON, and U-
SEQANON algorithms at preserving data utility.

SEQANON. We begin by evaluating the data utility offered by the SEQANON algorithm,
using some general statistics, computed for the output of this algorithm on the Oldenburg
dataset. Specifically, we measured the number of the locations that were released intact
(referred to as original locations) and the number of the locations that were generalized.
For the generalized locations, we also measured their average size and distance. Initially,
we varied the anonymization parameter k in [2, 100]. Our results are summarized in Fig-
ures 6a-7a.

In Figure 6a, we present the number of the original locations, as a function of k. As ex-
pected, increasing k led to fewer original locations. In Figure 6b, we report the number
of generalized locations. When k increases, more locations are grouped together to ensure
km-anonymity, leading to fewer generalized locations. As an immediate result, the average
number of locations in a generalized location increased, as shown in Figure 6c. In addition,
we report the average Euclidean distance of all locations contained in each generalized lo-
cation. We normalize this distance as a percentage of the maximum possible distance (i.e.,
the distance between the two furthermost points). This percentage quantifies the distortion
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Figure 6: number of (a) original (non generalized) locations published, (b) generalized lo-
cations published and (c) average generalized location size
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in a generalized location. In Figure 7a, we illustrate the distance percentage as a function of
k. When k increases, more locations are grouped together in the same generalized location,
leading to more distortion. As SEQANON focuses on minimizing the Euclidean distance of
locations in each generalized location, the distortion is relatively low and increases slowly.

To show the impact of m on data utility, we set k = 5 and varied m in [1,4]. Since our
dataset has an average of 4.72 locations per trajectory, m = 3 (respectively, m = 4) means
that the adversary knows approximately 65% (respectively, 85%) of a user’s locations. So,
for m = 3 and m = 4, we expect significant information loss. On the contrary, for m =
1, all locations have support greater than k = 5, so no generalization is performed and
no generalized locations are created. As m increases, more generalizations are performed
in order to eliminate subtrajectories with low support. This leads to fewer generalized
locations with larger sizes. These results are shown in Figures 7b-8b.

Also, we evaluated the impact of dataset size on data utility, using various random subsets
of the original dataset, containing 2, 000, 5, 000, 10, 000, and 15, 000 records. In Figure 8c,
we illustrate the number of original locations for variable dataset sizes. For larger datasets,
this number increases, as the support of single locations is higher. Consequently, the sup-
port of subtrajectories increases, and fewer locations are generalized. This leads to more
generalized locations, with lower average size, and lower distance, as can be seen in Fig-
ures 9a-9c.
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Figure 7: number of (a) average percent of distance in generalized locations, (b) original
(non generalized) locations published and (c) generalized locations published
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TRANSACTIONS ON DATA PRIVACY 7 (2014)



184 Giorgos Poulis, Spiros Skiadopoulos, Grigorios Loukides, Aris Gkoulalas-Divanis

7

9

12

14

2 5 10 15 18

N
u

m
b

er
o

f

|T |(·103)

generalized locations

(a)

6

8

10

12

14

2 5 10 15 18

N
u

m
b

er
o

f
|T |(·103)

locations per

generalized location

(avg)

(b)

5

6

7

8

2 5 10 15 18

P
er

ce
n

t
(%

)
o

f

|T |(·103)

trajectories

distance percent

(avg)

(c)

Figure 9: (a) number of generalized locations published, (b) average generalized location
size and (c) average percent of distances in generalized locations

SEQANON vs. NGRAMS. In this section, we report the count of the subtrajectories of dif-
ferent sizes that are created by the NGRAMS method. In addition, we report the ARE and
KL-divergence scores for the SEQANON and NGRAMS methods. Finally, we report the per-
centage of the frequent sequential patterns of the original dataset that are preserved in the
anonymous dataset and the percentage of frequent sequential patterns of the anonymous
dataset that are not frequent on the original dataset. The results of comparing NGRAMS to
SD-SEQANON and to U-SEQANON were quantitatively similar (omitted for brevity).

Fig. 10a reports the number of subtrajectories of different sizes that are contained in the
Oldenburg dataset, denoted with T , and the output of NGRAMS, denoted with T ′

SEQANON
.

As can be seen, the output of NGRAMS contains noisy versions of only a small percent-
age (0.29%) of short subtrajectories. Thus, the information of the subtrajectories of length
greater than 4, which correspond to 72.62% of the subtrajectories in the dataset, is lost. The
results of the same experiment on the Gowalla dataset, reported in Fig. 10b, are quantita-
tively similar. That is, NGRAMS created noisy versions of 0.11% of the subtrajectories with
3 or fewer locations, and the information of all longer subtrajectories, which correspond to
98.1% of the subtrajectories in the dataset, is lost. On the other hand, SEQANON employs
generalization, which preserves the information of all subtrajectories, although in a more
aggregate form.

