
Supervised Meta-blocking

George Papadakis$, George Papastefanatos$, Georgia Koutrika^
^ HP Labs, USA koutrika@hp.com

$ Institute for the Management of Information Systems, Research Center “Athena”, Greece
{gpapadis,gpapas}@imis.athena-innovation.gr

ABSTRACT

Entity Resolution matches mentions of the same entity. Being an
expensive task for large data, its performance can be improved by
blocking, i.e., grouping similar entities and comparing only entities
in the same group. Blocking improves the run-time of Entity Res-
olution, but it still involves unnecessary comparisons that limit its
performance. Meta-blocking is the process of restructuring a block
collection in order to prune such comparisons. Existing unsuper-
vised meta-blocking methods use simple pruning rules, which of-
fer a rather coarse-grained filtering technique that can be conserva-
tive (i.e., keeping too many unnecessary comparisons) or aggres-
sive (i.e., pruning good comparisons). In this work, we introduce
supervised meta-blocking techniques that learn classification mod-
els for distinguishing promising comparisons. For this task, we
propose a small set of generic features that combine a low extrac-
tion cost with high discriminatory power. We show that supervised
meta-blocking can achieve high performance with small training
sets that can be manually created. We analytically compare our su-
pervised approaches with baseline and competitor methods over 10
large-scale datasets, both real and synthetic.

1. INTRODUCTION
Entity Resolution (ER) is the process of finding and linking dif-

ferent instances (profiles) of the same real-world entity [9]. It is an
inherently quadratic task, since, in principle, each entity profile has
to be compared with all others. For Entity Resolution to scale to
large datasets, blocking is used to group similar entities into blocks
so that profile comparisons are limited within each block. Blocking
methods may place each entity profile into only one block, forming
disjoint blocks, or into multiple blocks, creating redundancy [4].

Redundancy is typically used for reducing the likelihood of missed
matches – especially for noisy, highly heterogeneous data [9, 21]. In
particular, redundancy-positive blocking is based on the intuition
that the more blocks two entities share, the more likely they match [22].
To illustrate, consider the profiles in Figure 1(a): profiles p1 and p3

correspond to the same person and so do p2 and p4. As an ex-
ample of a redundancy-based blocking method, let us consider To-
ken Blocking [21], which creates one block for every distinct token

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this li-
cense, visit http://creativecommons.org/licenses/by-nc-nd/3.0/. Obtain per-
mission prior to any use beyond those covered by the license. Contact
copyright holder by emailing info@vldb.org. Articles from this volume
were invited to present their results at the 40th International Conference on
Very Large Data Bases, September 1st - 5th 2014, Hangzhou, China.
Proceedings of the VLDB Endowment, Vol. 7, No. 14
Copyright 2014 VLDB Endowment 2150-8097/14/10.

b1 (John)

p1 p3

b2 (Smith)

p1 p3

b3 (seller)

p3 p4 p5

b4 (Richard)

p2 p4

b5 (Brown)

p2 p4

b6 (car)

p3 p5
p4 p6

(b)

(a)

p1 FullName : John A. Smith

job : autoseller

p3 full name : John Smith

Work : car seller

p5 Full name : James Jordan

job : car seller

p2 name : Richard Brown

profession : vehicle vendor

p4 Richard Lloyd Brown

car seller

p6 name : Nick Papas

profession : car dealer

Figure 1: (a) A set of entity profiles, and (b) the redundancy-

positive block collection produced by Token Blocking.

that appears in at least two profiles. The resulting block collection
is shown in Figure 1(b). We observe that both pairs of matching
profiles can be detected, as they co-occur in at least one block.

However, redundancy brings about repeated comparisons between
the same entity profiles in different blocks. In the example of Fig-
ure 1(b), block b2 repeats the comparison contained in block b1,
while b5 repeats the comparison in b4. Hence, b2 and b5 contain one
redundant comparison each. Furthermore, there are several com-
parisons between non-matching entities, which we call superfluous

comparisons. Block b3 entails 3 superfluous comparisons between
the non-matching profiles p3, p4 and p5. In b6, all 3 comparisons in-
volving p6 are superfluous, while the rest are redundant, repeated in
b3. Overall, while blocking improves entity resolution times, it still
involves unnecessary comparisons that limit its performance: su-
perfluous ones between non-matching entities, and redundant ones,
which repeatedly compare the same entity profiles. In our example,
the total number of comparisons in the blocks of Figure 1(b) is 13
compared to 15 of the brute-force method. This number could be
further reduced – without affecting the recall of blocking-based ER
– by avoiding the redundant and the superfluous comparisons.

Meta-blocking is a method that takes as input a redundancy-
positive block collection and transforms it into a new block col-
lection that generates fewer comparisons, but keeps most of the de-
tected duplicates [22]. To achieve this, existing meta-blocking tech-
niques operate in two phases. First, they map the input block collec-
tion to a graph, called blocking graph; its nodes are the entity pro-
files, while its edges connect two nodes if the corresponding pro-
files co-occur in at least one block. By definition, the graph elimi-
nates all redundant comparisons: each pair of co-occurring profiles
is connected with a single edge, which means that they will be com-
pared only once. In the second phase, meta-blocking techniques
use the graph to prune superfluous comparisons. For this task, each
edge is assigned a weight leveraging the fundamental property of
redundancy-positive block collections that the similarity of two en-
tity profiles is proportional to their co-occurrences in blocks. High

1929

Figure 2: (a) A blocking graph mapping the blocks in Figure 1,

(b) possible pruned blocking graph, (c) the derived blocks.

weights are given to the matching edges (i.e., edges likely connect-
ing duplicates) and lower weights to the non-matching ones.

As an example, the blocks in Figure 1(b) can be mapped to the
blocking graph depicted in Figure 2(a). The edge weights are typ-
ically defined in the interval [0,1] through normalization, but for
simplicity, we consider that each edge weight in this example is
equal to the absolute number of blocks shared by its adjacent enti-
ties. Different pruning algorithms can be used to remove edges with
low weights and hence discard part of the superfluous comparisons.
For example, one such strategy, called Weight Edge Pruning, dis-
cards all edges having a weight lower than the average edge weight
across the entire graph [22]. For the blocking graph of Figure 2(a),
the average edge weight is 1.625. The resulting pruned blocking
graph is shown in Figure 2(b). The output block collection is gen-
erated from the pruned blocking graph by placing the adjacent en-
tities of every edge into a separate block as shown in Figure 2(c).
As the result of meta-blocking, the new block collection contains
just 5 comparisons and does not miss any matches.

Existing meta-blocking methods use simple pruning rules such
as “if weight<threshold then discard edge” for removing com-
parisons. Consequently, they face two challenges: assigning rep-
resentative weights to edges and choosing a good threshold for re-
moving edges. We argue that determining if an edge is a good
candidate for removal is in fact a multi-criteria decision problem.
Combining these criteria into a single scalar value inevitably misses
valuable information. Furthermore, pruning based on a single thresh-
old on the weights is a rather coarse-grained filtering technique that
can be conservative (i.e., keeping many superfluous comparisons)
or aggressive (i.e., pruning good comparisons). In our example in
Figure 2(c), the final block collection retains 3 superfluous com-
parisons in b′3, b′4 and b′

5
; increasing the threshold so as to further

reduce these comparisons would prune the matching comparisons,
as well, because they have the same weight as the superfluous ones.

In this paper, we argue that accurate identification of non-matching
edges requires learning composite pruning models from the data.
We formalize meta-blocking as a binary classification task, where
the goal is to identify matching and non-matching edges. We pro-
pose supervised meta-blocking techniques that compose generic,
schema-agnostic information about the co-occurring entities into
comprehensive feature vectors, instead of summarizing it into uni-
lateral weights, as unsupervised methods do.

For example, the blocks of Figure 1(b) can be mapped to the
blocking graph of Figure 3(a), where each edge is associated with
a feature vector [a1, a2]. The feature a1 is the number of common
blocks shared by the adjacent entities, and a2 is the total number
of comparisons contained in these blocks. The resulting feature
vectors are fed into a classification algorithm that learns compos-
ite rules (or models) to effectively distinguish matching and non-
matching edges. In our example, a composite rule could look like
“if a1≤2 & a2>5 then discard edge”, capturing the intuition that
the more blocks two profiles share and the smaller these blocks
are, the more likely the profiles match. Figure 3(b) shows the graph

Figure 3: (a) A blocking graph mapping the blocks in Figure 1,

(b) a possible pruned blocking graph, (c) the derived blocks.

generated by this rule, and Figure 3(c) depicts the resulting blocks;
compared to the blocks in Figure 2(c), they have no superfluous
comparisons, thus achieving higher efficiency for the same recall.

We identify and examine three aspects that determine the per-
formance of supervised meta-blocking techniques: (a) the set of
features annotating the edges of the blocking graph, (b) the train-
ing data, and (c) the classification algorithm and its configuration.

Using more features may help make the pruning of the non-
matching edges more accurate. However, the computational cost
for meta-blocking gets higher. Moreover, the classification features
should be generic enough to apply to any redundancy-positive block
collection. With these issues in mind, we propose a small set of

generic features that combine a low extraction cost with high dis-

criminatory power and we evaluate their performance using real
data. Furthermore, to facilitate the understanding of the space of
possible features, we divide it according to five dimensions.

Selecting training data, we face two issues. The first one is a class
imbalance problem: the vast majority of the edges in a blocking
graph are non-matching. In order to build representative training
sets, we select the most suitable technique for our task among es-
tablished solutions. The second issue regards the training set size. In
general, large training sets increase the accuracy and robustness of
the learned model. However, they yield complex, inefficient classi-
fiers that require time-consuming training. In addition, the manual
creation of large training sets in the absence of ground-truth is a
painful and challenging process. We show that we can achieve high

performance with small training sets that can be manually created

making supervised meta-blocking a practical solution.
We consider a representative sample of state-of-the-art classi-

fiers: Naı̈ve Bayes, Bayesian Networks, Decision Trees and Sup-
port Vector Machines. We show that our supervised techniques are

robust with respect to different classifiers and their configurations

by examining their performance over several large-scale datasets.
Finally, we evaluate the performance of supervised meta-blocking

by comparing to (a) the brute-force Entity Resolution, which exe-
cutes all comparisons included in the input set of blocks, (b) the
top-performing unsupervised meta-blocking methods [22], and (c)
the iterative blocking [25]. Note that the iterative blocking consti-
tutes the only other method in the literature that, similarly to meta-
blocking, receives an existing block collection and aims at process-
ing it in a way that improves its original performance: it propa-
gates every detected pair of duplicates to all associated blocks in
order to identify additional matches and to save unnecessary com-
parisons. We perform a scalability analysis, which involves 7 large-
scale synthetic datasets of various sizes, ranging from 10 thousand
to 2 million entities. Our experiments demonstrate that our super-

vised techniques exhibit significantly better time efficiency than the

best alternatives, while achieving equivalent recall.
In summary, this paper makes the following contributions:

• We formalize supervised meta-blocking as a classification prob-
lem and we demonstrate how it can be used to significantly enhance
the quality of a redundancy-positive block collection.

1930

•We map the space of possible classification features along five di-
mensions and we select a small set of generic features that combine
a low extraction cost with high discriminatory power. We evaluate
their performance using real data.
• We show that small training sets, which can be manually created,
can achieve high performance, making supervised meta-blocking a
practical solution for Entity Resolution.
• We show that our supervised techniques are robust with respect
to different classifiers and their configurations by examining their
performance over several large-scale datasets.
• We perform a thorough scalability analysis, comparing super-
vised meta-blocking against the best competitor approaches.

The rest of the paper is structured as follows. Section 2 presents
related work, Section 3 provides a brief overview of unsupervised
meta-blocking, Section 4 introduces supervised meta-blocking, and
Section 5 describes the real-world datasets and the metrics used in
the evaluation. Sections 6 and 7 cover feature and training set selec-
tion, while in Section 8, we fine-tune the classification algorithms.
Section 9 experimentally compares supervised meta-blocking with
competitor techniques and finally, Section 10 concludes the paper.

2. RELATED WORK
There is a large body of work on Entity Resolution [9, 19]. Block-

ing techniques group similar entities into blocks so that profile
comparisons are limited within each block. These methods can be
distinguished into schema-based and schema-agnostic ones.

Schema-based methods (e.g., Sorted Neighborhood [12], Suf-
fix Array [7], HARRA [14], Canopy Clustering [17], and q-grams
blocking [10]) group entities based on knowledge about the se-
mantics of their attributes. These approaches are only suitable for
homogeneous information spaces, like databases, where the qual-
ity of the schema is known a-priori. In contrast, schema-agnostic
blocking techniques cluster entities into blocks without requiring
any knowledge about the underlying schema(ta). For instance, in
Token Blocking [21], every token that is shared by at least two en-
tities creates an individual block. Total Description [20] improves
on Token Blocking by considering the most discriminative parts of
entity URIs instead of all their tokens. In the same category fall
Attribute Clustering [21] and TYPiMatch [16]. These techniques
are preferred in the context of heterogeneous information spaces,
which involve large volumes of noisy, semi-structured data that are
loosely bound to various schemata [11].

Both schema-based and schema-agnostic blocking methods usu-
ally produce redundancy-positive block collections [22]. Meta-
blocking operates on top of them, improving the balance between
precision and recall by restructuring the block collection [22].

All the aforementioned approaches rely on an unsupervised func-
tionality. Supervised learning has been applied to blocking-based
ER with the purpose of fine-tuning the configuration of schema-
based blocking methods: in [1, 18], the authors propose methods
for learning combinations of attribute names and similarity met-
rics that are suitable for extracting and comparing blocking keys.
Supervised learning has also been applied to generic ER in order
to classify pairs of entities into matching and non-matching, by
adapting similarity metrics and the corresponding thresholds to a
particular domain [2, 6, 8, 24]. Other works introduce methods for
facilitating the construction of the training set [23], while in [3], the
authors propose supervised techniques for combining the decisions
of multiple ER systems into an ensemble of higher performance.
No prior work has applied supervised learning techniques to the
task of meta-blocking.

3. PRELIMINARIES
In this section, we introduce the main concepts and notation used

in the paper and we provide a brief overview of existing unsuper-
vised meta-blocking techniques. Table 1 summarizes notation.

An entity profile p is a uniquely identified collection of informa-
tion described in terms of name-value pairs. An entity collection E

is a set of entity profiles. Two profiles pi, p j ∈ E are duplicates or
matches (pi≡p j) if they represent the same real-world object.

Entity Resolution comes in two forms. Clean-Clean ER receives
as input two duplicate-free but overlapping entity collections and
returns as output all pairs of duplicate profiles they contain. Dirty

ER receives as input a single entity collection that contains dupli-
cates in itself and returns the set of matching entity profiles. Block-
ing can be used to scale both forms of ER to large entity collections
by clustering similar profiles into blocks so that comparisons are re-
stricted among the entity profiles within each block bi.

The quality of a block collection B can be measured in terms
of two competing criteria, namely precision and recall, which are
estimated through the following established measures [1, 7, 18, 21]:

(i) Pairs Quality (PQ) assesses precision, i.e., the portion of non-
redundant comparisons between matching entities. It is defined as:
PQ(B) = |D(B)|/||B||, where D(B) represents the set of detectable
matches, i.e. the pairs of duplicate profiles that co-occur in at least
one block, and |D(B)| stands for its size. ||B|| is called aggregate

cardinality and denotes the total number of comparisons contained
in B: ||B|| =

∑
bi∈B ||bi||, where ||bi|| is the cardinality of bi (i.e.,

the number of pair-wise comparisons it entails). PQ takes values
in [0, 1], with higher values indicating higher precision for B, i.e.,
fewer superfluous and redundant comparisons.

(ii) Pair Completeness (PC) assesses recall, i.e., the portion of
duplicates that share at least one block and, thus, can be detected.
It is formally defined as: PC(B) = |D(B)|/|D(E)|, where D(E) rep-
resents the set of duplicates contained in the input entity collection
E, and |D(E)| stands for its size. PC values are in the interval [0, 1],
with higher values indicating higher recall for B.

Note that we follow a known best practice [1, 4, 18, 25], ex-
amining the quality of a block collection independently of profile
matching techniques. In particular, we assume an oracle exists that
correctly decides whether two entity profiles match or not. Thus,
D(B) is equivalent to the set of matching comparisons in B. The
rationale of this approach is that a block collection with high pre-
cision and high recall guarantees that the quality of a complete ER
solution is as good as that of the selected entity matching algorithm.

There is a clear trade-off between the precision and the recall
of B: as more comparisons are executed (i.e., higher ||B||), its re-
call increases (i.e., higher |D(B)|), but its precision decreases, and
vice versa. The redundancy-positive block collections achieve high
PC at the cost of lower PQ, as they place every entity profile into
multiple blocks. Meta-blocking aims at improving this balance by
restructuring a redundancy-positive block collection B into a new
one B′ of higher precision but equivalent recall. More formally:

Problem 1 (Meta-blocking). Given a redundancy-positive block

collection B, the goal of meta-blocking is to restructure B into a

new collection B′ that achieves significantly higher precision, while

maintaining the original recall (PQ(B′)≫PQ(B), PC(B′)≈PC(B)).

Existing meta-blocking techniques rely their functionality on the
weighted blocking graph (GB), a data structure that models the
block assignments in the block collection B. As illustrated in Fig-
ure 2(a), GB is formed by creating a node for every entity profile
in B and an undirected edge for every non-redundant pair of co-
occurring profiles. Formally, this structure is defined as follows:

1931

pi an entity profile
B, |B|, ||B|| a block collection, its size (# of blocks), its cardinality (# of comparisons)
bi, |bi |, ||bi || a block, its size (# of entities), its cardinality (# of comparisons)
GB, VB, EB the generalized blocking graph of B, its nodes and its edges
Gvi

, Vvi
, Evi

the neighborhood of node vi, its nodes and its edges.
Bi⊆B, |Bi | the set of blocks containing pi and its size (# of blocks)
Bi, j⊆B the set of blocks shared by the pi and p j (Bi, j=Bi∩B j)
|Bi, j | the size of Bi, j, i.e., # of comparisons between pi and p j

D(B),|D(B)| the set of detected duplicates in B and its size
pi.comp() the set of comparisons entailing pi (including the redundant ones)

Table 1: Summary of main notation.

Definition 1 (Weighted Blocking Graph). Given a block col-

lection B, its weighted blocking graph is a graphGB = {VB,EB,WB},

whereVB is the set of its nodes such that ∀pi∈B ∃ni∈VB, EB⊆VB×VB

is the set of undirected edges between all pairs of co-occurring en-

tity profiles in B, and WB is the set of edge weights that take values

in the interval [0, 1] such that ∀ei, j∈EB ∃wi, j∈WB.

As explained in Section 1, the blocking graph enhances preci-
sion by eliminating all redundant comparisons without any impact
on recall, since it contains no parallel edges. Then, meta-blocking
applies a pruning algorithm in order to discard part of the super-
fluous comparisons at a small cost in recall. These algorithms are
distinguished into four categories, based on their functionality and
the type of threshold they incorporate [22]:
• Cardinality Edge Pruning (CEP) sorts all edges in descending
order of their weight and retains those in the top K ranking posi-
tions. Therefore, K constitutes a global cardinality threshold that is
applied to the entire graph.
• Cardinality Node Pruning (CNP) does the same, but retains the
top k edges for each node. k is also a global cardinality threshold,
but is applied to the neighborhood of each node.
• Weight Edge Pruning (WEP) discards all edges of the blocking
graph that have a weight lower than a global weight threshold (the
average edge weight in our case).
• Weight Node Pruning (WNP) applies a local weight threshold
to the neighborhood of each node, discarding those adjacent edges
with a weight lower than it.

4. SUPERVISED META-BLOCKING
We consider that a comparison between profiles pi and p j can be

captured by a feature vector fi, j=[a1(pi, p j), a2(pi, p j), . . . , an(pi, p j)],
where {a1, a2, . . . , an} is a set of features, and ak(pi, p j){k = 1...n}
is the value of feature ak for this pair. For instance, the number
of common blocks the adjacent profiles share could be such a fea-
ture. By replacing edge weights with feature vectors, we extend the
weighted blocking graph GB into the generalized blocking graph

GB, formally defined as follows:

Definition 2 (Generalized Blocking Graph). Given a block col-

lection B, its generalized blocking graph is a graph GB = {VB, EB, FB},

where VB is the set of nodes such that ∀pi∈B ∃ni∈VB, EB⊆VB×VB is

the set of undirected edges between all pairs of co-occurring entity

profiles in B, and FB is the set of feature vectors that are assigned

to every edge such that ∀ei, j∈EB ∃ fi, j∈FB.

The elements of FB are fed to a classifier that labels all edges
of the blocking graph as likely match or unlikely match, if they
are highly likely to connect two matching or non-matching entity
profiles, respectively. We measure the performance of this process
using the following notation:
• T P(EB) denotes the true positive edges of EB, which connect
matching profiles and are correctly classified as likely match.
• FP(EB) are the false positive edges of EB, which are adjacent to
non-matching profiles, but are classified as likely match.

• T N(EB) are the true negative edges of EB, which connect non-
matching profiles and are correctly categorized as unlikely match.
• FN(EB) are the false negative edges of EB, which connect match-
ing profiles, but are categorized as unlikely match.

After classifying all edges, supervised meta-blocking derives the
pruned blocking graph Gcl

B
by discarding those edges labeled as

unlikely match (i.e., T N(EB) and FN(EB)). The edges retained in
Gcl

B
belong to the sets T P(EB) and FP(EB): Ecl

B
= T P(EB)∪FP(EB)

= EB−(T N(EB)∪FN(EB)). The output of supervised meta-blocking
is the block collection Bcl that is derived from Gcl

B
by creating a

block of minimum size for every retained edge ei, j∈Ecl
B

. Thus, its
PC and PQ can be expressed in terms of the edges in Ecl

B
as follows:

PC(Bcl) =
|D(Bcl)|

|D(E)|
=
|T P(EB)|

|D(E)|
=
|D(B)| − |FN(EB)|

|D(E)|
,

PQ(Bcl) =
|D(Bcl)|

||Bcl ||
=

|T P(EB)|

|T P(EB)| + |FP(EB)|
.

We now formally define the task of supervised meta-blocking as:

Problem 2 (SupervisedMeta-blocking). Given a redundancy-

positive block collection B, its generalized blocking graph GB =

{VB, EB, FB}, the classes C={likely match, unlikely match}, and a

training set Etr = {<ei, j,ck>:ei, j∈EB∧ck∈C}, the goal of supervised

meta-blocking is to learn a classification model that minimizes the

cardinality of the sets FN(EB) and FP(EB) so that the block collec-

tion Bcl resulting from the pruned graph Gcl
B

achieves higher preci-

sion than B (i.e., PQ(Bcl)≫PQ(B)), while maintaining the original

recall (i.e., PC(Bcl)≈PC(B)).

4.1 Classification Algorithms
In principle, any algorithm for supervised learning can be used

for edge classification in supervised meta-blocking. However, it
should have a limited overhead for correctly categorizing most edges
of the blocking graph. Further, it should be compatible with the
pruning algorithm at hand. Supervised meta-blocking learns global
pruning models that apply to the entire blocking graph and not to a
specific neighborhood. Thus, it can be applied to CEP, CNP and
WEP, substituting their thresholds with a classification model. In
the first two cases, though, the output of the classification model
should sort the edges of the blocking graph in ascending order of
the likelihood that they belong to the class likely match. Given that
most classifiers simply produce a category label for every instance,
this is only possible with probabilistic classifiers: they associate ev-
ery instance with the probability that it belongs to every class, thus
enabling their sorting. Note, though, that supervised meta-blocking
is not compatible with WNP: applying a global threshold or clas-
sification model to WNP renders it equivalent to WEP.

Based on the above, we have selected four state-of-the-art ap-
proaches that are commonly used in classification tasks [26]: (i)

Naı̈ve Bayes (NB), (ii) Bayesian Networks (BN), (iii) C4.5 deci-
sion trees, and (iv) Support Vector Machines (SVM). For their im-
plementation, we used the open-source library WEKA, version 3.6.
Unless stated otherwise, we employ their default configuration, as
provided by WEKA.

These approaches encompass two probabilistic classification al-
gorithms that are compatible with CEP and CNP, namely Naı̈ve
Bayes and Bayesian Networks. In addition, they involve func-
tionalities of diverse sophistication. On the one extreme, SVM
involves complex statistical learning, while on the other extreme,
Naı̈ve Bayes relies on simple probabilistic learning. The latter ac-
tually operates as a benchmark for deciding whether the additional
computational cost of the advanced classifiers pays off: compara-
ble performance across all algorithms provides strong indication
for the robustness of our classification features.

1932

To solve the supervised meta-blocking problem, we need to de-
termine the features to annotate the edges of the blocking graph
(Section 6) and the appropriate training set, both in terms of size
and composition (Section 7). In Section 5, we introduce the datasets
and metrics to be used for the evaluation of the proposed solution.

5. DATASETS & METRICS
Datasets. We consider both Clean-Clean and Dirty ER and we

employ the real-world datasets used in the earlier meta-blocking
work [22]. Table 2 summarizes the characteristics of the entity
collections and their blocks for each dataset.

Dmovies is a collection of 50,000 entities shared among the in-
dividually clean sets of IMDB and DBPedia movies. The ground
truth for this dataset stems from the “imdbid” attribute in the pro-
files of the DBPedia movies. Its blocks were created using Token
Blocking (cf. Section 2) in conjunction with Block Purging, which
discards blocks containing more comparisons than a dynamically
determined threshold [21]. The resulting block collection exhibits
nearly perfect recall at the cost of 27 million comparisons. Out
of them, 22 million comparisons are non-redundant, forming the
edges of the blocking graph.

Our second Clean-Clean ER dataset, Din f oboxes, consists of two
different versions of the DBPedia Infobox dataset1. They contain
all name-value pairs of the infoboxes in the articles of Wikipedia’s
English version, extracted at October 2007 for DBPedia1 and Oc-
tober 2009 for DBPedia2. The large time period that intervenes
between the two collections renders their resolution challenging,
since they share only 25% of all name-value pairs among the com-
mon entities [21]. As matching entities, we consider those with the
same URL. For the creation of blocks, we applied Token Blocking
and Block Purging. The resulting block collection entails 40 billion
comparisons; 34 billion of them are non-redundant.

Finally, our Dirty ER dataset DBTC09 comprises more than 250,000
entities from the Billion Triple Challenge 2009 (BTC09) data col-
lection2. Its ground-truth consists of 10,653 pairs that were identi-
fied through their identical value for at least one inverse functional
property. Its blocks correspond to a subset of those derived by ap-
plying the Total Description approach [20] (cf. Section 2) to the
entire BTC09 data collection (see [22] for more details on how we
selected this subset). They achieve very high PC at the cost of 130
million comparisons, out of which 78 million are non-redundant.

Metrics. To assess the impact of supervised meta-blocking on
blocking effectiveness, we consider the relative reduction in PC,
formally defined as: ∆PC =

PC(Bcl)−PC(B)

PC(B)
· 100%, where PC(B)

and PC(Bcl) denote the recall of the original and the restructured
block collection, respectively. Negative values indicate that meta-
blocking reduces PC, while positive ones indicate higher recall.

To assess the impact of supervised meta-blocking on blocking

efficiency, we use the following metrics:
• Classification time CT is the average time (in milliseconds) re-
quired by the learned model to categorize an individual edge of the
blocking graph – excluding the time to build its feature vector.
• Overhead time OT is the total time required by meta-blocking to
process the input blocks, i.e., to train the model, build the feature
vectors of all edges, classify them and produce the new blocks.
• Resolution time RT is the sum of OT and the time required to ex-
ecute all comparisons that are classified as likely match using an
entity matching technique. As such, we employ the Jaccard simi-
larity of all tokens in the values of two entity profiles – regardless
of the associated attribute names.

1http://wiki.dbpedia.org/Datasets
2http://km.aifb.kit.edu/projects/btc-2009

Dmovies Dinfoboxes DBTC09DBP IMDB DBP1 DBP2

Entities 27,615 23,182 1,19·106 2,16·106 253,353

Name-Value Pairs 186,013 816,012 1.75·107 3.67·107 1,60·106

Existing Matches 22,405 892,586 10,653

Blocks 40,430 1.21·106 106,462
PC 99.39% 99.89% 96.94%

Comparisons in Blocks 2.67·107 3.98·1010 1.31·108

Brute-force RT 26 min ∼320 hours 64 min

Edges 2.26·107 3.41·1010 7.77·107

Nodes 5.06·104 3.33·106 2.53·105

Table 2: Overview of the real-world datasets.

• CMP denotes the absolute number of comparisons contained in
the restructured block collection (i.e., ||Bcl||).

For these metrics, the lower their value is, the higher is the effi-
ciency of meta-blocking. Note that OT and RT do not consider the
time to randomly select the training set, due to its negligible com-
putational cost (see Section 7). We also estimate efficiency using
PQ, with higher values indicating more efficient meta-blocking.

6. FEATURES FOR META-BLOCKING
Features for supervised meta-blocking describe the edges of the

generalized blocking graph and should pertain to the corresponding
comparisons or to the adjacent entities. These features should ad-
here to the following principles: (i) they should be generic, so that
they are not tailored to a specific application; (ii) they should be
effective, so that they yield high classification accuracy distinguish-
ing between likely and unlikely matches; (iii) they should be effi-

cient, involving low extraction cost and overhead, so that the clas-
sification time is significantly lower than the comparison time of its
adjacent entities, and (iv) they should be minimal, in the sense that
incorporating additional features has marginal benefit on the per-
formance of meta-blocking. Similar principles were defined in [3]
for classification tasks related to Entity Resolution (see Section 2).

Feature Categorization. To help understand candidate features
for supervised meta-blocking and their appropriateness, we divide
their space along five dimensions: schema-awareness, source of
evidence, target, complexity and scope (see Figure 4).

Schema awareness. Classification features can be divided into
schema-agnostic and schema-based ones.

Schema-agnostic features rely on the structural information of
the blocking graph and the characteristics of the blocks.

Schema-based features rely on the quality and the semantics of
the attribute names that describe the input entity profiles. Thus,
they exclusively consider blocks and parts of the blocking graph
that are associated with specific attributes.

Source of evidence. Given a block collection B, there are two
main sources for extracting classification features: the blocks con-
tained in B and the blocking graph GB. Block-based features ex-
clusively consider evidence of the former type, while graph-based

ones rely on topological information about the blocking graph. Iter-

ative features are graph-based features associated with a node that
depend on the scores assigned to its neighboring nodes. Similarly
to link analysis techniques, such as PageRank, these features may
be computed by assigning a prior value to every node (or edge) and
iteratively adjusting it, processing the entire blocking graph accord-
ing to a mathematical formula until convergence.

Target. Depending on the part of the graph they annotate, classi-
fication features are divided into edge-specific, which pertain to in-
dividual edges and node-specific, which pertain to individual nodes.

Complexity. Classification features can be categorized into raw

and derived ones. The raw attributes encompass atomic informa-
tion that is explicitly available in the input block collection or its

1933

schema

awareness

source of

evidence
complexitytarget scope

schema

based

schema

agnostic

block

based

graph

based

edge

specific

node

specific

raw

derived

local

global

iterative
hybridhybrid hybrid hybrid

Figure 4: Categorization of classification features.

blocking graph; on the other hand, the derived features combine
multiple features into a single, composite feature.

Scope. Classification features are local when they consider infor-
mation that is directly related to the annotated item (i.e., the edge
or its adjacent nodes). Global features consider information from
the entire blocking graph.

Most criteria (with the exception of complexity) define two com-
plementary categories. Thus, features from both categories can be
combined into hybrid ones, which may exhibit higher performance.

6.1 Candidate Features
We introduce our candidate features and explain their appropri-

ateness for our meta-blocking problem (notation is in Table 1).
Common Blocks. A schema-agnostic, block-based feature is

Common Blocks, i.e., the number of blocks shared by two profiles:

Common Blocks(ei, j) = |Bi, j |.

This feature captures the inherent trait of redundancy-positive block
collections that the more blocks two entity profiles share, the more
likely they are to match.

Based on Common Blocks, we could define schema-based fea-
tures that take into account the subset of common blocks stemming
from the values of specific attributes (e.g., Common Blockstitle for
the attribute “Title”). However, such schema-based features are
application-specific and have limited generality. In addition, they
are crafted for homogeneous information spaces, like databases,
and cannot handle heterogeneous ones, characterized by very di-
verse schemata (e.g., Web of Data) and constituting the most com-
mon source of redundancy-positive blocking [22]. Therefore, we
focus hereafter on schema-agnostic classification features, which
are completely decoupled from the nature and the semantics of the
attributes describing the input entity collections.

Entity Blocks. Another block-based feature is Entity Blocks,
which is inversely proportional to the number of blocks containing
a specific entity/node:

Entity Blocks(vi) = log
|B|

|Bi |
.

This feature is inspired from the inverse document frequency (IDF)
that is commonly used in Information Retrieval (IR). The rationale
behind it is that the higher its value is (i.e., lower |Bi|), the more
likely pi is to match with one of its co-occurring entity profiles. In
contrast, a profile that is contained in an excessively high number
of blocks is highly likely to contain noise. For instance, it could
be the result of falsely merging several profiles that correspond to
different real-world objects.

Node Degree. This is a graph-based feature and it is equal to the
degree of node vi ∈ VB:

Node Degree(vi) = |Vvi
|.

In essence, Node Degree is equivalent to the number of non-redundant
comparisons involving the entity pi that corresponds to the node vi.
The intuition here is that the lower its degree is, the more likely pi

is to match with one of its co-occurring entity profiles.
Iterative Degree. This is an iterative, graph-based feature that

is based on the following premise: for every node vi, the lower the
degrees of its neighboring nodes are, the higher is the likelihood

that pi is matching with one of them and, thus, the higher the score
of vi should be. It is similar to Node Degree, as it initially associates
every node with a prior score equal to the portion of non-redundant
comparisons involving it (i.e., |Vvi

|/|EB|). They differ though in that
the Iterative Degree gradually modifies the score of a node vi,
ID(vi), according to the following formula:

ID(vi) = ID0(vi) +
∑

vk∈Vvi

ID(vk)

|Vvk
|
,

where ID0(vi) is the prior score assigned to vi and vk ∈ Vvi
are the

nodes connected with vi on the blocking graph. This formula is
similar to the one defining PageRank with priors, where the damp-
ing factor d, which determines the behavior of the random surfer,
is set equal to 0. It can be calculated using a simple iterative al-
gorithm; after converging, nodes connected with many nodes of
high degree receive the lowest scores, while the highest scores are
assigned to nodes connected with few nodes of low degree.

The extraction of such iterative, graph-based features is compu-
tationally expensive and it does not scale well to blocking graphs
with millions of nodes and billions of edges. Nevertheless, we in-
clude Iterative Degree in our approach and we investigate whether
its low efficiency is counterbalanced by high discriminatory power.

Transitive Degree. A possible surrogate of higher efficiency is
the Transitive Degree feature. It lies in the middle of Node Degree
and Iterative Degree, considering the aggregate degrees of the
nodes that lie within the neighborhood of vi as follows:

Transitive Degree(vi) =
∑

vk∈Vvi

|Vvk
|.

Common Neighbors. This graph-based feature amounts to the
portion of adjacent entity profiles shared by a pair of co-occurring
profiles. More formally, it is defined as follows:

Common Neighbors(ei, j) =
|Vvi

∩ Vv j
|

|Vvi
∪ Vv j

|
.

High values indicate that pi and p j co-occur with the same entities,
either in their common blocks or in blocks they do not share. In the
latter case, the common neighbors actually help deal with patterns
missed due to noise in entity profiles. For example, consider the en-
tity profiles p1={<name,John>, <surname,S mith>}, p2={<name,Jon> ,

<surname, S mit>} and p3={<name, John>,<surname, S mit>}, where
(p1≡p2).p3; Token Blocking [21] (cf. Section 2) yields two blocks
bJohn={p1, p3} and bS mit={p2, p3}, with p1 and p2 co-occurring in
none of them. Nevertheless, Common Neighbors provides strong ev-
idence for their match.

Jaccard Similarity. This feature captures the portion of all com-
parisons (including the redundant ones) that involve a specific pair
of entity profiles:

Jaccard Sim(ei, j) =
|pi.comp() ∩ p j.comp()|

|pi.comp() ∪ p j.comp()|

=
|Bi, j |

|pi.comp()| + |p j.comp()| − |Bi, j |
.

Higher values of this ratio indicate a stronger pattern of co-occurrence
for pi and p j and, hence, the more likely pi and p j are to match.

Note that on the target dimension, Entity Blocks, Node Degree,
Iterative Degree and Transitive Degree are node-specific, while
Common Blocks, Common Neighbors and Jaccard Sim are edge-specific
features. Although the distinction between edge- and node-specific
features seems trivial, there are two major qualitative differences
between them. First, a feature vector has to include two values
for every node-specific feature – one for each of the adjacent en-
tities – thus broadening the search space by two dimensions. In
contrast, edge-specific attributes are computed only once per fea-
ture vector, adding a single dimension to the search space. Second,

1934

source of evidence target complexity scope

block

based

graph

based
iterative

edge

specific

node

specific
hybrid raw derived local global hybrid

CF_IBF

Jaccard_Sim

RACCB

Node_Degree

Iterative_Degree

Transitive_Degree

Figure 5: Categorization of the features of our approach.

edge-specific features are expected to exhibit higher discriminatory
power than the node-specific ones, because every value of the latter
participates in as many feature vectors as the degree of the corre-
sponding node; in contrast, every value of the edge-specific features
pertains to a single feature vector.

(Reciprocal) Aggregate Cardinality of Common Blocks. From
the aforementioned features, only Common Blocks and Node Degree
are raw. In general, there is no rule-of-thumb for a-priori determin-
ing which form of features achieves the best performance in prac-
tice. Even different forms of derived features may lead to signifi-
cant differences in classification accuracy. As an example, consider
two edge-specific features that use the same information, but in dif-
ferent forms: the Aggregate Cardinality of Common Blocks (ACCB)
and the Reciprocal Aggregate Cardinality of Common Blocks (RACCB)
attributes. The former sums the cardinalities of the blocks shared
by the adjacent entities (raw feature): ACCB(ei, j) =

∑
bk∈Bi, j

||bk ||.
The latter sums the inverse of the cardinalities of common blocks
(derived feature):

RACCB(ei, j) =
∑

bk∈Bi, j

1

||bk ||
.

Both features rely on the premise that the smaller the blocks two
entities co-occur in, the more likely they are to be matching. Hence,
the lower the value of ACCB is, the more likely the co-occurring en-
tities match, and vice versa for RACCB. Preliminary experiments,
though, demonstrated that ACCB achieves significantly lower classi-
fication accuracy than RACCB, due to its low discriminativeness: it
assigns identical or similar values to pairs of co-occurring entities
that share blocks of totally different cardinalities. For instance, con-
sider two pairs of entities: the first co-occurs in 3 blocks containing
1,2 and 4 comparisons, while the second shares 2 blocks with 2 and
5 comparisons; ACCB takes the same value for both edges (7), while
RACCB amounts to 1.75 and 0.70 for the first and the second pair,
respectively, favoring the entities that are more likely to match.

Co-occurrence Frequency-Inverse Block Frequency. Derived
features can come in more advanced forms than RACCB, combining
multiple features through linear or non-linear functions. However,
they should be used with caution for several reasons: (i) they in-
volve a higher extraction cost than the comprising raw features; (ii)
their form might be too complex to be interpretable; (iii) they are
usually correlated with the raw features they comprise and, thus,
are incompatible with them, when applied to classifiers with strong
independence assumptions (e.g., Naı̈ve Bayes); (iv) some classi-
fication algorithms may operate better with raw features, learning
themselves the linear or non-linear associations between the input
features. For these reasons, the derived features should involve a
low extraction cost and transform as few raw features as possible.

Here, we combine Common Blocks and Entity Blocks into a fea-
ture inspired from the TF-IDF measure employed in IR. We call
it Co-occurrence Frequency-Inverse Block Frequency (CF IBF)
and formally define it as:

CF IBF(ei, j) = |Bi, j | · log
|B|

|Bi |
· log

|B|

|B j |
.

FS 1: CF IBF,RACCB,Node Degree
FS 2: CF IBF,RACCB,Transitive Degree
FS 3: CF IBF,RACCB,Node Degree,Transitive Degree
FS 4: CF IBF,RACCB,Jaccard Sim,Transitive Degree
FS 5: CF IBF,RACCB,Jaccard Sim,Node Degree
FS 6: CF IBF,RACCB,Transitive Degree,Iterative Degree
FS 7: CF IBF,RACCB,Node Degree,Iterative Degree
FS 8: CF IBF,RACCB,Jaccard Sim,Node Degree,Transitive Degree
FS 9: CF IBF,RACCB,Jaccard Sim,Node Degree,Iterative Degree
FS 10: CF IBF,RACCB,Jaccard Sim,Transitive Degree,Iterative Degree

Table 3: Top 10 feature sets selected.

Experiments showed that this form outperforms the individual fea-
tures, because Entity Blocks is of limited usefulness when used in-
dependently, but it is valuable for extending Common Blocks, which
otherwise suffers from low discriminativeness (it amounts to 1 or
2 for the vast majority of edges). In this way, we also restrict the
dimensionality of our approach by two degrees.

Approach Overview. Our approach considers all the candi-
date features, except for ACCB due to low discriminativeness, and
Common Neighbors, which violates the requirement for generality,
as it does not apply to Clean-Clean ER. In this case, the resulting
blocking graph is bipartite, since every entity of the one collec-
tion is exclusively connected with entities from the other collection
(only comparisons between different collections are allowed) [22].
As a result, every pair of co-occurring entities shares no neighbors.

On the whole, our approach annotates every edge of the blocking
graph with the following nine-feature vector:
[CF IBF(ei, j), Jaccard Sim(ei, j), RACCB(ei, j),

Node Degree(vi), Node Degree(v j),

Iterative Degree(vi), Iterative Degree(v j),

Trasitive Degree(vi), Transitive Degree(v j)].
We selected these features because they cover all feature cate-

gories (as illustrated in Figure 5), they are schema-agnostic, ap-
plying to any block collection (generality principle), and they form
a limited search space that allows for rapidly training classifica-
tion models of low complexity and overhead (efficiency principle).
Most of them also involve a low extraction cost.