Figure 11a reports the ARE scores for SEQANON and NGRAMS, as a function of k, for the
Oldenburg dataset and for 100 queries involving subtrajectories of sizes in [1, 2]. In this
experiment, we set m to 3, assuming that an attacker knows about 75% of the locations
visited by a user. As can be seen, the ARE scores for SEQANON are at least 4.45 and up
to 7.3 times lower (better) than those of NGRAMS. Furthermore, the ARE scores for our
method increase with k, which is expected due to the utility/privacy trade-off. On the
contrary, the ARE scores for NGRAMS remained the same, as this method does not use the
parameter k. Next, we studied the impact of m on ARE, by varying this parameter in [1, 4]
(recall that m = 4 implies that the attacker knows almost all of the locations, visited by a
user). Figure 11b reports the result for k = 5, on the Oldenburg dataset. The ARE scores for
our algorithm were at least 6.3 and up to 11.9 times better than those of NGRAMS. Also,
it can be seen that the ARE scores for SEQANON increase with m, as the algorithm has to
incur more generalization to protect from stronger attackers. The ARE scores for NGRAMS

are not affected by m, as this method does not use this parameter. We also studied the
impact of k and m on ARE, using the Gowalla dataset, and obtained similar results, which
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size # in T # in T ′
NGRAMS

1 100 73
2 6955 220
3 48268 222
4 124070 2
5 177054 −
6 158684 −
7 93479 −
8 36328 −
9 8989 −

≥ 10 1366 −

(a)

size # in T # in T ′
NGRAMS

1 662 427
2 107811 577
3 803093 6
4 1757607 −
5 2959148 −
6 4478016 −
7 6033559 −
8 7138181 −
9 7336036 −

≥ 10 17281056 −

(b)

Figure 10: Number of distinct subtrajectories of different sizes, for (a) the Oldenburg, and
(b) the Gowalla dataset.

are reported in Figures 11c and 11d.

The results with respect to KL-divergence, as a function of m, are shown in Figure 14.
Specifically, Figure 14a reports the result for the set S of all subtrajectories with size 1 (i.e.,
all locations) in the Oldenburg dataset, and for k = 5. As can be seen, the information loss
for SEQANON was significantly lower than that of NGRAMS, particularly for smaller val-
ues of m. Increasing m led to fewer, larger generalized locations. Thus, the KL-divergence
scores of SEQANON increase with m, while those of NGRAMS are not affected by m, for the
reason explained before. Figure 14b (respectively, Figure 14c) reports the KL-divergence
scores for 100 randomly selected locations (respectively, subtrajectories with size 2) in the
Gowalla dataset. As noted previously, we did not consider longer subtrajectories, as all but
6 of the subtrajectories in the output of NGRAMS have size at most 2. Again, SEQANON out-
performed NGRAMS by a large margin, which demonstrates that our method can preserve
the distribution of the support of subtrajectories better. Specifically, the KL-divergence
scores for our method were at least 20% and up to 4.3 times lower (better) than those for
NGRAMS. Similar results were obtained for larger k values (omitted for brevity).

Next, we present the results of experiments, in which we evaluated the ability of the algo-
rithms to support frequent sequential pattern mining. Specifically, we report the percentage
of the frequent sequential patterns of the original dataset that are preserved in the anony-
mous dataset and the percentage of frequent sequential patterns of the anonymous dataset
that are not frequent on the original dataset. In order to get a more accurate statistical dis-
tribution we used 2000 randomly projected anonymous datasets3. In our experiments, we
mined the Oldenburg and Gowalla dataset, using a support threshold of 0.83% and 0.14%,
respectively.

Figures 12a and 12b present the median and standard deviation of the percentage of fre-
quent sequential patterns that were preserved in the anonymous dataset, when SEQANON

was applied with a k in [2, 100] and NGRAMS with the default parameters, on Oldenburg
and Gowalla datasets respectively. The results for SEQANON are significantly better than
those of NGRAMS. Specifically, SEQANON reported at least 48% and up to 192% more fre-
quent patterns than NGRAMS. Note also that SEQANON performs better when k is smaller,
because it applies a lower amount of generalization.

3Creating more projected datasets allows estimating the dataset quality more accurately. However, the increase in the
accuracy of estimation was negligible, when we used more than 2000 projected datasets, in our experiments.
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Figure 11: ARE for queries involving 100 randomly selected subtrajectories (a) with size in
[1, 2], in the Oldenburg dataset (varying k), (b) with size in [1, 2], in the Oldenburg dataset
(varying m), (c) with size 1, in the Gowalla dataset (varying k), and (d) with size 2 in the
Gowalla dataset (varying k).

Figures 12c and 12d report the median and standard deviation of the percentage of fre-
quent sequential patterns of the anonymous dataset that are not frequent on the original
dataset, when SEQANON was applied with a k in [2, 100] and NGRAMS with the default
parameters, on Oldenburg and Gowalla datasets respectively. Again, the results for SE-
QANON are better than those of NGRAMS. In more detail, the percentage of patterns that
are not frequent in the original dataset but are frequent in the anonymized dataset was
up to 1.2 times lower (on average 45% lower) for SEQANON compared to NGRAMS. Note
that as k increases, the percentage of such patterns for SEQANON decreases, because fewer
patterns are frequent in the anonymized dataset.

Figures 13a and 13b report the percentage of frequent sequential patterns preserved in
anonymous dataset and the percentage of frequent sequential patterns of the anonymous
dataset that are not frequent on the original dataset. We set k = 5 and vary m in [1, 4] for
SEQANON, while NGRAMS was executed with the default parameters. Larger values of
m result in more generalization. Thus, SEQANON preserves at least 20% and up to 650%
more frequent patterns frequent than NGRAMS, while the percentage of patterns that are
incorrectly identified as frequent is lower by at least 50% and up to 500% compared to that
for NGRAMS. The corresponding results for Gowalla were qualitatively similar (omitted
for brevity).

In summary, our results show that the SEQANON algorithm permits more effective query
answering, more accurate pattern mining, and incurs lower information loss than NGRAMS.
Thus, it offers a different trade-off between utility and privacy, which is important in ap-
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Figure 12: Percentage of frequent sequential patterns preserved in anonymous dataset (me-
dian) for varying k on (a) Oldenburg dataset, (b) Gowalla dataset, and percentage of fre-
quent sequential patterns of the anonymous dataset that are not frequent on the original
(median) for varying k on (c) Oldenburg dataset and (d) Gowalla dataset.
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Figure 13: (a) Percentage of frequent sequential patterns preserved in anonymous dataset
(median) and (b) percentage of frequent sequential patterns of the anonymous dataset that
are not frequent on the original (median) on Oldenburg dataset for varying m.

plications that require preserving data truthfulness.

SD-SEQANON. In this section, we evaluate the data utility offered by SD-SEQANON, us-
ing statistics computed for the output of this algorithm. Figure 15a (respectively, 15b) re-
ports the average distance of all locations that are mapped to each generalized location,
as a function of k, for the Oldenburg (respectively, the Gowalla) dataset. Increasing k
leads SD-SEQANON to create more, larger generalized locations, which results in larger
average location distance. Note that the results for SD-SEQANON are slightly worse than
those of SEQANON and may also decrease as k gets larger. This is expected because SD-
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Figure 14: KL-divergence for the distribution of the support of (a) all locations in the Old-
enburg dataset, (b) 100 randomly selected locations in the Gowalla dataset, and (c) 100
randomly selected subtrajectories of size 2 in the Gowalla dataset.
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Figure 15: Average percent of distance in generalized locations for (a) Oldenburg and (b)
Gowalla dataset.
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Figure 16: Semantic similarity penalty P(T ′) for (a) Oldenburg and (b) Gowalla dataset.

SEQANON takes into account not only the distance but also the semantic similarity of lo-
cations, when performing generalization. Thus, as can be seen in Figures 16a and 16b,
the SD-SEQANON algorithm performs much better than SEQANON with respect to the se-
mantic similarity penalty (the scores for SD-SEQANON are at least 2.5 and up to 4.6 times
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better than those for SEQANON). This demonstrates that SD-SEQANON generalizes more
semantically close locations together.

Figure 17 presents the average size of generalized locations, the average percent of dis-
tance in generalized locations, and the semantic similarity penalty P , as a function of m.
In these experiments k was set to 50. As can be seen, increasing m leads the algorithms to
construct fewer, larger generalized locations, which are comprised of more distant and less
semantically close locations. As expected, SEQANON generalized together locations that
are closer in proximity (see Figure 17b) but more semantically distant (see Figure 17c).
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Figure 17: (a) average generalized location size, (b) average percent of distance in gener-
alized locations and (c) average percent of similarity in generalized locations for k = 50
(Gowalla dataset).

U-SEQANON. This section reports results for the U-SEQANON algorithm, which was con-
figured with three different utility constraint sets, namely U1, U2 and U3, and a suppression
threshold δ = 10. The utility constraints in each of these sets contain a certain number of
semantically close locations (i.e., sibling nodes in the location taxonomy), as shown in Fig-
ure 18. Note that U3 is more difficult to satisfy than U1, as the number of allowable ways to
generalize locations is smaller.