Note also that most of the aforementioned features are local with
respect to their scope; the exceptions are Entity Blocks, which in-
volves a hybrid functionality that combines local with global in-
formation, and Iterative Degree and Transitive Degree, which
consider global information about the neighbors of a specific node.
In the general case, local features are expected to exhibit higher ef-
fectiveness and efficiency than the global ones, because the latter
consider more general information and convey a higher extraction
cost. As an example, consider a boolean global feature that sorts all
edges of EB in descending order of Common Blocks and returns true
for those ranked in the top 1% positions and false otherwise.

6.2 Feature Selection
To satisfy the minimality principle, we examine the relative per-

formance of each combination of features, called feature set (FS),
in order to identify the one achieving the best balance between ef-
fectiveness and efficiency. There is a clear trade-off here: fewer fea-
tures mean less complex and less time-consuming learned model
(higher efficiency), but lower effectiveness.

The selected features yield 63 combinations. Due to their high
number, our feature selection process has two phases. First, we ex-
tracted the top 10 performing feature sets automatically. Then, we
selected the best set by examining their relative performance ana-
lytically. We use all four classification algorithms over Dmovies. The
models were trained using 1,000 labeled edges, equally partitioned
between matching and non-matching edges, that were randomly se-

1935

Naïve Bayes C4.5 SVM Bayes Networks

()10

9

8

7

6

5

4

3

2

FS1 FS2 FS3 FS4 FS5 FS6 FS7 FS8 FS9 FS10

PC

(%)

(a)

200,000

400,000

600,000

800,000

1,000,000

FS1 FS2 FS3 FS4 FS5 FS6 FS7 FS8 FS9 FS10

CMP

(compar.)

(b)

0.00

0.02

0.04

0.06

0.08

0.10

0.12

FS1 FS2 FS3 FS4 FS5 FS6 FS7 FS8 FS9 FS10

CT

(msec)

(c)

Figure 6: Performance of the feature sets in Table 3 over Dmovies with respect to (a) the relative reduction in recall (∆PC), (b) the

absolute number of retained comparisons (CMP) and (c) the classification time of an individual edge (CT).

lected from the entire blocking graph. The remaining edges formed
the disjoint testing set. To derive accurate performance estimations,
we repeated this process 10 times and considered the average value
of each metric.

To identify the top 10 performing feature sets, we sort the feature
sets in descending order of their total F-measure and select those
placed in the top 10 positions. The Total F-measure (T F1) of a
feature set FS i is the sum of the F-measures corresponding to each
classification algorithm: T F1(FS i) =

∑
j∈{NB,C4.5,S V M,BN} F1 j(FS i),

where the F-measure for a feature set FS i and an algorithm j is
computed as3: F1 j(FS i) = 2 · PC · nPQ/(PC + nPQ), with nPQ

denoting the normalized Pairs Quality across all feature sets for the

algorithm j (i.e., nPQ j(FS i) =
PQ j(FS i)

max(PQ j(FS 1),PQ j(FS 2),...,PQ j(FS 63)
).

The resulting top 10 feature sets are shown in Table 3. Collec-
tively, they involve all features of our approach, a strong indication
for the high utility of each feature. Moreover, each feature set com-
prises at least 3 features, revealing that our features are compatible
and complementary, working best when used in conjunction.

To select the best feature set out of the top 10 performing ones,
we evaluate their effectiveness through ∆PC and their efficiency
through CMP and CT (see Section 5). Figures 6(a), (b) and (c)
present ∆PC, CMP and CT , respectively. The horizontal axes cor-
respond to the feature sets. We can identify the optimal feature set
by examining their relative performance across the three figures.
The closer a feature set is placed to the horizontal axis of each fig-
ure across all classification algorithms, the better is its performance.

Figure 6(a) shows that most feature sets exhibit limited variation
in ∆PC (between -3.5% and -5% for most algorithms). Only Naı̈ve
Bayes is rather unstable, yielding five outliers: FS 1, FS 2, FS 3,
FS 6 and FS 7 have an unacceptable impact on recall (over -7%)
and hence they are not considered any further.

For the remaining sets, Figures 6(a) and 6(b) reveal a trade-off
between ∆PC and CMP: the higher ∆PC for a particular feature set
and classification algorithm, the lower CMP gets, and vice versa.
Hence, none of the feature sets excels in both metrics. To iden-
tify the set with the best balance between ∆PC and CMP, we con-
sider their average values across all classifiers. Only FS 4 and FS 5
achieve the most stable performance: FS 4 requires 5.66±1.25×105

comparisons, and FS 5 gives 5.65±1.17×105. They are also the
most efficient compared to FS 8, FS 9 and FS 10, which require
12.5% more comparisons, on average.

Finally, to decide between FS 4 and FS 5, we compare them in
terms of CT . Figure 6(c) shows negligible differences (in absolute

3Note that the F-measure for blocking-based ER is defined as

F1 = 2·PC·PQ

PC+PQ
[4]. We employ nPQ instead of PQ, because the latter

takes very low values for redundancy-positive block collections. In
fact, PQ is lower than PC by one or two orders of magnitude, thus
dominating F1, which ends up assigning high scores to feature sets
with a few comparisons and a few detected duplicates.

numbers) between them – in the order of 1/100 of a millisecond.
Given, though, that CT concerns a single edge, these differences
become significant when meta-blocking is applied to large blocking
graphs with millions of edges. We choose FS 5 because it learns
faster classification models than those of FS 4 by 3%, on average.

In the following, we exclusively consider the feature set FS 5,
comprising CF IBF, RACCB, Jaccard Sim and Node Degree, which com-
bines a low extraction cost with high discriminatory power.

7. TRAINING SET
The quality of the learned classification model also depends on

the training set and in particular on its composition and size.
The definition of supervised meta-blocking (Problem 2) makes

no assumptions about the training set. However, the vast majority
of the edges in the blocking graph connect non-matching entities
and thus correspond to superfluous comparisons. If the training
set involves the same class distributions as the set of edges, EB, it
will be heavily imbalanced in favor of the unlikely match class.
As a result, the classifier would be biased towards assigning every
instance to the majority class, pruning most of the edges.

This situation constitutes a class imbalance problem, which is
typical in supervised learning (as an example, consider the task
of spam filtering, where the vast majority of e-mails is not spam)
with several solutions [15]: oversampling randomly replicates in-
stances of the minority class until the class distribution is balanced,
cost-sensitive learning incorporates high misclassification cost for
the minority class when training the classifier, and ensemble learn-

ing trains a set of classifiers that collectively take classification de-
cisions through a form of weighted voting. Unfortunately, cost-
sensitive and ensemble learning increase the complexity of the clas-
sification model, while oversampling yields excessively large train-
ing sets prone to overfitting (too many repetitions of the same in-
stances). Instead, we use undersampling, which randomly selects
a subset of the same cardinality from both classes. The training set
is equally partitioned between likely match and unlikely match
edges. This approach is best for small training sets, which can be
manually labeled in the absence of ground truth.

The size of the training set, called sample size, affects both the
effectiveness and the efficiency of supervised meta-blocking: the
smaller the sample size is, the lower is the complexity of the learned
model and the more efficient is its training and its use. However,
this comes at the cost of lower classification accuracy, as the sim-
pler the learned model is, the more likely it is to miss patterns. To
identify the break-even point in this trade-off, we experimentally
perform a sensitivity analysis for the sample size with respect to
effectiveness (∆PC) and efficiency (CT and CMP).

Training Set Selection. We apply the selected feature set to the
four classifiers over Dmovies using training sets of various sizes. Due
to undersampling, these training sets were specified in terms of the
minority class cardinality (i.e., the number of matching entities in

1936

3.0
Naïve Bayes C4.5 SVM Bayesian Networks

()

6.0

5.5

5.0

4.5

4.0

3.5

3.0

0.5% 1.5% 2.5% 3.5% 4.5% 5.5% 6.5% 7.5% 8.5% 9.5%

PC

(%)

(a)

sample size

400,000

500,000

600,000

700,000

800,000

900,000

1,000,000

0.5% 1.5% 2.5% 3.5% 4.5% 5.5% 6.5% 7.5% 8.5% 9.5%

CMP

(compar.)

(b)
sample size

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.5% 1.5% 2.5% 3.5% 4.5% 5.5% 6.5% 7.5% 8.5% 9.5%

CT

(msec.)

(c)
sample size

Figure 7: Learning curves of our approach over Dmovies with respect to (a) ∆PC, (b) CMP and (c) CT . The horizontal axes correspond

to the sample size, i.e., the number of training instances expressed as a portion of the minority class cardinality.

the ground truth). Each one was equally partitioned between (ran-
domly selected) matching and non-matching edges, whose number
ranged from 0.5% to 10% of the minority class size, with a step of
0.5%. For every sample size, we repeated the process 10 times and
considered the average of the aforementioned metrics. Figures 7(a),
(b) and (c) depict the learning curves with respect to ∆PC, CMP

and CT , respectively.
Figure 7(a) shows that most classifiers exhibit rather stable re-

call, with a variance at most 1.2%. In all cases, the variance in
∆PC gets lower as the sample size increases. Especially for sample
sizes that exceed 5% of the minority class cardinality (i.e., around
1,100 labeled instances per class), there is no variance in practice.
These patterns demonstrate that our proposed feature set is compre-
hensive, robust enough and effective even when trained over small
training sets – regardless of the classification algorithm.

Figure 7(b) shows the evolution of CMP with the increase in
sample size. Most classifiers start from high values, but gradually
converge to lower values as the sample size increases. Similar to
∆PC, the variance in CMP decreases in proportion to the sample
size and becomes negligible for sample sizes larger than 5% of the
minority class. Regarding CT , Figure 7(c) shows that all classi-
fiers exhibit a relatively stable, good performance regardless of the
sample size. The average CT is close to the time observed for the
sample size equal to 5%.

Consequently, a sample size equal to 5% of the minority class
achieves a performance equivalent to that of much larger ones. In
the following, we exclusively consider training sets comprising 5%
of the edges labeled as likely match and an equal number of edges
labeled as unlikely match.

8. CLASSIFIERS CONFIGURATION
The performance of the selected classification algorithms de-

pends on their internal parameter configuration. Fine-tuning may
significantly enhance classification accuracy, but it may also lead to
over-fitting, which increases the complexity of the learned model
and inflates the overhead of meta-blocking. To assess how their
configuration affects the performance of our approach, we perform
analytical fine-tuning of their parameters. For each algorithm, we
examine two parameters that are fine-tuned in parallel:
• C4.5: we study the maximum number of instances per leaf node,
ranging from 2 to 5, and the confidence interval, ranging from 0.1
and 0.5 with a step of 0.05 (36 configurations in total). By default,
Weka sets the former parameter to 2 and the latter to 0.25.
• SVM: we consider two kernels, the linear and the RBF, and we
vary the complexity parameter C from 1 to 10 with a step of 1 (20
configurations in total). Weka’s default configuration incorporates
a linear kernel function with the complexity constant C set to 1.
• Bayesian Networks: we use three search algorithms: simulated
annealing, hill climbing and genetic search. We use each one with
global and with local scope (6 configurations in total). The default

configuration of Weka uses the hill climbing search of local scope.
• Naı̈ve Bayes: two boolean parameters that determine the proce-
ssing of numeric attributes, i.e., use of supervised discretization and
of kernel density estimator (4 configurations in total). By default,
Weka sets both parameters to false.

For each classifier, we apply every possible configuration to 10
randomly selected training sets from the blocking graph of Dmovies

using the sample size and the features determined above. Due to
the large number of configurations, we consider only the default,
the optimal and the average performance for each classification al-
gorithm and metric. As optimal, we define the configuration with
the largest F-measure (again, F1 employs nPQ instead of PQ). The
following configurations were selected in this way: the use of both
supervised discretization and kernel estimator for Naive Bayes; 5
instances per leaf and confidence interval equal to 0.1 for C4.5;
linear kernel with C=9 for SVM; simulated annealing with global
scope for Bayesian Networks. Figures 8(a) to (c) depict the experi-
mental outcomes with respect to ∆PC, CMP and CT , respectively.

We first investigate the relative performance of the default and
the optimal configuration. For Naı̈ve Bayes, the optimal one puts
more emphasis on effectiveness, increasing∆PC by executing more
comparisons. However, its overall efficiency is significantly increased,
as its overhead (CT) is reduced to 1/5. For C4.5 and SVM, the op-
timal configurations decrease CMP by 5%, while exhibiting prac-
tically identical ∆PC and CT with the default ones. On the other
hand, the optimal configuration for the Bayesian Networks reduces
CMP by 20% for almost the same PC as the default one, but puts
a toll on efficiency: CT increases by 25%. Hence, we choose the
default configuration for Bayesian Networks, while for the other
algorithms we choose the optimal ones, due to their slightly better
balance between effectiveness and efficiency.

We now examine the robustness of the classification algorithms
with respect to their configuration based on the distance between
the default, the optimal and the average performance for all con-
figurations. We observe that C4.5 is practically insensitive to fine-
tuning, despite the large numbers of configurations considered. The
same applies to SVM with respect to ∆PC and CMP; its average
CT (2.66 msec), though, is two orders of magnitude higher than the
default and the optimal one. This is because the RBF kernels are
10 times slower when classifying an individual edge than the linear
ones, which exhibit a rather stable CT . A similar situation appears
in the case of Naı̈ve Bayes, where the average CT amounts to 3.80
msec, due to the inefficiency of a single configuration: supervised
discretization for numeric attributes without the kernel estimator.
The other two metrics, though, advocate that Naı̈ve Bayes is rather
sensitive to its configuration. Finally, the Bayesian Networks ex-
hibit significant variance with respect to CMP and CT , but the
overall efficiency is relatively stable across all configurations. We
can conclude that for the selected feature set and sample size, most
classifiers are rather robust with respect to their configuration.

1937

0
Default Configuration Optimal Configuration Average over all configurations

6.0

5.5

5.0

4.5

4.0

3.5

3.0

NB C4.5 SVM BN

PC

(%)

(a)

400,000

450,000

500,000

550,000

600,000

650,000

700,000

NB C4.5 SVM BN

CMP.

(compar.)

(b)

Figure 8: Effect of parameter configuration for each classification algorithm over Dmovies with respect to (a) ∆PC, (b) CMP and (c)

CT . The sub-figure in (c) zooms into the interval [0, 0.1] to highlight differences in CT that are concealed in the interval [0, 4].

9. EXPERIMENTAL EVALUATION
We now compare the performance of our supervised meta-blocking

techniques with the best performing unsupervised ones over three
pruning algorithms: WEP, CEP and CNP. Remember that WEP is
compatible with all classification algorithms, while CEP and CNP

are only compatible with Naı̈ve Bayes and Bayesian Networks.
To compare the supervised and the unsupervised techniques on an
equal basis, we adapted the latter so that they exclude the edges
used for training by the former. Hence, we applied them 10 times
to each dataset and derived their performance from the average of
the relevant metrics (this explains why in some cases their perfor-
mance is slightly different from that reported in [22]).

We also employ the state-of-the-art approach of Iterative Block-
ing [25] as an additional baseline method. Given that its perfor-
mance depends heavily on the processing order of blocks, we ap-
ply it to 10 random shuffles of each dataset’s blocks and present
the average value of each metric. Note that for Clean-Clean ER,
we consider the best possible performance of iterative blocking,
assuming that all pairs of detected matches are propagated to the
subsequently processed blocks so that their entities do not partici-
pate in any other comparison.

We implemented our approaches in Java 1.74 and tested them on
a server with Intel i7-4930K 3.40GHz and 32GB RAM, running
Debian 7. Graphs were implemented using the JUNG framework5.

9.1 In-depth Analysis over Real Datasets
Table 4 presents the performance of the baseline 6 and our super-

vised techniques with respect to the three pruning algorithms over
the datasets of Table 2. For each dataset, we considered the unsu-
pervised meta-blocking in conjunction with the weighting scheme
that yields the best trade-off between PC and PQ; for Dmovies and
Din f oboxes, we used the weighting schemes CBS , EJS and ECBS

for WEP, CEP and CNP, respectively, while for DBTC09, we em-
ployed the ARCS scheme in all cases (see [22] for more details).
We now examine each pruning algorithm separately.

WEP. We observe that supervised meta-blocking consistently
achieves a better balance between effectiveness and efficiency over
Dmovies and Din f oboxes. It executes almost an order of magnitude
fewer comparisons than the unsupervised method with a minor in-
crease of PC. As a result, precision consistently increases by at
least 4 times. The higher overhead (OT) is counterbalanced by

4We have publicly released the code of our implementations at
http://sourceforge.net/projects/erframework.
5http://jung.sourceforge.net
6For unsupervised meta-blocking, OT measures the time required
for the creation of the weighted blocking graph and the pruning of
its edges. For iterative blocking, OT estimates the time required
for the propagation of the detected duplicates to the subsequently
processed blocks and the re-processing of the related blocks (in
case of Dirty ER).

the considerably lower number of comparisons, resulting overall in
significantly improved resolution times (RT).

For DBTC09, supervised meta-blocking improves efficiency to a
similar extent at the cost of slightly lower recall (the only excep-
tion is SVM, whose PC is significantly lower than the unsuper-
vised method by 7.5%). Both the number of comparisons and the
overhead time are almost half, leading to significantly better RT .

CEP. For Dmovies and Din f oboxes, supervised meta-blocking achieves
significantly higher recall, increased by more than 10%. Its over-
head time, though, is more than twice that of unsupervised meta-
blocking. Given that both approaches execute the same number
of comparisons, the classification models exhibit notably increased
resolution time. In the case of DBTC09, supervised meta-blocking
decreases PC and PQ to a minor extent, while increasing the reso-
lution time by 25%. For each dataset, these patterns are consistent
across both probabilistic models.

CNP. For Dmovies and DBTC09, supervised meta-blocking reduces
the number of executed comparisons to a significant extent, at the
cost of a lower PC. PQ almost doubles, but the higher overhead
than unsupervised meta-blocking leads to an increased resolution
time. The same applies to Din f oboxes, as both OT and RT are sig-
nificantly higher than unsupervised meta-blocking. In this case,
though, the number of comparisons is practically the same, while
PQ gets slightly higher, because PC slightly increases.

Iterative Blocking. We observe that iterative blocking achieves
the lowest overhead time and the highest recall across all datasets:
for the Clean-Clean ER datasets Dmovies and DBTC09, PC is equal
to that of the input block collection, while for the Dirty ER dataset
(DBTC09), it increases by 1%. However, this comes at the cost of
rather low efficiency; iterative blocking actually executes so many
comparisons that its resolution time is practically identical with the
brute-force approach of performing all comparisons in the input
block collection. For Clean-Clean ER, its run-time lies in the mid-
dle between supervised and unsupervised meta-blocking, due to the
ideal settings we consider (i.e., none of the matched entities partic-
ipates in any comparison after their detection). In a more realistic
scenario, though, its efficiency is expected to be lower than that of
unsupervised meta-blocking. We can conclude, therefore, that Iter-
ative Blocking is only appropriate for applications that place recall
in priority and are satisfied with rather conservative savings in ef-
ficiency. For the rest of them, supervised meta-blocking offers a
better balance between effectiveness and efficiency.

Conclusions. For WEP, our techniques leverage small training
samples and feature vectors to significantly increase efficiency at a
negligible cost in effectiveness (if any). This consistent behavior is
important, since WEP is compatible with practically any blocking-
based ER application. It stems from the low computational cost
and the comprehensiveness of our features. The latter aspect can
be inferred from the performance of Naı̈ve Bayes, which is directly
comparable with the more complicated algorithms in all cases. The
best performance, though, is achieved when combining supervised

1938

Dmovies Dinfoboxes DBTC09

CMP PQ PC ∆PC OT RT CMP PQ PC ∆PC OT RT CMP PQ PC ∆PC OT RT

(×105) (%) (%) (%) (sec) (sec) (×108) (%) (%) (%) (hours) (hours) (×106) (%) (%) (%) (min) (min)

Brute-force 20.27 1.09 99.39 0 1 89 40.46 0.02 99.89 0 1 34 123.62 0.01 98.22 1.32 1 62
Iterative Blocking 20.27 1.09 99.39 0 1 89 40.46 0.02 99.89 0 1 34 123.62 0.01 98.22 1.32 1 62

Unsupervised 27.04 0.75 94.64 -4.78 13 104 33.97 0.02 95.47 -4.43 12 41 4.14 0.23 94.63 -2.40 6 8

Naive Bayes 6.50 3.14 95.74 -3.67 39 56 3.76 0.22 99.09 -0.80 27 31 2.10 0.45 93.46 -3.58 4 5
C4.5 5.69 3.57 95.27 -4.15 20 40 2.98 0.28 99.00 -0.89 19 21 1.81 0.53 94.01 -3.02 3 4
SVM 4.59 4.40 94.87 -4.54 35 50 4.54 0.18 97.30 -2.60 27 31 2.55 0.35 87.49 -9.75 4 5
Bayesian Networks 6.51 3.13 95.75 -3.66 33 51 3.76 0.22 99.09 -0.80 25 29 2.12 0.45 93.50 -3.54 4 5

(a) WEP

Unsupervised 5.70 3.17 84.89 -14.59 9 23 0.26 2.72 82.09 -17.82 11 12 0.94 0.99 92.03 -5.06 3 4

Naive Bayes 5.69 3.56 95.34 -4.08 39 55 0.26 3.06 92.58 -7.32 26 27 0.94 0.96 89.47 -7.70 4 5
Bayesian Networks 5.69 3.56 95.35 -4.07 34 49 0.26 3.08 92.70 -7.20 23 24 0.94 0.96 89.49 7.68 4 5

(b) CEP

Unsupervised 11.00 1.87 96.67 -2.74 8 45 0.49 1.64 96.68 -3.21 12 13 1.75 0.53 90.86 -6.27 3 4

Naive Bayes 7.22 2.82 95.46 -3.95 39 59 0.47 1.79 98.38 -1.51 26 27 1.00 0.88 87.40 -9.84 4 5
Bayesian Networks 7.23 2.81 95.47 -3.94 34 54 0.47 1.78 98.38 -1.51 23 24 1.01 0.87 87.41 -9.83 4 5

(c) CNP

Table 4: Performance of supervised meta-blocking and the baselines over all datasets with respect to (a) WEP, (b) CEP, (c) CNP.

Entity Collections Block Collections

Entities Duplicates Blocks Compar. PC Brute-force RT

D10K 10,000 8,615 11,088 3.35×105 98.97% 4 sec

D50K 50,000 42,668 40,569 7.42×106 98.77% 75 sec

D100K 100,000 84,663 72,733 2.91×107 98.73% 5 min

D200K 200,000 170,709 123,648 1.19×108 99.02% 23 min

D300K 300,000 254,686 166,099 2.70×108 99.09% 45 min

D1M 1,000,000 849,276 441,999 2.94×109 99.04% 8 hrs

D2M 2,000,000 1,699,430 863,528 1.17×1010 99.03% 33 hrs

Table 5: Overview of the synthetic datasets.

meta-blocking with C4.5, which reduces the resolution time by
50% across all datasets for practically the same effectiveness.

With respect to CEP, which is only suitable for incremental
ER, unsupervised meta-blocking exhibits significantly higher ef-
ficiency, due to its lower overhead. However, the high OT time of
the classification models is rendered insignificant, when advanced,
time-consuming entity matching methods are used. Then, super-
vised meta-blocking should be preferred due to its consistently higher
recall. For the same reason, it should be used with all applications
of incremental ER that place more emphasis on effectiveness.

For CNP, we cannot draw any safe conclusions, due to the unsta-
ble performance of supervised meta-blocking across the 3 datasets,
caused by the incompatibility of its global training information with
the local scope of this pruning algorithm. Finally, it is worth stress-
ing that supervised meta-blocking consistently improves the run-
time of the brute-force approach by at least 10 times (cf. Table 2).

9.2 Recall and Run-time Scalability
We now examine the scalability of our supervised techniques in

relation to the three pruning algorithms. We apply them to seven
synthetic datasets that were created by FEBRL [5] and have been
widely used in the literature for this purpose [4, 13]. They pertain
to Dirty ER and their sizes range from 10 thousand to 2 million
entities. To derive redundancy-positive blocks, we applied Token
Blocking and Block Purging to each dataset. The technical charac-
teristics of the resulting block collections are presented in Table 5.

As baseline methods, we employ iterative blocking and unsu-
pervised meta-blocking. The latter was combined with the ECBS

weighting scheme across all pruning algorithms and datasets, as it
consistently exhibited the best performance.

We evaluate the performance of all methods using two metrics:
∆PC assesses the impact on effectiveness, while Relative Resolu-

tion Time (RRT) assesses the impact on efficiency. In essence, it
expresses the portion of the input blocks’ resolution time that is
required by the meta-blocking method. Formally, it is defined as:

RRT =
RT (B′)

RT (B)
· 100%, where RT (B) and RT (B′) are the resolu-

tion times of the original and the restructured block collections; the
lower its value is, the more efficient is the meta-blocking method.

We applied supervised meta-blocking to WEP, CEP and CNP.
The outcomes with respect to ∆PC are depicted in Figures 9(a)-(c),
while RRT is presented in Figures 9(d)-(f).

WEP. We observe that iterative blocking consistently achieves
the highest effectiveness, increasing PC by 1%, at the cost of the
worst efficiency across all datasets. In fact, its RRT increases mono-
tonically for higher dataset sizes, raising from 1/3 to more than 1/2.
On the other extreme lies supervised meta-blocking: it reduces PC

by at least 3%, but requires at most 1/6 of the original resolution
time. It scales well to larger datasets, as its performance is rela-
tively stable across all datasets: for each classification algorithm,
the difference between their maximum and minimum ∆PC is less
than 2%, while for RRT it is less than 5%. In the middle of these
two extremes lies unsupervised meta-blocking, which reduces re-
call by less than 3.5%, while requiring half of the resolution time
of iterative blocking. Note, though, that it does not scale well to
larger datasets, as its RRT raises from 1/6 for D10K to 1/3 for D2M .

CEP. For unsupervised meta-blocking, ∆PC decreases almost
linearly with the increase of the dataset size. In contrast, supervised
meta-blocking scales well with respect to recall, as the variance of
its ∆PC is lower than 7% (note that both classification algorithms
exhibit practically identical performances). Equally stable is their
efficiency, since their RRT is close to 1/8, on average, while its
variance is less than 5%. However, the run-time of unsupervised
meta-blocking scales better, as its RRT decreases from 1/8 for D10K

to 1/30 for D2M .
CNP. The efficiency of unsupervised meta-blocking scales well

with the increase of dataset size, dropping from 1/5 for D10K to 1/30
for D2M , while its effectiveness decreases. In this case, though, its
recall is close to that of supervised meta-blocking, with their max-
imum difference amounting to 3%. In terms of efficiency, super-
vised meta-blocking exhibits an unstable behavior, with its RRT

fluctuating between 1/5 and 1/10.
Conclusions. Overall, we conclude that supervised meta-blocking

scales better than the unsupervised one for WEP with respect to
both effectiveness and efficiency. For CEP, it scales better with re-
spect to effectiveness, while unsupervised meta-blocking excels in
efficiency in case a cheap entity matching method is employed. The
same applies to CNP, as well. For this pruning algorithm, though,
supervised meta-blocking improves effectiveness only to a minor
extent. Compared to iterative blocking, supervised meta-blocking
excels in efficiency, requiring a lower resolution time by at least

1939

Iterative Blocking Naïve Bayes C4.5 SVM Bayes Networks Unsupervised

6

4

2

0

2

10K 50k 100K 200K 300K 1M 2M

PC

(%)

WEP

(a)
25

20

15

10

5

0

10K 50k 100K 200K 300K 1M 2M

PC

(%)

CEP

(b)
8

6

4

2

0

10K 50k 100K 200K 300K 1M 2M

PC

(%)

CNP

(c)

0

10

20

30

40

50

60

10K 50K 100K 200K 300K 1M 2M

RRT

(%)

WEP

(d)

0

4

8

12

16

10K 50K 100K 200K 300K 1M 2M

RRT

(%)

CEP

(e)

0

5

10

15

20

25

10K 50K 100K 200K 300K 1M 2M

RRT

(%)

CNP

(f)

Figure 9: Scalability analysis over the synthetic datasets with respect to (a)-(d) WEP, (b)-(e) CEP and (c)-(f) CNP.

2/3, but achieves significantly lower recall. Compared to the brute-
force approach, supervised meta-blocking improves the run-time
by at least 5 times, as its RRT lies consistently lower than 20%.

10. CONCLUSIONS
In this work, we demonstrated how supervised meta-blocking

can be used to enhance the performance of existing, unsupervised
meta-blocking methods. For this task, we proposed a small set
of generic features that combine a low extraction cost with high
discriminatory power. We showed that supervised meta-blocking
can achieve high performance with small training sets that can be
manually created, and we verified that most configurations of es-
tablished classification algorithms have little impact on the overall
performance. We analytically compared our supervised approaches
with baseline and competitor methods.

In the future, we will apply transfer learning techniques to su-
pervised meta-blocking, so that a classification model trained over
a labeled set maintains its high performance over another, unla-
beled one. In addition, we will explore the use of active learning
and crowdsourcing techniques in the creation of training sets.

Acknowledgements. This research has been co-financed by the
EU (European Social Fund - ESF) and Greek national funds through
the Operational Program “Education and Lifelong Learning” of the
National Strategic Reference Framework (NSRF) - Research Fund-
ing Program: Thales. Investing in knowledge society through the
European Social Fund.

References
[1] M. Bilenko, B. Kamath, and R. J. Mooney. Adaptive blocking: Learn-

ing to scale up record linkage. In ICDM, pages 87–96, 2006.
[2] M. Bilenko and R. J. Mooney. Adaptive duplicate detection using

learnable string similarity measures. In KDD, pages 39–48, 2003.
[3] Z. Chen, D. V. Kalashnikov, and S. Mehrotra. Exploiting context anal-

ysis for combining multiple entity resolution systems. In SIGMOD,
pages 207–218, 2009.

[4] P. Christen. A survey of indexing techniques for scalable record link-
age and deduplication. TKDE, 24(9):1537–1555, 2012.

[5] P. Christen and A. Pudjijono. Accurate synthetic generation of realis-
tic personal information. In PAKDD, pages 507–514, 2009.

[6] W. W. Cohen and J. Richman. Learning to match and cluster large
high-dimensional data sets for data integration. In KDD, pages 475–
480, 2002.

[7] T. de Vries, H. Ke, S. Chawla, and P. Christen. Robust record linkage
blocking using suffix arrays. In CIKM, pages 1565–1568, 2009.

[8] M. G. Elfeky, A. K. Elmagarmid, and V. S. Verykios. Tailor: A record
linkage tool box. In ICDE, pages 17–28, 2002.

[9] L. Getoor and A. Machanavajjhala. Entity resolution for big data. In
KDD, 2013.

[10] L. Gravano, P. Ipeirotis, H. Jagadish, N. Koudas, S. Muthukrishnan,
and D. Srivastava. Approximate string joins in a database (almost) for
free. In VLDB, pages 491–500, 2001.

[11] A. Y. Halevy, M. J. Franklin, and D. Maier. Principles of dataspace
systems. In PODS, pages 1–9, 2006.

[12] M. Hernández and S. Stolfo. The merge/purge problem for large
databases. In SIGMOD, pages 127–138, 1995.

[13] B. Kenig and A. Gal. Mfiblocks: An effective blocking algorithm for
entity resolution. Inf. Syst., 38(6):908–926, 2013.

[14] H. Kim and D. Lee. HARRA: fast iterative hashed record linkage for
large-scale data collections. In EDBT, pages 525–536, 2010.

[15] R. Longadge, S. Dongre, and L. Malik. Class imbalance problem in
data mining: Review. Int’l Journal of Computer Science and Network

(IJCSN), 2(1), 2013.
[16] Y. Ma and T. Tran. Typimatch: type-specific unsupervised learning

of keys and key values for heterogeneous web data integration. In
WSDM, pages 325–334, 2013.

[17] A. McCallum, K. Nigam, and L. Ungar. Efficient clustering of high-
dimensional data sets with application to reference matching. In KDD,
pages 169–178, 2000.

[18] M. Michelson and C. A. Knoblock. Learning blocking schemes for
record linkage. In AAAI, pages 440–445, 2006.

[19] F. Naumann and M. Herschel. An Introduction to Duplicate Detec-

tion. Synthesis Lectures on Data Management. Morgan & Claypool
Publishers, 2010.

[20] G. Papadakis, E. Ioannou, C. Niederée, T. Palpanas, and W. Nejdl.
Beyond 100 million entities: Large-scale blocking-based resolution
for heterogeneous data. In WSDM, pages 53–62, 2012.

[21] G. Papadakis, E. Ioannou, T. Palpanas, C. Niederée, and W. Nejdl.
A blocking framework for entity resolution in highly heterogeneous
information spaces. IEEE Trans. Knowl. Data Eng., 25(12):2665–
2682, 2013.

[22] G. Papadakis, G. Koutrika, T. Palpanas, and W. Nejdl. Meta-blocking:
Taking entity resolutionto the next level. IEEE Trans. Knowl. Data

Eng., 26(8):1946–1960, 2014.
[23] S. Sarawagi and A. Bhamidipaty. Interactive deduplication using ac-

tive learning. In KDD, pages 269–278, 2002.
[24] S. Tejada, C. A. Knoblock, and S. Minton. Learning domain-

independent string transformation weights for high accuracy object
identification. In KDD, pages 350–359, 2002.

[25] S. E. Whang, D. Menestrina, G. Koutrika, M. Theobald, and
H. Garcia-Molina. Entity resolution with iterative blocking. In SIG-

MOD Conference, pages 219–232, 2009.
[26] I. H. Witten and E. Frank. Data Mining: Practical machine learning

tools and techniques. Morgan Kaufmann, 2005.

1940

1

Meta-Blocking:

Taking Entity Resolution to the Next Level
George Papadakis, Georgia Koutrika, Themis Palpanas, and Wolfgang Nejdl

✦

Abstract—Entity Resolution is an inherently quadratic task that typically

scales to large data collections through blocking. In the context of

highly heterogeneous information spaces, blocking methods rely on

redundancy in order to ensure high effectiveness at the cost of lower

efficiency (i.e., more comparisons). This effect is partially ameliorated by

coarse-grained block processing techniques that discard entire blocks

either a-priori or during the resolution process. In this paper, we intro-

duce meta-blocking as a generic procedure that intervenes between

the creation and the processing of blocks, transforming an initial set

of blocks into a new one with substantially fewer comparisons and

equally high effectiveness. In essence, meta-blocking aims at extracting

the most similar pairs of entities by leveraging the information that is

encapsulated in the block-to-entity relationships. To this end, it first builds

an abstract graph representation of the original set of blocks, with the

nodes corresponding to entity profiles and the edges connecting the

co-occurring ones. During the creation of this structure all redundant

comparisons are discarded, while the superfluous ones can be removed

by pruning of the edges with the lowest weight. We analytically examine

both procedures, proposing a multitude of edge weighting schemes,

graph pruning algorithms as well as pruning criteria. Our approaches are

schema-agnostic, thus accommodating any type of blocks. We evaluate

their performance through a thorough experimental study over three

large-scale, real-world datasets, with the outcomes verifying significant

efficiency enhancements at a negligible cost in effectiveness.

Index Terms—Entity Resolution, Redundancy-positive Blocking, Meta-

blocking

1 Introduction
Entity resolution (ER) is the task of identifying the same

real-world object across different entity profiles. It consti-

tutes an inherently quadratic process, as it requires every

entity profile to be compared with all others. Therefore, it

typically scales to large data collections through approxi-

mate methods that trade off effectiveness (i.e., percentage of

detected duplicates) for efficiency (i.e., number of executed

pair-wise comparisons). Data blocking [13], the most pop-

ular of these methods, groups similar entity profiles into

blocks and exclusively performs the comparisons within

each block. Blocking methods are generally distinguished

in two categories: those forming non-overlapping blocks

• G. Papadakis is with the National Technical University of Athens,

Greece and the L3S Research Center, Germany. E-mail:

papadakis@L3S.de, gpapadis@mail.ntua.gr

• G. Koutrika is with HP Labs, USA. E-mail: koutrika@hp.com

• T. Palpanas is with the University of Trento, Italy. E-mail:

themis@disi.unitn.eu

• W. Nejdl is with the L3S Research Center, Leibniz University of

Hanover, Germany. E-mail: nejdl@L3S.de

(i.e., redundancy-free), and those placing every entity pro-

file into multiple blocks (i.e., redundancy-bearing).

Redundancy constitutes an indispensable and reli-

able means of reducing the likelihood of missed

matches in the context of highly heterogeneous informa-

tion spaces (HHIS), such as the Web of Data [4] and Datas-

paces [16]. The reason is that HHIS involve extremely large

volumes of data, high levels of noise, and loose schema

binding. Though beneficial for effectiveness, redundancy

comes at the cost of lower efficiency, as it increases the

number of required pair-wise comparisons. In this work, we

investigate ways of compensating for its effect on efficiency

without sacrificing its high effectiveness.

Motivating Examples. As an example, consider the

entity collection presented in Figure 1(a), where the entity

profiles p1 and p2 describe the same real-world objects

as profiles p3 and p4, respectively. Although the values of

the duplicate profiles are relatively similar, every canonical

attribute name has a different form in each of them; the

name of a person, for instance, appears as “FullName”

in p1, as “name” in p2 and as “full name” in p3. This

situation is further aggravated by the tag-style values; e.g.,

the name of person p4 is not associated with any attribute

value. In these settings, redundancy-free blocking methods

can only be applied on top of a schema matching method

that maps all entity profiles into a canonical schema with

attributes of a-priori known quality. However, although

schema matching seems straightforward in our example, it

is not practical in large-scale collections of user-generated

data: Google Base1 alone encompasses 100,000 distinct

schemata corresponding to 10,000 entity types [20]. Thus,

in this work we exclusively consider redundancy-bearing

blocking methods and aim at improving their efficiency.

Not all of these methods, though, share the same interpre-

tation of redundancy. For the redundancy-positive blocking

techniques, the number of common blocks between a pair

of entity profiles is proportional to their similarity and,

thus, the likelihood that they are matching. In this cate-

gory fall methods that associate each profile with multiple

blocking keys, such as q-grams [15], Suffix Array [1], [8],

HARRA [18] and schema-agnostic blocking [27], [29]. To

illustrate their functionality, consider Figure 1(b), which

depicts the blocks that are produced after applying the

1. http://www.google.com/base

2

��� ��� ��� ��� ���

Fig. 1. (a) A noisy, heterogeneous entity collection, (b) the resulting set of attribute-agnostic blocks, (c) the blocking graph

corresponding to it, (d) the pruned blocking graph, and (e) an alternative pruned blocking graph, discussed in Section 3.4.

simplest form of schema-agnostic blocking to the entity

collection of Figure 1(a). Each block corresponds to a dis-

tinct token that has been extracted from at least one attribute

value, regardless of the associated attribute name(s). Thus,

the more blocks two entity profiles share, the more likely

they are to describe the same real-world object.

In contrast, redundancy-negative blocking methods re-

gard the high number of common blocks among two entity

profiles as a strong indication that they are unlikely to be

matching. For them, highly similar profiles share just one

block. A typical example of this functionality is Canopy

Clustering [22]: after selecting a random seed pi, the most

similar profiles are placed in the same block with pi and

are removed from the pool of candidate matches; thus, they

cannot be included in any other block.

In the middle of these two extremes lie redundancy-

neutral blocking methods, which involve the same number

of common blocks across all pairs of entity profiles (e.g.,

Sorted Neighborhood [17]). In this category also fall meth-

ods that are not suitable for drawing conclusions about the

matching likelihood of two profiles from the blocks they

have in common (e.g., Semantic Blocking [25]).

We observe that redundancy-negative and redundancy-

neutral blocking methods are not applicable to HHIS. For

example, even though Canopy Clustering and the Sorted

Neighborhood approaches are scalable to large entity col-

lections, they require an a-priori known schema in or-

der to create blocks. The same applies to other related

methods, such as the Adaptive Sorted Neighborhood [33]

and the Sorted Blocks approach [11]. In contrast, the

redundancy-positive techniques have been shown to apply

to HHIS and scale to millions of entity profiles [18],

[27], [29]. Therefore, our work focuses on improving

the efficiency of redundancy-positive blocking methods by

discarding the unnecessary comparisons of their blocks. In

general, comparisons of this kind are distinguished into

two categories: (i) the redundant ones, which repeatedly

compare the same entities across different blocks, and (ii)

the superfluous ones, which involve non-matching entities.

Continuing our example, we can observe that the blocks of

Figure 1(b) involve 9 redundant comparisons in the blocks

“Smith”, “Brown”, “seller” and “91335”. They also involve

6 superfluous comparisons between all possible pairs of

non-matching entities in the blocks “car”, “auto”, “seller”

and “91335”. Skipping comparisons of these types in-

creases blocking efficiency without affecting effectiveness.

Existing block processing techniques enhance the ef-

ficiency of redundancy-positive blocking methods mainly

by operating at the coarse level of entire blocks. For

example, Block Purging [27] a-priori discards oversized

blocks, which involve an excessively high number of unnec-

essary comparisons. To illustrate this notion, consider the

block of “91335” in Figure 1(b): it contains all possible

comparisons of the entity profiles in Figure 1(a) and the

only non-redundant comparisons it involves are superfluous.

A similar technique is Block Pruning [27], which assumes

an ordered set of blocks and terminates their processing

as soon as duplicate overhead (i.e., the cost of identify-

ing new duplicates) exceeds a predefined threshold dhmax.

Processing the blocks of Figure 1(b) in their order of

appearance, the initial duplicate overhead in block “John”

is dh = 1 (i.e., one comparison for one pair of duplicates);

the second pair of duplicates is identified in the fourth block

“Richard” yielding a duplicate overhead dh = 3 (i.e., three

comparisons for one pair of duplicates). For dhmax = 2,

the remaining blocks will not be examined, thus saving

10 comparisons. Due to the coarse granularity of their

functionality, though, existing block processing methods

are unable to distinguish the redundant and superfluous

comparisons from the matching ones (i.e., those involving a

non-redundant pair of duplicate entity profiles). As a result,

they enhance efficiency without controlling their impact on

effectiveness.

Work Overview and Contributions. In this paper, we

introduce meta-blocking as the task of developing efficient

techniques that operate at the level of individual compar-

isons. These methods utilize abstract blocking informa-

tion to achieve maximum efficiency gains for redundancy-

positive blocking methods at a small and controllable im-

pact on effectiveness. Meta-blocking goes beyond existing

block processing methods by offering principled approaches

that consider the information encapsulated in the set of

block assignments (i.e., the associations between blocks

and entity profiles). In essence, it aims at identifying

the closest pairs of profiles so as to restructure a given

set of blocks into a new one that involves significantly

fewer comparisons, while maintaining the original level of

effectiveness. Meta-blocking is independent from the under-

lying blocking method and generic enough to handle any

redundancy-positive block collection, regardless of whether

it is based on schema information or not.