U1 U2 U3
|u1| = 50 |u1| = 25 |u1| = 20
|u2| = 50 |u2| = 25 |u2| = 14

|u3| = 25 |u3| = 16
|u4| = 25 |u4| = 14

|u5| = 18
|u6| = 18

Figure 18: The size of the utility constraints in each utility constraint set U1, U2, and U3.

Figure 19a reports the average size of generalized locations, for various values of k in
[2, 100]. Note that all configurations of U-SEQANON created smaller generalized loca-
tions than those constructed by SEQANON, and the smallest generalized locations were
created when U3 was used. This is because the presence of utility constraints that contain
a small number of locations reduces the number of available generalizations. For this rea-
son, all configurations of U-SEQANON generalized together more distant locations than
SEQANON, as can be seen in Figure 19b. Also, observe that the use of less restrictive utility
constraints (e.g., those in U1) leads U-SEQANON to generalize together locations that are
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close in proximity.
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Figure 19: (a) average generalized location size and (b) average percent of distance in gen-
eralized locations, for the Oldenburg dataset.

5.2 Efficiency

In this section, we evaluate the impact of the anonymization parameters k and m, the
dataset size, and the location size, on the efficiency of our approach.

SEQANON. To highlight the benefit of employing the apriori principle on efficiency, we cre-
ated a version of SEQANON, called SEQANON F, which does not use the apriori principle.
In this version, we removed the for loop from Step 2 of SEQANON and set i = m. In other
words, SEQANON F tries to deal directly with subtrajectories of size m. First, we studied
the impact of the anonymization parameter k on efficiency. As illustrated in Figure 20a, the
execution time of both algorithms increases with k. This is expected because there are more
subtrajectories with a lower support than k, when k is larger. However, SEQANON is signif-
icantly more efficient and scalable than SEQANON F. Specifically, the SEQANON algorithm
was at least 6.5 and up to 10.85 times more efficient than SEQANON F. Then, we studied the
impact of m on efficiency and report the results in Figure 20b. As can be seen, the use of the
apriori principle by SEQANON enables it to scale much better than SEQANON F, as m gets
larger. In addition, we studied the effect of dataset size on the execution time of SEQANON.
The results in Figure 20c demonstrate that the SEQANON outperforms SEQANON F, being
up to 20 times more efficient. We then studied the impact of m, dataset size, and number of
locations on the larger Gowalla dataset, and report the results in Figure 21. Due to the fact
that this dataset is more sparse than the Oldenburg dataset and contains a larger number
of distinct locations, SEQANON needed more time to anonymize it. Again, SEQANON was
more efficient than SEQANON F, which needed more than 12 hours to anonymize the entire
dataset. Of note, SEQANON is less efficient than NGRAMS, mainly because generalization
requires accessing all trajectories in the dataset more times.

SD-SEQANON and U-SEQANON. In this section, we evaluate the impact of k on the ef-
ficiency of SD-SEQANON and U-SEQANON. In this set of experiments, we set m = 2 and
configured U-SEQANON using the utility constraint sets U1, U2, and U3, and δ = 10. Fig-
ure 22a reports the runtime of SD-SEQANON, for varying k, and for the Oldenburg dataset.
As can be seen, the runtime of SD-SEQANON is similar to that of SEQANON. The small
differences between these algorithms are attributed to the fact that they use different simi-
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Figure 20: Runtime of SEQANON and SEQANON F for the Oldenburg dataset and (a) vary-
ing k, (b) varying m, and (c) varying dataset size.
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Figure 21: Runtime of SEQANON for the Gowalla dataset and (a) varying m, (b) varying
dataset size, and (c) varying number of locations.

larity measures. Last, we report the runtime of the U-SEQANON algorithm in Figure 22b.
As expected, the use of utility constraints incurs some overhead, but it does not affect the
scalability of the algorithm.
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Figure 22: Runtime for varying k and for (a) SEQANON and SD-SEQANON (Oldenburg
dataset), (b) SEQANON and U-SEQANON (Gowalla dataset).
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6 Conclusions

In this paper, we proposed a new approach to publishing trajectory data in a way that
prevents identity disclosure. Our approach makes realistic privacy assumptions, as it
adapts km-anonymity to trajectory data, and allows the production of truthful data that
preserve important data utility characteristics. To realize our approach, we developed three
anonymization algorithms that employ the apriori principle. These algorithms aim at pre-
serving different data characteristics, including location distance and semantic similarity,
as well as user-specified utility requirements. The efficiency and effectiveness of these al-
gorithms was demonstrated through extensive experiments.
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