We note that meta-blocking does not replace but com-

plements the existing blocking methods. It builds on the

intrinsic characteristic of redundancy-positive blocking that

the similarity of two entity profiles is reflected on their

common block assignments. Meta-blocking operates effi-

ciently because it skips the high complexity of computing

pair-wise, string-based entity similarities, relying instead on

the block-to-entity profile associations of the input set of

blocks. Although approximate, this information leads to an

3

effective and efficient solution.

Based on these ideas, we introduce a family of meta-

blocking methods that rely on the blocking graph. This is

a structure that is extracted from the input block collection

and connects with edges those pairs of entity profiles that

are compared in at least one block. For instance, the graph

corresponding to the blocks of Figure 1(b) is depicted in

Figure 1(c); its nodes correspond to the profiles of the

input entity collection (Figure 1(a)) and its edges connect

the profiles that share at least one block. The edges are

naturally undirected, and weighted according to a scheme

that determines the trade-off between the computational

cost and the gain of comparing the adjacent entity profiles

(i.e., the benefit for the recall of the ER process, in case they

are matching). In the example of Figure 1(c), we present the

simplest scheme, which sets the weight of each edge equal

to the number of blocks the adjacent entity profiles have

in common. Also applicable are schema-based schemes,

which set edge weights according to the values of one or

more selected attributes.

The blocking graph forms the basis for enhancing effi-

ciency through pruning: edges that do not satisfy a pre-

defined criterion are removed, thus leading to a smaller

number of comparisons. In our example, the blocking graph

of Figure 1(d) can be derived from that of Figure 1(c) by

discarding edges with a weight lower than 2, or by retaining

the two edges with the highest weight. In any case, the

remaining edges determine a new set of blocks that ideally

places every pair of duplicate profiles in a separate block.

Every retained edge is actually transformed into a new

block that contains only its adjacent entity profiles. In our

example, the pruned graph of Figure 1(d) yields two blocks,

b1 = {p1, p3} and b2 = {p2, p4}, that achieve the same recall

as the blocks of Figure 1(b) with just 2 comparisons.

Overall, the contributions of our work are the following:

• We formalize the problem of meta-blocking and intro-

duce the blocking graph as the cornerstone for a family

of solutions that operate independently of the process

that created the input blocks.

• We coin five schema-agnostic schemes for weighting

the edges of a blocking graph.

• We present two schema-agnostic, orthogonal categories

of pruning algorithms along with two orthogonal dimen-

sions for specifying the corresponding pruning criteria.

• We examine the performance of our methods on three

large-scale, real-world datasets, with the results validat-

ing the exceptional performance of our methods.

The rest of the paper is structured as follows: we formal-

ize the task of meta-blocking in Section 2 and we present

several techniques for building and pruning the blocking

graph in Section 3. Section 4 analyzes the results of our

experimental evaluation, and Section 5 wraps up our work.

We discuss the state-of-the-art in blocking-based ER in the

Appendix.

2 Problem Definition
Entity Resolution. At the core of entity resolution lie entity

profiles describing real-world objects. An entity profile is

a uniquely identified collection of information in the form

of name-value pairs. Assuming an infinite set of identifiers

ID, we can formally define an entity profile as follows:

Definition 1 (Entity Profile): An entity profile p is a

tuple 〈id, Ap〉, where id ∈ ID is a unique identifier, and

Ap is a set of name-value pairs 〈n, v〉.

Naturally, the value v in a name-value pair 〈n, v〉 of an entity

profile p may be unspecified. Similarly, the attribute name

n may not be given, thus allowing for the representation of

tag-style values, as illustrated in Figure 1(a). In general, the

model of Definition 1 is flexible enough to accommodate

entity representations of any complexity, such as those

employed in Web and Dataspace applications [20]. In the

following, we refer to this definition using the terms entity

profile, profile and entity interchangeably.

An entity collection E is a set of entity profiles. Two

entity profiles contained in E, pi and p j, are duplicates

or matches, denoted by pi ≡ p j, if they represent the same

real-world object. Given two input entity collections, E1 and

E2, the goal of entity resolution is to identify the duplicate

entity profiles they contain. Depending on the inputs, we

distinguish the following types of ER:

• In Clean-Clean ER, both E1 and E2 are duplicate-free

entity collections.

• In Dirty-Clean ER, E1 is a duplicate-free entity collec-

tion, and E2 is a dirty one (i.e., it contains duplicates

in itself).

• In Dirty-Dirty ER, both E1 and E2 are dirty.

In all cases, the output comprises the pairs of duplicate

profiles, DE1∪E2 , that are contained in the union of the

input entity collections (i.e., the duplicate profiles shared

by E1 and E2 as well as those contained in the individual

entity collections). Note that, for simplicity, we consider

the last two sub-problems to be equivalent to Dirty ER: the

input comprises a single entity collection E that contain

duplicates in itself, as it is formed by the union of the

given collections (i.e., E = E1∪E2). In this case, the output

comprises the set of matching pairs of entity profiles, DE,

that are contained in E.

Blocking for Entity Resolution. ER constitutes an in-

herently quadratic task, requiring the pair-wise comparison

of all profiles in the input entity collection(s). To make

ER scale to large entity collections, blocking restricts the

computational cost to comparisons between similar profiles:

it clusters them into blocks and performs comparisons

solely among the entity profiles within each block.

In more detail, block building techniques transform every

entity profile into a (set of) blocking key(s) that is suitable

for clustering. Profiles with the same (or similar) key(s) are

grouped together into blocks (Figures 1(a) and (b)). The re-

sulting set of blocks B is called block collection. Depending

on the ER problem, its elements may be of two types:

• Unilateral blocks contain entity profiles from the same

dirty entity collection (i.e., Dirty ER). Thus, they are

all candidate matches and should be compared to each

other.

4

• Bilateral blocks are internally partitioned in two sub-

blocks that individually contain non-matching entity

profiles from the same clean input collection (i.e.,

Clean-Clean ER). Thus, for a bilateral block bi, com-

parisons are only allowed between its inner blocks b1
i

(⊆E1) and b2
i

(⊆E2).

Improving Blocking through Meta-blocking. The qual-

ity of a block collection B is measured in terms of

two competing criteria: efficiency and effectiveness. The

former is directly related to its aggregate cardinality

(||B||), i.e., the total number of comparisons it contains:

||B|| =
∑

bi∈B
||bi||, where ||bi|| is the individual cardinality

of bi (i.e., total number of comparisons entailed in block

bi); we have ||bi||=|bi|·(|bi| − 1)/2 for a unilateral block bi

and ||b j||=|b
1
j
|·|b2

j
| for a bilateral block. The effectiveness of

B depends on the cardinality of the set DB of detectable

matches (i.e., pairs of duplicate profiles compared in at least

one block).

There is a clear trade-off between the effectiveness and

the efficiency of B: the more comparisons are executed

(i.e., higher ||B||), the higher its effectiveness gets (i.e.,

higher |DB|), but the lower its efficiency is, and vice

versa. Successful block collections achieve a good balance

between these two competing objectives, as estimated by

the following, established measures [3], [8], [23], [27].

(i) Pair Completeness (PC) assesses the portion of

duplicates that share at least one block and, thus, can be

detected. It is formally defined as: PC(B) = |DB|/|DE|,

where |DE| is the number of duplicates in the input entity

collection E. PC takes values in the interval [0, 1], with

higher values indicating higher effectiveness for B.

(ii) Pairs Quality (PQ) estimates the portion of non-

redundant comparisons that involve matching entities. For-

mally, it is defined as: PQ(B) = |DB|/||B||. It takes values

in [0, 1], with higher values indicating higher efficiency for

B (i.e., fewer superfluous and redundant comparisons).

(iii) Reduction Ratio (RR) measures to which degree

efficiency is enhanced with respect to a baseline block

collection Bbs. It is defined as: RR(B,Bbs) = 1− ||B||/||Bbs||

and takes values in the interval [0, 1] (for ||B|| ≤ ||Bbs||),

with higher values denoting higher efficiency for B.

Meta-blocking aims at restructuring a block collection B

so as to improve its quality. It operates on its elements

independently of their type (i.e., unilateral or bilateral

blocks), relying primarily on the information encapsulated

in their block assignments. Its output comprises a new

block collection B′ that maintains comparable levels of

effectiveness (i.e., PC), while involving lower aggregate

cardinality (i.e., higher efficiency). Formally, this task is

defined as follows:

Problem 1 (Meta-blocking): Given a block collection B,

restructure it into a new one B′ that achieves signifi-

cantly higher levels of efficiency (i.e., PQ(B′)≫PQ(B) and

RR(B′,B)≫0), while maintaining the original effectiveness

(i.e., PC(B′)≥PC(B)).

Note that the type of output blocks does not need to

coincide with the input ones. As we will see in Section 3.3,

CC

CCmax=2

Ideal Point

Redundancy!

bearingB�

BC

Redundancy

!free

bearing

B

1 BCmax

Fig. 2. The BC-CC metric space along with its main topological

characteristics. The horizontal axis corresponds to Blocking

Cardinality, which measures the redundancy of block collections,

while the vertical one corresponds to Comparisons Cardinality,

which estimates their efficiency.

a unilateral block collection can be transformed into a

bilateral one, and vice versa. Note also that, in general, the

effectiveness of the output block collection can be higher

than that of the input one (i.e., PC(B′) > PC(B)). However,

this can only be achieved by inferring new connections

between entities from the original ones. We consider this

inference problem to be orthogonal to the task we study in

this paper, i.e., how to improve the efficiency of a block

collection without affecting its effectiveness.

Metric Space for Blocking Techniques. The goal of

meta-blocking is to improve the balance between effec-

tiveness and efficiency that a block collection B achieves.

However, the impact on PC and RR can only be computed

after examining analytically all blocks in B and B′. Instead,

we want to estimate their actual values without executing

any comparison, so as to guide the restructuring process. A

close, a-priori approximation of PC and RR is provided by

the orthogonal measures of the BC-CC metric space, which

was originally introduced in [29] for blocking-based Dirty

ER. Here, we extend it to cover blocking-based Clean-

Clean ER, as well, by adding the necessary definitions.

As depicted in Figure 2, the horizontal dimension of the

BC-CC metric space corresponds to Blocking Cardinality

(BC). This measure quantifies the redundancy of a block

collection B as the average number of block assignments

per entity of the input collection(s): BC =
∑

bi∈B
|bi|/|E|,

where |bi| denotes size (i.e., the number of entities) of block

bi. BC takes values in the interval [0,
2·|E1 |·|E2 |

|E1 |+|E2 |
] for Clean-

Clean ER and in [0, |E| − 1] for Dirty ER. Values lower

than 1 indicate block collections that failed to place every

entity profile in at least one block, values equal to 1 usually

correspond to redundancy-free block collections (black dot

in Figure 2), and values over 1 to redundancy-bearing ones

(gray sub-plane in Figure 2). In general, the higher BC is,

the higher is the level of redundancy in B.

The vertical axis measures Comparisons Cardinality

(CC), which estimates the efficiency of a block collection

through the number of block assignments that account for

each comparison: CC =
∑

bi∈B
|bi|/||B||. CC takes values

in the interval [0, 2], with higher values corresponding to

fewer comparisons per block assignment, and higher effi-

ciency (i.e., smaller blocks, on average). Its maximum value

actually corresponds to a block collection that exclusively

contains blocks of minimum size (i.e., two entities).

The BC-CC mapping of a block collection can be

efficiently computed in linear time (i.e., O(|B|)) through

a simple inspection of the size and the cardinality of its

5

elements. It has been experimentally demonstrated that,

for redundancy-positive blocking methods, BC is highly

correlated with PC (i.e., higher BC values lead to higher ef-

fectiveness), while CC is directly related to RR (i.e., higher

CC values convey higher efficiency) [29]. In conjunction,

they can be used for a-priori comparing the performance of

blocking schemes: the closer a blocking method is mapped

to point (1,2) (gray dot in Figure 2), the better is its balance

between PC and RR [29]. Indeed, this represents the Ideal

Point that corresponds to the optimal blocking method, i.e.,

the method that builds a block of minimum size for each

pair of duplicates, thus involving neither redundant nor

superfluous comparisons. In this context, the goal of meta-

blocking is to restructure a block collection so as to move

its mapping closer to the Ideal Point (from B to B′ in

Figure 2). Section 3.3 explains how this is accomplished.

3 Meta-Blocking Approach

At the core of our approach to meta-blocking lies the

notion of blocking graph. Given a block collection B,

the corresponding blocking graph GB models the block

assignments in B: as shown in Figure 1(c), every entity

contained in B is mapped to a node in the blocking graph,

and every pair of co-occurring entities (i.e., entities that

are compared in at least one block) is connected with

an undirected edge. Formally, the blocking graph for a

unilateral block collection is defined as follows:

Definition 2 (Undirected Blocking Graph): Given a

unilateral block collection BE, the undirected blocking

graph derived from it is a graph GB = {VB, EB,WS },

where VB is the set of its nodes, EB is the set its undirected

edges, and WS is the weighting scheme that determines

the weight of every edge in the interval [0, 1]. VB contains

all entities of E that are placed in at least one block

of BE (i.e., ∀vi ∈ VB : ∃pi ∈ E ∧ b j ∈ BE ∧ pi ∈ b j),

while EB contains undirected edges between all pairs of

co-occurring entities (i.e., ∀ei, j = 〈pi, p j〉 ∈ EE : pi ,

p j ∧ ∃bk ∈ B
E ∧ pi ∈ bk ∧ p j ∈ bk).

The blocking graph over a set of bilateral blocks BE1×E2

is defined analogously. The only difference is that it results

in a bipartite graph, since its set of nodes VB is sepa-

rated into two disjoint sets, V1
B

and V2
B

, which comprise

entities stemming from the entity collections E1 and E2,

respectively (i.e., V1
B
⊆ E1 and V2

B
⊆ E2). More formally,

∀vk
i
∈ Vk

B
: ∃pi ∈ Ek ∧ b

1,2
j
∈ BE1×E2 ∧ pi ∈ bk

j
, where k ∈

{1, 2}. Thus, the set of edges EB contains only connections

between entities stemming from different entity collections:

∀ei, j = 〈pi, p j〉 ∈ EB : ∃b
1,2

k
∈ BE1×E2 ∧ pi ∈ b1

k
∧ p j ∈ b2

k
.

Note that for reasons explained in Section 3.3, the edges

of a blocking graph can be directed, as well. An edge

pointing from entity pi to p j is represented by ¯ei, j to

distinguish it from the undirected edge ei, j that connects

the same entities. A blocking graph with directed edges is

called directed blocking graph and is symbolized as ḠB.

The purpose of the blocking graph is to facilitate effi-

ciency improvements over the input block collection. An

immediate contribution to this goal is the elimination of

redundant comparisons without any impact on effectiveness

(i.e., PC). Redundant comparisons are easily identified

during the creation of the blocking graph, as the corre-

sponding entities have already been connected with an edge.

In such cases, we simply skip connecting them with an

additional edge and, thus, each pair of comparable entities

is connected with at most one edge, regardless of the

total number of comparisons between them entailed in

B. Consequently, each pair of co-occurring (i.e., adjacent)

entities is examined only once. While improving efficiency,

effectiveness is not affected, since the set of comparable

entity pairs remains unchanged.

Additional efficiency enhancements can be achieved

through the pruning of the blocking graph: edges between

non-matching entities can be gradually removed from the

graph, discarding unnecessary comparisons without affect-

ing PC. This process is carried out according to a pruning

algorithm and theoretically can result in a graph that

exclusively contains edges between matching entities, as

in Figure 1(d). In practice, though, we can only approx-

imate this ideal case by exploiting the evidence that is

encapsulated in the given block collection: how entities

are assigned to blocks provides reliable indications for the

similarity of adjacent entities, which can be quantified by

assigning a weight to the corresponding edge. In the context

of redundancy-positive blocking methods, the more blocks

two entities share, the more similar they are and the higher

the weight of their adjacent edge should be. In this way,

the pruning of the blocking graph becomes the process of

removing edges with low weights on the grounds that they

(are likely to) link dissimilar entities.

In more detail, the weight ei, j.weight of an edge ei, j

expresses the utility of the comparison between the profiles

pi and p j; that is, it quantifies the trade-off between the cost

ci, j of comparing the adjacent entities and the gain gi, j of

executing this comparison (i.e., ei, j.weight = gi, j/ci, j). The

cost ci, j pertains to the number of comparisons required by

the corresponding edge and is always equal to 1 (since,

by definition, each edge in the blocking graph captures

one comparison). Thus, the edge weight is always equal

to the gain of the corresponding comparison, which is 0

if the compared entities are not matching and 1 if they

are duplicates (i.e., ei, j.weight = 0 ↔ pi . p j and

ei, j.weight = 1 ↔ pi ≡ p j).

However, it is not possible to estimate the real value

of gi, j, and correspondingly ei, j.weight, without actually

executing the comparison between pi and p j. For this

reason, we use a weighting scheme that a-priori approxi-

mates the weight of each edge by considering the features

of the blocking graph (e.g., the number of blocks shared

by an edge’s adjacent entities and the corresponding indi-

vidual cardinalities). In Section 3.2, we will present five

such weighting schemes for redundancy-positive blocking

methods (i.e., the more similar two entities are, the higher

the weight of the corresponding edge is). Edges with low

weights are discarded by a pruning criterion that bounds

either the number or the weight of the retained edges.

Overall, our approach to meta-blocking involves four

successive steps, which are illustrated in Figure 3:

6

Graph

Building

!
Edge

Weighting

GB Graph

Pruning

GB
w

Block

Collecting

GB
p !

Building Weighting Pruning Collecting

Fig. 3. The internal functionality of our meta-blocking approach.

(i) Graph Building receives a block collection B and

derives the blocking graph GB from its block assignments.

We elaborate on this process in Section 3.1.

(ii) Edge Weighting takes as input a blocking graph GB
and turns it into the weighted blocking graph (Gw

B
) by

determining the weights of its edges. We introduce several

weighting schemes for this procedure in Section 3.2.

(iii) Graph Pruning receives as input the weighted block-

ing graph and derives the pruned blocking graph (G
p

B
)

from it by removing some of its edges. We delve into the

pruning algorithms and the pruning criteria involved in this

procedure in Section 3.3.

(iv) Block Collecting is given as input the pruned block-

ing graph G
p

B
and extracts from it a new block collection

B′, which actually constitutes the final output of the entire

meta-blocking process. We analyze this step in Section 3.4.

Note that the weighting scheme, the pruning algorithm,

and the pruning criterion can entail a schema-dependent,

schema-agnostic, or hybrid functionality. In the following,

we focus on schema-agnostic techniques since they are

applicable to any blocking settings, i.e., any combination

of a blocking scheme and a (pair of) entity collection(s).

3.1 Building the Blocking Graph

The process of extracting the blocking graph from a bi-

lateral block collection B is outlined in Algorithm 1 (for

unilateral blocks, the corresponding algorithm is simpler,

and we omit it for brevity). Essentially, for each block in

B, we consider every distinct pair of entities it contains

(Lines 2-5); for bilateral blocks, this process requires that

the considered entities belong to different inner blocks

(i.e., pi ∈ b1
i

and p j ∈ b2
j
). For each pair, we add the

corresponding nodes to the initially empty blocking graph

(Lines 4 and 6) and connect them with an edge (Line 7).

The edge weights are specified after the structure of the

blocking graph has been settled, because — as explained in

the next subsection — it is possible for a blocking scheme

to rely on it (Line 8). To restrict them to the interval [0, 1]

regardless of the input weighting scheme (cf. Definition 2),

we normalize them by dividing with the maximum one

(Line 9). The time complexity of this procedure is equal to

the aggregate cardinality of B (i.e., O(||B||)).

Graph Materialization. The blocking graph constitutes

a conceptual model that aims at facilitating the interpreta-

tion and the development of our meta-blocking techniques.

In the context of large entity collections with millions of

entities (nodes) and billions of comparisons (edges), its ma-

terialization actually poses significant technical challenges.

For this reason, it can be indirectly implemented in two

ways: (i) through inverted indices, which associate each

entity with the list of the blocks containing it, and (ii)

with the help of bit arrays, which represent each entity

as a vector with a zero value in all places, but those

corresponding to the blocks containing it (these are valued

1). Both approaches scale well in the context of HHIS and

accommodate all the weighting schemes of Section 3.2.

Algorithm 1: Building the Blocking Graph.

Input: (i) B a block collection,
(ii) WS a weighting scheme

Output: GB the corresponding blocking graph
1 VB ← {}; EB ← {}; //initially empty graph

2 foreach bi ∈ B do // check all blocks

3 foreach pi ∈ b1
i

do // check all comparisons

4 VB ← VB ∪ {vi};

5 foreach p j ∈ b2
i

do

6 VB ← VB ∪ {v j}; //add node for p j

7 EB ← EB ∪ {ei, j}; //add edge <pi,p j>

8 setEdgeWeights(WS , B, VB, EB);
9 normalizeEdgeWeights(EB);

10 return GB = {VB, EB,WS };

Efficiency of Construction. Theoretically, the construc-

tion of the blocking graph has the same complexity as

the naı̈ve method that iterates over all pairs of comparable

entities. In practice, though, meta-blocking exhibits a lower

running time when implemented on the basis of inverted

indices or bit arrays, because it exclusively involves opera-

tions with integers. Thus, the computation of edge weights

is much faster than the comparison of entity profiles, which

invariably relies on string matching algorithms. The reason

is that the latter typically have a non-trivial complexity of

their own. As an example, consider edit distance, one of the

simplest string comparison techniques, whose complexity

even for an optimized implementation is O(n2/ log n), when

n is the length for both of the compared strings [21]. We

analytically examine the time requirements of our meta-

blocking approaches in Section 4.4.

3.2 Edge Weighting

We introduce five schema-agnostic weighting schemes that

rely exclusively on evidence drawn from the input block

collection. We use the following notations: Bi ⊆ B denotes

the set of blocks containing the entity pi, Bi, j ⊆ B is the

set of blocks shared by the entities pi and p j (i.e., Bi, j =

Bi∩B j), and |vi| symbolizes the degree of node vi (i.e., the

number of edges connected to it). Next, we describe our

weighting schemes and explain the rationale behind them.

(i) Aggregate Reciprocal Comparisons Scheme (ARCS):

This scheme is based on the premise that the more entities a

block contains, the less likely they are to match. The reason

is that the information forming this block is not distinctive

enough to group highly similar entities. For instance, in the

case of attribute-agnostic blocking, common words would

cluster together a large part of the input entity collection.

In this context, the aggregate similarity of two co-occurring

entities, pi and p j, is defined as the sum of the reciprocal

individual cardinalities of their common blocks. Formally,

the weight of an edge ei, j is defined as follows:

ei, j.weight =
∑

bk∈Bi, j

1

||bk ||
.

(ii) Common Blocks Scheme (CBS): A strong indication

of the similarity of two entities is provided by the number

of blocks they have in common; the more blocks they share,

the more likely they are to match. Therefore, the weight of

an edge connecting entities pi and p j is set equal to:

7

ei, j.weight = |Bi, j|.

(iii) Enhanced Common Blocks Scheme (ECBS): This

scheme improves on CBS by adding contextual information

to its weights. Instead of merely considering the number of

common blocks, it takes into account the total number of

blocks that are associated with each one of the co-occurring

entities. Inspired from the IDF metric of Information Re-

trieval, the fewer blocks an entity is placed in, the higher

should be the weights of the edges associated with it. More

formally, the weight of an edge is set equal to:

ei, j.weight = |Bi, j| · log
|B|

|Bi|
· log

|B|

|B j|
.

(iv) Jaccard Scheme (JS): Similar to ECBS , this scheme

aims at enhancing CBS by considering the total number

of blocks associated with the co-occurring entities. To this

end, it sets the weight of the edge ei, j equal to the Jaccard

similarity of the lists of blocks associated with its adjacent

entities, pi and p j:

ei, j.weight =
|Bi, j|

|Bi| + |B j| − |Bi, j|
.

The resulting weights take values in the interval [0, 1],

with 0 indicating the absence of common blocks and 1

corresponding to identical block lists. In essence, these

weights reveal the percentage of common blocks shared

by the adjacent entities.

(v) Enhanced Jaccard Scheme (EJS): This scheme im-

proves on JS by adding contextual information to the

Jaccard similarity of the associated blocks. Namely, it

considers the total number of edges (i.e., comparisons)

associated with each one of the adjacent nodes. Based on

IDF, the fewer edges connected with a node, the higher

should their individual weights be. Thus, we have:

ei, j.weight =
|Bi, j|

|Bi| + |B j| − |Bi, j|
· log

|EB|

|vi|
· log

|EB|

|v j|
.

Note that the above weighting schemes rely on the prin-

ciple of redundancy-positive blocking methods that the sim-

ilarity of block assignments provides a good representation

of matching probability. Thus, the more blocks two entities

share, the more similar their profiles are expected to be.

In Section 4, we experimentally analyze the effect of these

weighting schemes on the performance of meta-blocking.

3.3 Pruning the Blocking Graph

This process is based on two essential components: (i)

the pruning algorithm, which specifies the procedure that

will be followed in the processing of the blocking graph,

and (ii) the pruning criterion, which determines the edges

to be retained. The combination of a pruning algorithm

with a pruning criterion forms a pruning scheme. In this

work, we introduce a series of pruning schemes that rely

on schema-agnostic pruning algorithms and criteria, thus

being applicable to any blocking graph.

Pruning algorithms. In general, they can be categorized

in two classes:

• The edge-centric algorithms select the globally best

comparisons by iterating over the edges of a blocking

graph in order to filter out those that do not satisfy the

pruning criterion.

Node centric
functionality

i h di li

Edge centric
functionality

i h di li weight cardinality
s

c global

weight cardinality
s

c global

o

p

e
local

o

p

e
local ! !

ee

(a) (b)

Fig. 4. All possible combinations of our pruning algorithms with

our pruning criteria.

• The node-centric algorithms iterate over the nodes of a

blocking graph with the aim of selecting the locally best

comparisons for each entity (i.e., the adjacent entities

with the largest edge weights).

We analytically examine the relative performance of

these two types of pruning algorithms in Section 4.2.

Pruning criteria. In general, they can be categorized in

a two-dimensional taxonomy formed by the orthogonal but

complementary dimensions of functionality and scope. The

functionality of pruning criteria distinguishes them into

weight thresholds, which specify the minimum weight for

the edges to be retained, and cardinality thresholds, which

determine the maximum number of retained edges. The

scope of pruning criteria distinguishes them into global

thresholds, which define conditions that are applicable to

the entire blocking graph (i.e., all the edges of the graph),

and local thresholds, which specify conditions that apply

to a subset of it (i.e., the adjacent edges of a specific node).

Cardinality thresholds should be preferred in applications

that have predefined temporal resources (i.e., available pro-

cessing time), because they allow for a-priori determining

the number of executed comparisons. In contrast, weight

thresholds are convenient for applications that put more

emphasis on controlling effectiveness, since the harshness

of their pruning is analogous to their value. Both classes,

though, are suitable for incremental ER (a.k.a., Pay-As-

You-Go ER) [31], where the goal is to execute most of

the matching comparisons in the first iterations, decreasing

their number gradually, as ER progresses. For weight

(cardinality) thresholds, this can be simply achieved by

decreasing (increasing) its value in every iteration.

Pruning Schemes. The composition of pruning schemes

is determined by the scope of pruning thresholds. In

Figure 4, we illustrate all possible combinations of prun-

ing algorithms with pruning criteria. Starting with the

edge-centric algorithms, we observe that they can only

be combined with global criteria — regardless of their

functionality. The reason is that it is impossible to employ

a local threshold, when trying to select the top weighted

edges across the entire blocking graph. The combination of

edge-centric algorithms with global weight thresholds (i.e.,

WEP) is analyzed in Section 3.3.1 and their coupling with

global cardinality thresholds (i.e., CEP) in Section 3.3.2.

By definition, the node-centric algorithms are compatible

with local thresholds — regardless of their functionality.

However, they can be combined with global thresholds, as

well. Their combination with a global weight threshold is

actually identical to WEP, as they both retain the edges

that are weighted higher than the given threshold. Their

8

Algorithm 2: Weight Edge Pruning.

Input: (i) Gin
B

the blocking graph, and
(ii) wmin the global weight pruning criterion.

Output: Gout
B

the undirected pruned blocking graph

1 foreach ei, j ∈ EB do

2 if ei, j.weight < wmin then // discard every edge with

3 EB ← EB - { ei, j }; // weight lower than wmin

4 return Gout
B
= {VB, EB,WS };

coupling with a global cardinality threshold retains the

same number of adjacent edges among all nodes (e.g.,

the 2 top-weighted edges per node). In contrast, their

combination with a local cardinality threshold derives the

number of retained edges for each node from its degree

(e.g., |vi|/10 of the top weighted edges for every node vi);

this approach is substantially different from CEP, which

keeps the top weighted edges across the entire blocking

graph. The pruning schemes that combine node-centric

algorithms with local weight thresholds (i.e., WNP) are

examined in Section 3.3.3, while those coupling them with

cardinality thresholds — of any scope — (i.e., CNP) are

examined in Section 3.3.4.

Before elaborating on the functionality of the pruning

schemes, it should be stressed that the node-centric algo-

rithms yield a directed, pruned blocking graph, unlike the

edge-centric algorithms that produce an undirected one.

3.3.1 Weight Edge Pruning (WEP)

This scheme consists of the edge-centric algorithm coupled

with a global weight threshold: the minimum edge weight.

Its functionality is outlined in Algorithm 2. It iterates over

all edges (Line 1) and discards (Line 3) those having

a weight lower that the input threshold (Line 2). The

remaining edges form the pruned blocking graph of the

output. The time complexity of this algorithm is equal to

the aggregate cardinality of the original block collection

(i.e., O(||B||)).

The most critical part of this algorithm is the selection of

the minimum edge weight wmin. Its precise value depends

on the underlying weighting scheme and the resulting

distribution of edge weights, in particular. In general,

though, the matching entities are expected to be connected

with edges of higher weights than the non-matching ones.

Thus, the goal is to identify the break-even point that

distinguishes the former type of edges from the latter.

Experimental evidence with real-world datasets suggests

that the average edge weight provides an efficient (i.e.,

requires just one iteration over all edges) as well as reliable

(i.e., low impact on effectiveness) estimation of this break-

even point, regardless of the underlying weighting scheme

(see Section 4.2 for details).

3.3.2 Cardinality Edge Pruning (CEP) or Top-K Edges

This scheme combines the edge-centric pruning algorithm

with a global cardinality threshold K that specifies the total

number of edges retained in the pruned graph. The goal is to

retain the K edges with the maximum weight. As illustrated

in the outline of Algorithm 3, this technique employs a

Algorithm 3: Cardinality Edge Pruning.

Input: (i) Gin
B

the blocking graph, and
(ii) K the global cardinality pruning criterion.

Output: Gout
B

the undirected pruned blocking graph

1 S ortedS tack ← {}; // sorts edges in descending weight

2 foreach ei, j ∈ EB do // add every edge

3 S ortedS tack.push(ei, j); // in the sorted stack

4 if K < S ortedS tack.size() then // remove the edge with

5 S ortedS tack.pop(); // the (K+1)th top weight

6 foreach ei, j ∈ EB do // discard all edges

7 if ei, j < S ortedS tack then // that are not among the

8 EB ← EB - { ei, j }; // the top-K weighted ones

9 return Gout
B
= {VB, EB,WS };

sorted stack in order to store the edges in descending order

of weights, thus efficiently removing (i.e., pop) the edge

with the lowest weight. The algorithm iterates over all

edges of the input blocking graph twice: the first iteration

(Lines 2-5) identifies the top-K edges and stores them in

the sorted stack; the second iteration (Line 6-8) removes

from the graph those edges that are not contained in the

sorted stack. Similar to WEP, the time complexity of this

algorithm is equal to the aggregate cardinality of original

block collection (i.e., O(||B||)).

To specify the optimal value for K, we employ a tech-

nique that relies on the BC-CC mapping of the initial

blocking graph and its pruned version. The goal is to

map the latter closer to the Ideal Point (1,2) than the

former. Given that the pruned graph results in a bilateral

block collection with K blocks of size 2 (cf. Section 3.4),

its CC takes the maximum value (i.e., CCout=2)2, while

its BC is equal to BCout=
2K
|E|

, where E is the size of

the input entity collection. Thus, CCout is greater than or

equal to CCin of the input blocking graph in all cases

and, for an improved BC-CC mapping, it suffices to have:

BCout≤BCin⇔
2K
|E|
≤BCin⇔K≤⌊

BCin·|E|

2
⌋, where BCin stands

for the BC value of the input blocking graph. Therefore, the

maximum meaningful value for K is specified with respect

to the level of redundancy of the input block collection. In

cases where CCin≪CCout, we can set K=⌊
BCin·|E|

2
⌋ in order

to ensure higher redundancy and, thus, higher PC. Although

this approach maintains the same levels of redundancy (i.e.,

the same number of block assignments), efficiency is signif-

icantly improved; unlike the input block collection, which

contains blocks of various sizes, the output exclusively

comprises blocks of minimum size (i.e., two entities per

block). This means that CEP minimizes the number of

pairwise comparisons for a specific level of redundancy.

3.3.3 Weight Node Pruning (WNP)

This scheme combines the node-centric pruning algorithm

with a local weight threshold. In essence, it applies the

WEP to the neighborhood of each node vi, i.e., the sub-

graph Gvi
that comprises the nodes of GB connected with vi

2. CC expresses the ratio of block assignments over comparisons (i.e.,
CC=

∑
bi∈B
|bi |/
∑

bi∈B
||bi ||. Given that the output of CEP involves only

blocks of size 2, there are two block assignments for every comparison,
thus leading to CCout=CCmax=2.

9

Algorithm 4: Weight Node Pruning.

Input: (i) Gin
B

the blocking graph, and
(ii) wt function for defining local weight pruning criteria.

Output: Gout
B

the directed pruned blocking graph

1 Eout
B
← {}; // the set of retained directed edges

2 foreach vi ∈ VB do // for every node get

3 Gvi
← getNeighborhood(vi, GB); //its neighborhood and

tvi
← wt(Gvi

); // its local weight threshold

4 foreach ei, j ∈ Evi
do // retain every adjacent

5 if tvi
≤ ei, j.weight then // edge with weight

6 Eout
B
← Eout

B
∪ { ¯ei, j }; // higher than tvi

7 return Gout
B
= {VB, E

out
B
,WS };

— denoted by Vvi
— along with the edges connecting them

— denoted by Evi
. Its functionality, though, differs from

WEP in two aspects: (i) it employs a different threshold

for each neighborhood, and (ii) it replaces the retained,

undirected edges with directed ones that point from vi to

a neighboring node. Algorithm 4 presents the pseudo-code

for this procedure: it iterates over all nodes of the input

blocking graph (Line 2) and extracts the corresponding

neighborhood Gvi
(Line 3). Based on this, it specifies the

minimum edge weight of the neighborhood according to

the input local threshold criterion (Line 4). Then, it iterates

over all edges of Evi
(Line 5) and adds one directed edge

to the pruned graph for every undirected edge that exceeds

the specified local threshold (Lines 6-7). In the worst case,

the input blocking graph is a complete one, thus accounting

for a time complexity of O(|VB|·|EB|); in practice, though,

it is significantly lower, as the underlying blocking scheme

ensures that not all nodes are connected with each other.

To specify the optimal threshold for each neighborhood,

we rely on the same rationale as WEP: weighting schemes

assign high values to edges connecting matching entities

and low values to edges connecting non-matching nodes.

Regardless of the selected scheme, the corresponding break-

even point can be approximated by the mean weight of the

edges in each neighborhood Gvi
.

3.3.4 Cardinality Node Pruning (CNP)

or k-Nearest Entities

At the core of this scheme lies the node-centric pruning

algorithm in conjunction with a local cardinality threshold.

Its goal is to select for each node vi, the k neighboring

nodes that are connected with the top edge weights (i.e., k-

nearest entities). To this end, it applies the CEP algorithm

to the neighborhood Gvi
of vi, as depicted in Algorithm 5. In

more detail, it iterates over all entities of the input blocking

graph (Line 2), extracting their neighborhood (Line 4) and

setting the maximum number of retained entities (Line

5). Subsequently, it iterates over the edges of the current

neighborhood and places them into the sorted stack (Line

6-9). For each of the selected undirected edges, a new,

directed one is added to the pruned blocking graph of the

output (Lines 10-12). The time complexity of this algorithm

is the same as that of WNP: O(|VB|·|EB|).

In general, the cardinality threshold for each neighbor-

hood depends on its size (e.g., ki=⌈0.1·|Evi
|⌉). For simplicity,

Algorithm 5: Cardinality Node Pruning.

Input: (i) Gin
B

the blocking graph, and
(ii) ct function for defining local cardinality pruning criteria.

Output: Gout
B

the directed pruned blocking graph

1 Eout
B
← {}; // the set of retained directed edges

2 foreach vi ∈ VB do

3 S ortedS tackvi
← {}; //for every node get

4 Gvi
← getNeighborhood(vi, GB); //its neighborhood and

5 k ← ct(Gvi
); // its local cardinality threshold

6 foreach ei, j ∈ Evi
do // add every adjacent

7 S ortedS tackvi
.push(ei, j); // edge in sorted stack

8 if k < S ortedS tackvi
.size() then // remove the

9 S ortedS tackvi
.pop(); // (k+1)th edge

10 foreach ei, j ∈ Evi
do // retain every adjacent

11 if ei, j ∈ S ortedS tack then // edge contained in

12 Eout
B
← Eout

B
∪ { ¯ei, j }; // the SortedStack

13 return Gout
B
= {VB, E

out
B
,WS };

though, we assume in the following that k takes the same

value for each neighborhood. To identify its optimal value,

we rely on the BC-CC mapping of the input and the output

blocking graph. Again, the goal is to ensure that the latter

is closer to (1,2) than the former. Given that the block

collection contains bilateral blocks with inner block sizes

of 1 and k (cf. Section 3.4), the CC of the pruned graph is

equal to CCout =
k+1

k
, while its BC is equal to BCout=k+1.

Thus, k is specified with respect to the CC and the BC

of the input block collection: 1
1−CCor

≤k≤BCin-1. In cases

where CCin≪1, we can safely set k=⌊BCin-1⌋, ensuring

significantly higher efficiency (CCout>1) at equal levels of

redundancy and PC.

3.4 Collecting the new blocks

The procedure for transforming a pruned blocking graph

into a new block collection depends on the type of the

graph. For the undirected pruned blocking graphs, which

are produced by the edge-centric pruning algorithms, block

collecting is straightforward: every retained edge lays the

basis for creating a bilateral block of minimum size that

contains the adjacent entities. As a result, the new block

collection is redundancy-free (i.e., non-overlapping blocks).

For example, the pruned blocking graph of Figure 1(d)

is transformed in the blocks b1 = {{p1}, {p3}} and b2 =

{{p2}, {p4}}.

For the directed pruned blocking graphs, which are

derived from the node-centric pruning algorithms, block

collecting creates a bilateral block for every node vi. Its

inner blocks have the following property: one of them

contains the entity that is mapped to vi, while the other

contains the entities connected with vi through the re-

tained, outgoing edges. For instance, the pruned block-

ing graph of Figure 1(e)3 is transformed into the blocks

b1 = {{p1}, {p3, p4}} and b2 = {{p2}, {p3, p4}}. In this way,

the new block collection involves redundant comparisons,

since it is possible for two retained edges with different

direction to connect the same entities. This means that its

3. For clarity we have excluded the outgoing edges of nodes p3 and p4.

10

efficiency can be further enhanced with block processing

techniques.

4 Evaluation
The goal of our experimental study is manifold: (i) to

demonstrate the benefits of meta-blocking over existing

blocking methods, (ii) to compare the edge-centric prun-

ing schemes with the node-centric ones, (iii) to compare

the weight pruning criteria with the cardinality ones, (iv)

to compare the weighting schemes for building blocking

graphs, (v) to compare meta-blocking with the state-of-

the-art approach of Iterative Blocking, (vi) to examine the

robustness of our pruning schemes, and (vii) to investigate

the time requirements of meta-blocking over large blocking

graphs with millions of nodes and billions of edges. Sec-

tion 4.1 elaborates on the set-up of our experiments, and

Section 4.2 examines the objectives (i) to (v), analyzing

the performance of all meta-blocking settings with respect

to RR, PC and PQ. Section 4.3 focuses on goal (vi) and

Section 4.4 on goal (vii). Note that we had to place all

figures and tables detailing our experimental results in the

appendix, due to lack of space.

4.1 Setup

Our approaches were implemented in Java 1.6 and are

publicly available through SourceForge.net4. Our experi-

ments were performed on a server with Intel Xeon X5670

2.93GHz and 16GB of RAM, running Scientific Linux 5.8.

Datasets. In our evaluation, we used the same datasets

as in our previous works [27], [28], [29], namely Dmovies,

Din f oboxes and DBTC09. In this way, we allow for a direct

comparison with their outcomes. Note that we have publicly

released all datasets, so that they can be used as a bench-

mark by other researchers5. Their technical characteristics

are summarized in Table 1.

Dmovies is a collection of 50,000 entities shared among

the individually clean collections of IMDB and DBPedia

movies. The ground-truth for this Clean-Clean ER dataset

stems from the “imdbid” attribute in the profiles of the

DBPedia movies.

Our second Clean-Clean ER dataset, Din f oboxes, consists

of two different versions of the DBPedia Infobox dataset6.

They contain all name-value pairs of the infoboxes in

the articles of Wikipedia’s English version, extracted at

specific points in time. The older collection, DBPedia1,

is a snapshot from October 2007, whereas DBPedia2 dates

from October 2009. The large time period that intervenes

between the two collections renders their resolution chal-

lenging, since only 25% of all name-value pairs is shared

among them [27]. As matching entities, we consider those

with the same entity URL.

Finally, DBTC09 is the Dirty ER dataset of our study,

comprising more than 250,000 entities, a subset of those

contained in the Billion Triple Challenge 2009 (BTC09)

data collection7. Its ground-truth consists of 10,653 pairs of

4. http://sourceforge.net/projects/erframework

5. See http://sourceforge.net/projects/erframework/files
for instructions on how to download them.

6. http://wiki.dbpedia.org/Datasets

7. http://km.aifb.kit.edu/projects/btc-2009

matching entities that were identified through their identical

value for at least one inverse functional property.

Baseline method. To evaluate the performance of our

meta-blocking techniques, the baseline for the two Clean-

Clean ER datasets was specified as the attribute-agnostic

blocking method in conjunction with Block Purging [27].

For Dmovies, the resulting blocks exhibit nearly perfect

effectiveness (PC = 99.39%) combined with high efficiency

(RR = 95.83% with respect to the naı̈ve method of compar-

ing all DBPedia movies with the IMDB ones). The former

can be actually attributed to the high levels of redundancy,

as each entity is placed in 22 blocks, on average. The

corresponding blocking graph is medium-sized, entailing

50 thousand nodes and 22 million edges. Similarly, the

resulting block collection for Din f oboxes achieves an ex-

cellent balance between efficiency and effectiveness (i.e.,

RR = 98.46% and PC = 99.89%). It involves high

redundancy (BC≈15) and produces a large blocking graph

with 3.3 million nodes and 34 billion edges.

The blocks of DBTC09 were extracted from those pro-

duced by Total Description [29] when applied to the entire

BTC09 data collection. To restrict the originally mas-

sive dataset to a moderate block collection that facilitates

our thorough experimental analysis, we first purged those

blocks that contained none of the ground-truth entities.

We then removed the singleton entities, which were as-

sociated with just one block after sampling, in order to

ensure a redundancy-positive block collection (BC>1) that

allows for applying meta-blocking. Finally, we discarded

the invalid blocks, which were left with just one entity, and

applied Block Purging [29] on the remaining set of blocks.

The resulting block collection combines a high RR(>99%)

with a high PC(≈97%) and yields a blocking graph with

250 thousand nodes and 77 million edges.

Note that in all datasets, we do not measure the effect

of meta-blocking on efficiency against a stand-alone block

building method. Instead, we estimate RR with respect to

Block Purging, which yields a significant reduction in the

aggregate cardinality of the original blocks. In addition,

we consider as a baseline the state-of-the-art approach of

Iterative Blocking [32]. In essence, this method propagates

every new pair of duplicates to all associated blocks (even

if they have already been examined) in order to identify

additional matches and to save unnecessary comparisons.

To assess the impact of meta-blocking on effectiveness,

we consider the relative reduction in PC (∆PC), which

is formally defined as ∆PC =
PC(B′)−PC(B)

PC(B)
· 100%, where

PC(B) and PC(B′) denote the effectiveness of the original

and the restructured block collection, respectively.

4.2 Measuring the blocks of Meta-blocking

In this section, we examine the first five of our evaluation

objectives. To this end, we applied all pruning schemes

to all blocking graphs (i.e., weighting schemes) that can be

derived from Dmovies, Din f oboxes and DBTC09. We categorized

the results according to the corresponding pruning scheme

and analytically present them in Tables 4(a) to 4(d).

(i) Effect of meta-blocking on blocking. Table 4(a) depicts

the performance of WEP in conjunction with all weighting

11

schemes across all datasets. For Dmovies and Din f oboxes,

we notice that all weighting schemes convey significant

enhancements in efficiency (RR>70%), while incurring

moderate reduction in PC (∆PC<10%). Similar patterns are

exhibited for DBTC09: in the worst case ∆PC≈10%, while

RR remains higher than 95% for all weighting schemes.

The performance of most of them is actually very close

over DBTC09. In contrast, for Dmovies and Din f oboxes, there is

a clear trade-off between RR and PC: the higher the former

gets, the lower the latter is and vice versa. Note, though,

that the evolution of PQ suggests that RR decreases faster

than PC increases.

These patterns can be explained by the weight distri-

bution lying at the core of each weighting scheme. As

an example, consider Figures 7(a) and (b), which depict

the distribution for every weighting scheme over Dmovies

(similar distributions are exhibited in the other two datasets,

as well, but we omit the corresponding diagrams, due to

lack of space). In all histograms, the bucket size is set equal

to half the average edge weight (w̄) of the corresponding

scheme across the entire blocking graph (i.e., including the

links between matching and non-matching nodes/entities).

Thus, the two leftmost bars correspond to the pruned edges

and the remaining eight bars to the retained ones. We

observe a clear polarization for all weighting schemes: the

vast majority of the matching edges is concentrated on the

two right-most intervals, with a negligible portion of them

lying in the left half (the opposite applies to non-matching

edges). In fact, the higher the PC of a weighting scheme

over Dmovies is, the lower is the corresponding number of

matching edges in the first two intervals. On the other

hand, the higher its RR is, the lower is the portion of non-

matching edges placed in the intervals [1.5·w̄,5·w̄].

Table 4(b) illustrates the performance of WNP for all

weighting schemes over all datasets. Similar to WEP, there

is a clear trade-off between effectiveness and efficiency for

Dmovies and Din f oboxes. It is interesting to note that ranking

the weighting schemes in descending order of RR (i.e.,

ascending order of PC) results in the same order as in Ta-

ble 4(a). For DBTC09, all weighting schemes achieve similar,

high performances with respect to all metrics. Compared to

WEP, though, the combination of every weighting scheme

with WNP yields significantly higher PC as well as lower

RR and PQ.

Table 4(c) presents the performance of CEP in combina-

tion with all weighting schemes across the three datasets.

By definition, they all achieve the same RR, which amounts

to 97.48%, 99.94% and 99.85% for Dmovies, Din f oboxes and

DBTC09, respectively. In absolute numbers, this corresponds

to 11, 15 and 3 comparisons per entity, respectively, thus

requiring 2 orders of magnitude fewer comparisons than

the input block collection. Apparently, this is at the cost

of lower effectiveness, since PC is reduced in all datasets

by more than 14%, regardless of the weighting scheme

(the only exception is ARCS for DBTC09). The worst

performance usually corresponds to CBS and JS , because

there are many pairs of entities that share exactly the

same number or portion of blocks, respectively. Again, this

behavior can be explained by the normalized histograms in

Figures 7(a) and (b), since CEP generally retains the edges

of the rightmost interval; the more matching edges and the

less non-matching ones it contains, the higher is the PC of

the corresponding weighting scheme.

Finally, Table 4(d) presents the performance of CNP

for all weighting schemes across all datasets. Similar to

its edge-centric counterpart, it exhibits excessively high

efficiency for both datasets (i.e., RR>95%). In absolute

numbers, this corresponds to 22, 28 and 7 comparisons per

entity for Dmovies, Din f oboxes and DBTC09, respectively. Its

impact on effectiveness is rather limited, reducing PC at

most by 5% for the Clean-Clean ER datasets and less than

14% for the Dirty ER one.

(ii) Edge-centric vs. node-centric pruning schemes. The

relative performance of these two types of pruning schemes

depends on the pruning criteria that lie at their core.

Thus, an equal basis comparison requires exactly the same

configuration. This is impossible, though, for the weight

criteria: WEP can only be combined with a global one,

while WNP makes sense only when coupled with a local

one (its conjunction with a global threshold renders it

identical to WEP).

The configuration of Section 3.3 approximates the ideally

equal settings, assuming similar criteria for both algorithms

(i.e., average edge weight). For this configuration, our ex-

periments suggest that the edge-centric algorithms perform

a deeper pruning that results in the lowest number of

comparisons and detected matches (i.e., lowest ∆PC). Nev-

ertheless, they are more accurate in discarding superfluous

comparisons, achieving higher PQ across all datasets and

weighting schemes. For example, consider the combination

of ARCS with WEP and WNP over Dmovies: PQ suggests

that for every 100 comparisons, the former identifies around

1.5 matches and the latter almost half of them.

On the other hand, the node-centric schemes are more

conservative in pruning edges, retaining even double as

much comparisons. Thus, they have a significantly smaller

impact on PC, which is also ensured by the more even

distribution of comparisons among entities; unlike the edge-

centric algorithms, which completely disregard the enti-

ties/nodes that are associated with none of the top weighted

edges, they ensure that every node remains connected with

the most similar of its co-occurring entities.

In the case of cardinality pruning criteria, it is possible

to apply the same global threshold to both CEP and CNP.

However, these settings merely allow for comparing the

relative effectiveness, since they involve the same number

of executed comparisons for both algorithms. We put these

settings into practice using as threshold for CEP the total

number of comparisons required by CNP. The outcomes

with respect to PC are presented in Table 2 and confirm that

the node-centric algorithms achieve a significantly higher

effectiveness than the edge-centric ones, across all datasets

and weighting schemes.

In summary, the most appropriate meta-blocking settings

for the application at hand depend on its performance

requirements and the available resources (assuming the

12

configuration of Section 3.3). The node-centric pruning

schemes are suitable for applications emphasizing on ef-

fectiveness, provided that they can afford the high space

requirements (these pruning schemes store a threshold or a

certain number of comparisons per entity). They are also

particularly useful for tasks that are inherently expressed

in terms of entities (e.g., applications like social networks

that seek duplicates for a specific subset of the input

entities) and for entity collections that are expected to

contain a large portion of duplicate profiles (i.e., there is

a matching entity for most of the nodes). In contrast, the

edge-centric pruning schemes are suitable for applications

like incremental ER that focus on efficiency, especially

when the portion of matching entities is expected to be

rather low; in these settings, the top weighted edges are

more likely to correspond to the few duplicate profiles.

(iii) Weight vs. cardinality pruning criteria. There is a

clear pattern in the relative performance of weight and

cardinality pruning thresholds for the configuration of Sec-

tion 3.3: the former put more emphasis on effectiveness

and the latter on efficiency. In fact, the combination of

any weighting scheme with a cardinality threshold requires

at least half the comparisons than its combination with

the corresponding weight one, regardless of the selected

pruning algorithm. In most of the cases, this difference

amounts to a whole order of magnitude in the actual number

of comparisons. Note, though, that this radical increase

in efficiency is accompanied by a moderate difference in

effectiveness, due to the efficacy of cardinality thresholds

in distinguishing the matching comparisons from the super-

fluous ones. Comparing the PQ of CEP (CNP) with that of

WEP (WNP), we observe that the former is usually higher

than the latter by a whole order of magnitude. Still, weight

thresholds exhibit higher PC, reducing it — in the worst

case — half as much as the corresponding meta-blocking

settings with a cardinality criterion. Therefore, there is

no dilemma when choosing the appropriate criterion with

respect to the application requirements. Note, though, that

this decision also depends on the available resources, since

the cardinality criteria have higher memory requirements.

(iv) Comparison between weighting schemes. For

DBTC09, ARCS consistently achieves the highest perfor-

mance with respect to all block quality metrics, while the

rest of the weighting schemes exhibit similar, but lower

performance in most of the cases. For the Clean-Clean

ER dataset, the choice depends on the functionality of the

pruning criterion. In more detail, ECBS offers a balanced

choice for the weight pruning criteria, combining high effi-

ciency enhancements with negligible reductions in PC. For

the cardinality pruning criteria, where RR remains stable

across all weighting schemes, EJS consistently achieves

the (nearly) best efficiency-effectiveness balance, scoring

the highest PC values in most of the cases.

Of particular interest, though, is the comparison between

the plain weighting schemes and their enhanced versions;

that is, between CBS and ECBS as well as between

JS and EJS . The actual question is whether the more

information included in the enhanced schemes leads to a

better balance between RR and PC than the plain ones.

The weight pruning criteria does not offer a clear answer;

we can merely observe that the enhanced schemes offer

lower RR and lower PQ at the benefit of higher PC. In

contrast, the cardinality pruning criteria allow for a direct

comparison: RR is the same across all weighting schemes,

but the enhanced ones achieve higher PC in practically

all the cases. PQ also takes significantly higher values

for ECBS and EJS . We can conclude, therefore, that the

enhanced schemes convey significant enhancements in the

performance of CBS and JS .

(iv) Comparison with Iterative Blocking. Before exam-

ining the performance of Iterative Blocking, it is worth

clarifying that its functionality in the context of Clean-

Clean ER is reduced to discarding part of the superfluous

comparisons. In fact, it propagates all detected duplicates

to the subsequently processed blocks and merely saves

those comparisons that involve at least one entity that has

been matched to some other. This approach conveys signif-

icant efficiency enhancements when applied to redundancy-

positive block collections: its RR exceeds 60% for Dmovies

and 35% for Din f oboxes. All meta-blocking methods, though,

achieve higher efficiency gains, as they have a broader

scope, targeting all superfluous comparisons. This is also

verified by PQ, which indicates that Iterative Blocking

executes the highest portion of superfluous comparisons

across both datasets. Its only advantage is that it incurs no

impact on effectiveness. In practice, though, this is of minor

importance, given that most meta-blocking approaches have

limited cost in effectiveness in the context of Clean-Clean

ER.

The real strength of Iterative Blocking lies in Dirty ER,

especially in applications that involve equivalence classes of

high cardinality. In these settings, it puts more emphasis on

identifying additional matches, thus yielding the highest PC

among all methods. This is exactly the case with DBTC09:

although the original PC is already high, amounting to

97%, Iterative Blocking increases it by more than 1%.

The re-examination of large blocks, though, increases the

number of executed comparisons and prevents significant

enhancements in efficiency. Indeed, it merely saves around

1% of all comparisons in the case of DBTC09. Thus, its

efficiency is significantly lower than meta-blocking, which

again discards more superfluous comparisons.

In summary, Iterative Blocking is only appropriate for

applications that place effectiveness in priority and are

satisfied with rather conservative savings in efficiency. For

the rest of them, meta-blocking offers a better balance

between effectiveness and efficiency.

Discussion. In summary, we can conclude that among the

weighting schemes, the Enhanced Common Blocks Scheme

consistently offers a good balance between effectiveness

and efficiency over Clean-Clean ER. For Dirty ER, though,

the Aggregate Reciprocal Comparisons Scheme offers the

best approach. We also observe that the node-centric ap-

proaches perform a shallow pruning that yields lower PQ

and RR values than edge-centric ones. This allows them

to retain almost intact the original effectiveness, especially

13

when combined with weight thresholds. Therefore, applica-

tions that place more emphasis on effectiveness should opt

for node-centric pruning schemes, while those focusing on

efficiency should consider the edge-centric ones. Among

the two types of pruning criteria, the weight thresholds

are more robust with respect to effectiveness, while the

cardinality thresholds are appropriate for applications em-

phasizing on efficiency, such as incremental ER.

4.3 Sensitivity Analysis

As mentioned above, the performance of pruning algo-

rithms depends largely on the underlying pruning criterion

— regardless of its scope or functionality. To examine

how our pruning schemes behave as a function of their

thresholds, we performed sensitivity analyses of RR and

PC for all schemes over the three datasets of our study.

In Figures 8(a) to (d), we present the behavior of each

pruning algorithm in combination with a specific weighting

scheme over Dmovies (for each algorithm, the rest of the

weighting schemes demonstrated similar patterns and, thus,

are omitted for brevity. Nevertheless, we tried to cover all of

them, considering in each diagram a different one.). Every

diagram was derived by incrementing the pruning threshold

from 0.1·t to 1.9·t with a step of 0.1·t, where t denotes

the threshold derived from the configuration of Section 3.3

(e.g., the average edge weight in the case of WEP).

In every figure, we observe that there is a clear trade-off

between RR and PC. Higher thresholds increase RR and

reduce PC for the weight pruning criteria, and vice versa

for the cardinality ones. In fact, the evolution of PC is

practically linear for all pruning schemes. The same applies

to RR for the cardinality criteria, whereas for the weight

ones, the linear evolution is preceded by a steep rise for

the interval [0.1·t, 0.5·t]. The thresholds of Section 3.3 cor-

respond to the vertical dotted line intersecting the middle of

the x-axes. We observe that in every case, small variations

in the size of t lead to small variations in the resulting

performance. This suggests that the threshold we selected

for each pruning scheme achieves a good balance between

effectiveness and efficiency. Thus, it provides a good basis

for adjusting a meta-blocking method to the requirements

of the application at hand. For example, an application

employing CEP could double the threshold specified by

our approach in order to rise PC by 10% for double as

many comparisons.

In summary, the sensitivity analysis of Figures 8(a) to

(d) demonstrate that our meta-blocking methods are robust

with respect to the threshold configurations of Section 3.3.

4.4 Time Requirements of Meta-blocking

The real usefulness of meta-blocking depends on the rela-

tion between the time required for building and pruning the

blocking graph and the time consumed while performing

the (spared) pairwise comparisons. The goal of this section

is to examine whether the former is significantly lower than

the latter, thus justifying the use of our approaches. To this

end, we evaluate the time requirements of meta-blocking

using three measures:

• Materialization Time (MT) refers to the time required

by the first two steps of meta-blocking, i.e., graph

building and edge weighting.

• Restructure Time (RT) corresponds to the last two

steps of meta-blocking, i.e., graph pruning and block

collecting.

• Comparison Time (CT) indicates the time required for

performing the (retained) pairwise comparisons.

As the baseline method, we consider the one that iterates

over the input blocks, executing all the comparisons they

entail, without any further processing (i.e., its processing

time exclusively corresponds to CT , while MT=RT=0). For

all methods, the similarity of entity profiles is defined as

the Jaccard coefficient of their tokenized attribute values;

any other entity comparison technique is also applicable,

but this choice is orthogonal to the proposed method, thus

not altering our experimental results.

The outcomes of our experiments are presented in Ta-

ble 3. We notice the following patterns for the vast majority

of meta-blocking approaches across all datasets: first, the

overall processing time of the weighting pruning criteria is

dominated by CT , with MT and RT merely accounting

for a fraction of it. Exception to this rule is ARCS in

conjunction with WEP and WNP, as the low discernibility

of its weights (≪0.1 in most of the cases) results in a

time-consuming meta-blocking process. Second, there is

a balance between CT and MT + RT for the cardinality

pruning criteria, since they entail a very low number of

comparisons with respect to the size of the graph. Again,

ARCS corresponds to the least efficient meta-blocking

process.

We also notice that for every dataset, MT and RT take

almost identical values for all weighting schemes, with the

small variations corresponding to the different functionality

of each weighting scheme. Regarding CT , we observe that

it takes significantly lower values for the cardinality pruning

criteria than for the weight ones. This overhead is caused

not only by the lower number of comparisons retained by

the former, but also by the fact that the latter iterate over all

edges of the blocking graph during the comparisons phase.

In summary, we observe that all combinations of pruning

schemes with a weighting one require significantly less

time than the baseline method. For example, the most

efficient meta-blocking techniques for Dmovies (i.e., CEP

in conjunction with CBS or JS) are 35 times faster than

the baseline. Even the most time-consuming meta-blocking

settings for each dataset run at least 2 times faster than

the baseline. As explained in Section 3.1, this should be

attributed to the efficient materialization of the blocking

graph, which involves lower complexity than the string-

based techniques for comparing entity profiles.

Note that optimization techniques can be integrated into

the implementation of the meta-blocking and the entity

comparison methods. For instance, during the pruning of

the blocking graph, edges with weights lower than the spec-

ified threshold can be identified more efficiently with the

help of prefix filtering. No such technique was considered,

14

though, in our experimental study, since it is orthogonal to

our evaluation.

5 Conclusions
In this paper, we introduced meta-blocking as a generic

task that can be applied on top of any blocking method to

increase its efficiency at a minor cost in effectiveness. We

described a family of techniques, at the core of which lies

the blocking graph; they prune its edges with the lowest

weight in order to derive a new set of blocks that sacrifices

a negligible amount of matches to save a large number of

comparisons. We thoroughly evaluated all combinations of

the proposed techniques over two large, real-world datasets.

The results demonstrate the high efficiency enhancements

conveyed by our meta-blocking techniques, with the Weight

Node Pruning involving two orders of magnitude less

comparisons at a minor cost in PC (less than 3% reduction).

In absolute values, meta-blocking helps process the original

set of blocks 10 to 50 times faster, reducing the required

comparisons by a whole order of magnitude.

In the future, we plan to enhance the efficiency of meta-

blocking through the incorporation of schema informa-

tion that depends on the underlying application. We also

acknowledge that meta-blocking depends on the level of

redundancy entailed by the underlying block collection,

which — for some block building methods — can be

configured by tuning the corresponding parameter(s). Thus,

we intend to investigate the effect of these parameters on the

performance of meta-blocking. Last but not least, we will

study the interplay of meta-blocking with blocking methods

that consider profile merges in the context of Dirty ER, such

as HARRA [18] and Iterative Blocking [32].

Acknowledgements. This research has been co-financed

by the European Union (European Social Fund - ESF)

and Greek national funds through the Operational Program

“Education and Lifelong Learning” of the National Strate-

gic Reference Framework (NSRF) - Research Funding

Program: Thales. Investing in knowledge society through

the European Social Fund.

References
[1] A. N. Aizawa and K. Oyama. A fast linkage detection scheme for multi-source

information integration. In WIRI, pages 30–39, 2005.

[2] R. Baxter, P. Christen, and T. Churches. A comparison of fast blocking methods

for record linkage. In SIGKDD, volume 3, pages 25–27, 2003.

[3] M. Bilenko, B. Kamath, and R. J. Mooney. Adaptive blocking: Learning to

scale up record linkage. In ICDM, pages 87–96, 2006.

[4] C. Bizer, T. Heath, T. Berners-Lee, and T. Berners-Lee. Linked data - the story

so far. Int. J. Semantic Web Inf. Syst., 5(3):1–22, 2009.

[5] P. Christen. Data Matching - Concepts and Techniques for Record Linkage,

Entity Resolution, and Duplicate Detection. Data-centric systems and applica-

tions. Springer, 2012.

[6] P. Christen. A survey of indexing techniques for scalable record linkage and

deduplication. IEEE Trans. Knowl. Data Eng., 24(9):1537–1555, 2012.

[7] W. W. Cohen, P. D. Ravikumar, and S. E. Fienberg. A comparison of string

distance metrics for name-matching tasks. In IIWeb, pages 73–78, 2003.

[8] T. de Vries, H. Ke, S. Chawla, and P. Christen. Robust record linkage blocking

using suffix arrays. In CIKM, pages 1565–1568, 2009.

[9] A. Doan and A. Halevy. Semantic integration research in the database

community: A brief survey. AI Magazine, 26(1):83–94, 2005.

[10] X. Dong, A. Halevy, and J. Madhavan. Reference reconciliation in complex

information spaces. In SIGMOD, pages 85–96, 2005.

[11] U. Draisbach and F. Naumann. A comparison and generalization of blocking

and windowing algorithms for duplicate detection. In Proceedings of the

International Workshop on Quality in Databases (QDB), pages 51–56, 2009.

[12] A. Elmagarmid, P. Ipeirotis, and V. Verykios. Duplicate record detection: A

survey. IEEE Trans. Knowl. Data Eng., 19(1):1–16, 2007.

[13] I. Fellegi and A. Sunter. A theory for record linkage. Journal of the American

Statistical Association, pages 1183–1210, 1969.

[14] L. Getoor and C. Diehl. Link mining: a survey. SIGKDD Expl., 7(2):3–12,

2005.

[15] L. Gravano, P. Ipeirotis, H. Jagadish, N. Koudas, S. Muthukrishnan, and

D. Srivastava. Approximate string joins in a database (almost) for free. In

VLDB, pages 491–500, 2001.

[16] A. Y. Halevy, M. J. Franklin, and D. Maier. Principles of dataspace systems.

In PODS, pages 1–9, 2006.

[17] M. Hernández and S. Stolfo. The merge/purge problem for large databases. In

SIGMOD, pages 127–138, 1995.

[18] H. Kim and D. Lee. HARRA: fast iterative hashed record linkage for large-

scale data collections. In EDBT, pages 525–536, 2010.

[19] N. Koudas, S. Sarawagi, and D. Srivastava. Record linkage: similarity measures

and algorithms. In SIGMOD, pages 802–803, 2006.

[20] J. Madhavan, S. Cohen, X. L. Dong, A. Y. Halevy, S. R. Jeffery, D. Ko, and

C. Yu. Web-scale data integration: You can afford to pay as you go. In CIDR,

pages 342–350, 2007.

[21] W. Masek and M. Paterson. A faster algorithm computing string edit distances.

Journal of Computer and System sciences, 20(1):18–31, 1980.

[22] A. McCallum, K. Nigam, and L. Ungar. Efficient clustering of high-

dimensional data sets with application to reference matching. In KDD, pages

169–178, 2000.

[23] M. Michelson and C. A. Knoblock. Learning blocking schemes for record

linkage. In AAAI, pages 440–445, 2006.

[24] F. Naumann and M. Herschel. An Introduction to Duplicate Detection.

Synthesis Lectures on Data Management. Morgan & Claypool Publishers,

2010.

[25] J. Nin, V. Muntés-Mulero, N. Martı́nez-Bazan, and J.-L. Larriba-Pey. On the

use of semantic blocking techniques for data cleansing and integration. In

IDEAS, pages 190–198, 2007.

[26] A. Ouksel and A. Sheth. Semantic interoperability in global information

systems: A brief introduction to the research area and the special section.

SIGMOD Record, pages 5–12, 1999.

[27] G. Papadakis, E. Ioannou, C. Niederée, and P. Fankhauser. Efficient entity

resolution for large heterogeneous information spaces. In WSDM, pages 535–

544, 2011.

[28] G. Papadakis, E. Ioannou, C. Niederée, T. Palpanas, and W. Nejdl. To compare

or not to compare: making entity resolution more efficient. In SWIM Workshop,

2011.

[29] G. Papadakis, E. Ioannou, C. Niederée, T. Palpanas, and W. Nejdl. Beyond

100 million entities: Large-scale blocking-based resolution for heterogeneous

data. In WSDM, pages 53–62, 2012.

[30] S. Tejada, C. A. Knoblock, and S. Minton. Learning domain-independent string

transformation weights for high accuracy object identification. In KDD, pages

350–359, 2002.

[31] S. Whang, D. Marmaros, and H. Garcia-Molina. Pay-as-you-go entity resolu-

tion. IEEE Trans. Knowl. Data Eng. (to appear), 2012.

[32] S. E. Whang, D. Menestrina, G. Koutrika, M. Theobald, and H. Garcia-Molina.

Entity resolution with iterative blocking. In SIGMOD, pages 219–232, 2009.

[33] S. Yan, D. Lee, M.-Y. Kan, and C. L. Giles. Adaptive sorted neighborhood

methods for efficient record linkage. In JCDL, pages 185–194, 2007.

George Papadakis is a PhD student at the
Leibniz University of Hanover. He holds a
Diploma in Computer Engineering from the Na-
tional Technical University of Athens (NTUA)
and has worked at the NCSR “Demokritos”,
NTUA and the L3S Research Center. His re-
search interests include entity resolution and
web data mining. He has received the best
paper award from ACM Hypertext 2011.

Georgia Koutrika is a senior researcher at HP
Labs, Palo Alto. Prior to that, she was a post-
doctoral researcher at IBM Almaden Research
Center and Stanford University. She holds a
PhD in Computer Science from the University
of Athens in Greece. Her research interests in-
clude personalized search, recommendations,
user modeling, social media, information ex-
traction, resolution and integration, and search
interfaces.

Themis Palpanas is a professor of computer
science at the University of Trento, Italy. Be-
fore that he worked at the IBM T.J. Watson
Research Center, and has also worked for the
University of California at Riverside, Microsoft
Research and IBM Almaden Research Center.
He is the author of five US patents, three of
which are part of commercial products. He has
received three best paper awards and is Gen-
eral Chair for VLDB 2013.

15

Wolfgang Nejdl received M.Sc. and Ph.D. de-
grees from the Technical University of Vienna.
Currently, he is a professor of computer science
at the University of Hanover, where he leads the
L3S Research Center and the Distributed Sys-
tems Institute/Knowledge-Based Systems. His
research focuses on information retrieval, peer-
to-peer infrastructures, databases, technology-
enhanced learning, and artificial intelligence.

Appendix

RelatedWork

��

��

�����

�	
��
�
 �

�����

�������
�

�
���������

(a)

��
���������

��

�����

�	
��
�
 �

�����

�����
�

�����

�������
�

� ��

(a)

(b)

Fig. 5. (a) The process of traditional blocking-based ER, and

(b) the blocking-based ER with meta-blocking. In both cases, the

input comprises the entity collections to be resolved (E1 and E2),

while the output consists of the detected duplicates Ddetected and

the computational cost c (i.e., number of executed comparisons).

There is a large amount of work on entity resolution

ranging from string similarity metrics [7] to methods rely-

ing on transformations [30] and entity relationships [10].

Analytical overviews can be found in these surveys [9],

[12], [14], tutorials [19], [26] and books [5], [24]. Due to

their quadratic complexity, ER methods typically scale to

large data collections through blocking. The blocking-based

ER process conceptually consists of two main steps: block

building and block processing (see Figure 5(a)).

Block building receives as input two entity collections

(E1 and E2 in Figure 5(a)) and creates a set of blocks

B. Methods of this type are categorized according to two

orthogonal criteria: their relation to redundancy and to

schema information. The former criterion was analyzed in

Section 1, while the latter distinguishes them into schema-

based and schema-agnostic blocking methods; that is, into

those techniques that integrate schema information in their

functionality and those that completely disregard such ev-

idence. The resulting two-dimensional taxonomy of block

building methods is illustrated in Figure 6.

On the one hand, schema-based blocking methods extract

from each entity a blocking key that summarizes the values

of selected attributes. Entity profiles are then placed in

blocks on the basis of equal or similar blocking keys.

Schema-based blocking methods include Sorted Neighbor-

hood [17], bi-grams [2] and q-grams [15] blocking, Suffix

Array [1], [8], HARRA [18], and Canopy Clustering [22].

A comparative analysis can be found in [6]. As this study

points out, one of their major drawbacks is the fine-

tuning of multiple parameters [8]. To ameliorate this issue,

automatic methods can be trained to select the optimal

parameter values [3], [23].

On the other hand, schema-agnostic blocking creates

blocks solely on the basis of attribute values, i.e., without

knowledge of the input schema(ta). Semantic Indexing [25]

creates blocks based exclusively on the relationships be-

tween entity profiles. Attribute-agnostic Blocking creates

a distinct block for each token shared by at least two

input entity profiles [27]. For RDF data, Total Description

exploits semantics in the entity URIs, links between entities

and tokens in the literal values of every profile [29]. Both

techniques do not require tuning (i.e., their functionality is

parameter-free) and exhibit high robustness and effective-

ness, due to the high levels of redundancy they involve.

Block processing receives as input a set of blocks B and

produces as output the set of detected duplicates Ddetected

along with their computational cost c, in terms of the

number of executed comparisons (see Figure 5(a)). Its

goal is to process the input set of blocks in such a way

that minimizes c without any significant impact on the

cardinality of Ddetected. This can be achieved by eliminating

the redundant and the superfluous comparisons contained

in B. To this end, Block Purging [27] discards the largest

blocks, while Block Scheduling [27] sorts blocks according

to a probabilistic measure that estimates their likelihood to

contain duplicates. Thus, it forms the basis for applying

Block Pruning [27] and Duplicate Propagation [32]; the

former terminates the entire processing as early as possible,

while the latter maximizes the number of superfluous

comparisons that can be spared by the early detection of

duplicate profiles. On another line of research, Iterative

Blocking [32] propagates the latest match decisions to all

associated blocks: every time two entity profiles are found

duplicates, they are replaced by the merged profile in all

blocks containing either of them. These blocks are then

scheduled for processing, even if they have already been

examined. In this way, a block collection is processed

iteratively in order to increase the matching accuracy (and,

thus, the blocking effectiveness) and to spare repeated

comparisons.

The proposed meta-blocking procedure is fundamentally

different from both block building and block processing. It

is a specialized procedure applicable to redundancy-positive

block building methods. Its input comprises the set of

blocks B created by such a method and its output is a new

set of blocks B′ that involves fewer comparisons than B,

while placing (almost) the same number of matching entity

profiles in at least one block. Block Purging and Block

Pruning have a similar interface, but their functionality

is restricted in discarding some of the input blocks. In

contrast, meta-blocking techniques aim at restructuring the

given block collection B based on the block-to-entity asso-

ciations it entails. For this reason, it is performed between

block building and block processing, improving the output

of the former in order to facilitate the performance of the

latter, as shown in Figure 5(b). A similar idea was explored

in Comparison Pruning [28], which discards comparisons

between entity profiles that share a rather small portion of

blocks in the context of redundancy-positive methods. Thus,

it can be viewed as a specific instantiation of our meta-

blocking framework; in fact, it is equivalent to applying

WEP (see Section 3.3.1) on a blocking graph with Jaccard

similarities as weights (see Section 3.2).

16

����������	

���

����������	����
��

����������	

�����
��

����������	

�������

����������	

���
�
��

��������	

������	

�����

������
�

�������� ����

������

�����	
��� ����

��������	

��
�	�

�	�����
����

�� !���

��"#$"�
�%� �������� ��!�&�

��''�()�

�� ��!*�

+�,,� ��*�

������	

������
�
" "

�	%�����

-��	(��� ��&�

���
����	"�������� �� �

.���� /	��
������ ��0�

Fig. 6. Two-dimensional taxonomy of block building methods.

Experimental Outcomes

Dmovies Dinfoboxes DBTC09DBPedia IMDB DBP1 DBP2

Entities 27,615 23,182 1,19·106 2,16·106 253,353

Name-Value Pairs 186,013 816,012 1.75·107 3.67·107 1,60·106

Blocks 40,430 1.21·106 106,462
BC 22.52 15.38 7.45

CC 4.27·10−2 1.29·10−3 1.44·10−2

Brute Force Comp. 6.40·108 2.58·1012 3.21·1010

Block Comp. 2.67·107 3.98·1010 1.31·108

Original RR 95.83% 98.46% 99.59%

Existing Matches 22,405 892,586 10,653
Original PC 99.39% 99.89% 96.94%

Original PQ 9.83·10−4 2.24·10−5 7.89·10−5

Edges 2.26·107 3.41·1010 7.77·107

Nodes 5.06·104 3.33·106 2.53·105

TABLE 1

Overview of the evaluation datasets.

Dmovies Dinfoboxes DBTC09

PCCEP PCCNP PCCEP PCCNP PCCEP PCCNP

ARCS 89.16% 94.13% 83.82% 96.87% 93.22% 95.60%

CBS 80.42% 95.20% 60.46% 96.34% 31.97% 88.70%

ECBS 87.17% 96.69% 67.85% 97.72% 65.78% 86.25%

JS 89.22% 94.93% 86.02% 96.86% 35.97% 83.79%

EJS 91.03% 95.98% 85.26% 97.18% 51.85% 84.50%

TABLE 2

Comparing effectiveness between CEP and CNP for the same

number of comparisons across all datasets.

Dmovies (minutes) Dinfoboxes (hours) DBTC09 (minutes)

MT RT CT
∑

MT RT CT
∑

MT RT CT
∑

Baseline .0 .0 14 14 .0 .0 128 128 0 0 111 111

ARCS .1 .6 1.0 1.6 3.2 24.4 25.7 53.3 .2 2.5 5.9 8.7

W CBS .1 .1 .9 1.1 3.3 7.0 21.2 31.6 .2 1.5 19.8 21.5

E ECBS .1 .2 1.2 1.4 3.1 6.7 30.8 40.6 .2 1.8 17.2 19.2

P JS .1 .1 2.1 2.3 3.2 6.0 51.2 60.4 .2 1.9 20.2 22.3

EJS .1 .2 2.3 2.5 3.2 6.7 52.0 62.0 .2 2.0 20.2 22.4

ARCS .1 .6 1.3 1.9 3.5 25.9 28.7 58.1 .2 2.7 21.5 24.5

W CBS .1 .1 1.0 1.2 3.2 6.2 24.4 33.9 .2 1.7 24.3 26.3

N ECBS .1 .2 2.1 2.4 3.6 7.5 33.4 44.6 .2 2.1 30.9 33.2

P JS .1 .1 3.0 3.2 3.5 7.0 55.4 65.9 .2 2.1 37.7 40.1

EJS .1 .2 3.6 3.8 3.6 8.0 58.5 70.1 .2 2.4 39.6 42.1

ARCS .1 .6 .2 .9 3.2 24.5 .1 27.9 .2 2.6 .8 3.6

C CBS .1 .1 .2 .4 4.2 7.4 .1 11.7 .2 1.5 .8 2.5

E ECBS .1 .2 .2 .4 4.4 8.0 .1 12.6 .2 1.9 .8 2.9

P JS .1 .2 .2 .4 4.2 7.5 .1 11.8 .2 1.9 .8 2.9

EJS .1 .2 .2 .4 3.2 7.1 .1 10.4 .2 2.2 .8 3.2

ARCS .1 .6 .3 1.0 3.2 24.7 .2 28.1 .2 2.7 1.5 4.4

C CBS .1 .1 .3 .5 3.8 6.7 .2 10.8 .2 1.6 1.5 3.3

N ECBS .1 .2 .3 .6 3.7 6.9 .2 10.9 .2 2.0 1.5 3.6

P JS .1 .2 .3 .6 3.2 6.3 .2 9.8 .2 1.9 1.5 3.6

EJS .1 .2 .3 .6 3.2 7.1 .2 10.6 .2 2.3 1.5 4.0

TABLE 3

Processing time for all meta-blocking methods over the three

datasets of our experimental study.

���� ��� ���� �� ���

��

��

��

���
���

�����������	 ��
����������	

�

	�

��

�
��
 �
��
 �
��
 	
��
 	
��
 �
��
 �
��
 �
��
 �
��
 �
��

(a) Non-matching edges.

��

��

��

���
���

�����������	 ��
����������	

�

	�

��

�
��
 �
��
 �
��
 	
��
 	
��
 �
��
 �
��
 �
��
 �
��
 �
��

(b) Matching edges.
Fig. 7. Normalized histograms of the weight distributions in all

blocking graphs of Dmovies, where w denotes the average edge

weight of the blocking graph for each weighting scheme.

17

Dmovies Dinfoboxes DBTC09

Comp. RR PC ∆PC PQ Comp. RR PC ∆PC PQ Comp. RR PC ∆PC PQ

(×106) (%) (%) (%) (×10−2) (×108) (%) (%) (%) (×10−4) (×107) (%) (%) (%) (×10−4)

Iterative Bl. 10.41 61.06 99.39 0 0.21 255.94 35.67 99.89 0 0.35 12.98 0.84 98.22 1.32 0.81

ARCS 1.38 94.82 90.89 -8.55 1.47 2.85 99.28 92.45 -7.45 29.00 0.41 99.35 94.77 -2.24 24.85

CBS 2.71 89.88 94.68 -4.74 0.78 33.97 91.46 95.47 -4.42 2.51 2.16 96.57 86.84 -10.42 4.29
ECBS 3.52 86.82 97.95 -1.45 0.62 57.71 85.50 99.66 -0.23 1.54 1.81 97.12 86.60 -10.67 5.08
JS 6.71 74.90 97.93 -1.46 0.33 112.21 71.80 99.73 -0.16 0.79 2.15 96.58 87.13 -10.12 4.31
EJS 7.34 72.54 98.32 -1.07 0.30 110.14 72.32 99.77 -0.11 0.81 2.13 96.61 89.01 -8.18 4.45

(a) WEP

ARCS 2.55 90.44 96.55 -2.86 0.85 14.84 96.27 99.41 -0.48 5.98 2.25 96.43 95.72 -1.26 4.54

CBS 2.86 89.31 97.19 -2.21 0.76 35.65 91.04 99.35 -0.54 2.49 2.69 95.72 91.46 -5.66 3.62
ECBS 6.92 74.10 98.64 -0.75 0.32 99.37 75.02 99.75 -0.14 0.90 3.42 94.56 91.13 -5.99 2.84
JS 10.00 62.59 98.68 -0.71 0.22 195.93 50.76 99.87 -0.02 0.46 4.22 93.29 91.43 -5.68 2.31
EJS 11.81 55.77 99.16 -0.23 0.19 199.96 49.74 99.88 -0.01 0.45 4.41 93.00 92.52 -4.56 2.24

(b) WNP

ARCS 0.57 97.87 82.75 -16.74 3.25 0.26 99.94 79.46 -20.46 276.83 0.09 99.85 92.17 -4.92 103.99

CBS 0.57 97.87 75.78 -23.75 2.98 0.26 99.94 51.71 -48.37 179.68 0.09 99.85 24.07 -75.17 27.16
ECBS 0.57 97.87 81.58 -17.92 3.20 0.26 99.94 62.14 -37.79 216.49 0.09 99.85 42.81 -56.05 48.07
JS 0.57 97.87 79.12 -20.40 3.11 0.26 99.94 82.09 -17.83 285.98 0.09 99.85 25.77 -99.55 29.07
EJS 0.57 97.87 84.87 -14.61 3.33 0.26 99.94 79.61 -20.30 277.37 0.09 99.85 45.85 -52.71 51.73

(c) CEP

ARCS 1.10 95.88 94.13 -5.39 1.91 0.50 99.88 96.87 -3.02 174.63 0.18 99.72 95.60 -1.38 58.22
CBS 1.10 95.88 95.20 -3.48 1.95 0.50 99.88 96.34 -3.56 173.68 0.18 99.72 88.70 -8.50 54.02
ECBS 1.10 95.88 96.69 -2.71 1.97 0.50 99.88 97.72 -2.17 176.17 0.18 99.72 84.34 -11.03 52.53
JS 1.10 95.88 94.93 -4.45 1.93 0.50 99.88 96.86 -3.03 174.62 0.18 99.72 83.79 -13.57 51.03
EJS 1.10 95.88 95.98 -3.43 1.95 0.50 99.88 97.18 -2.71 175.19 0.18 99.72 84.50 -12.83 51.46

(d) CNP

TABLE 4

Performance of all pruning schemes in combination with all weighting schemes over the three datasets of our study.

Sentiment Extraction from Tweets:

Multilingual Challenges

Nantia Makrynioti(B) and Vasilis Vassalos

Athens University of Economics and Business, 76 Patission Street,
GR10434 Athens, Greece

{makriniotik,vassalos}@aueb.gr

Abstract. Every day users of social networks and microblogging ser-
vices share their point of view about products, companies, movies and
their emotions on a variety of topics. As social networks and microblog-
ging services become more popular, the need to mine and analyze their
content grows. We study the task of sentiment analysis in the well-known
social network Twitter (https://twitter.com/). We present a case study
on tweets written in Greek and propose an effective method that cate-
gorizes Greek tweets as positive, negative and neutral according to their
sentiment. We validate our method’s effectiveness on both Greek and
English to check its robustness on multilingual challenges, and present
the first multilingual comparative study with three pre-existing state of
the art techniques for Twitter sentiment extraction on English tweets.
Last but not least, we examine the importance of different preprocessing
techniques in different languages. Our technique outperforms two out
of the three methods we compared against and is on a par to the best
of those methods, but it needs significantly less time for prediction and
training.

1 Introduction

Users have integrated microblogging services and social networks in their daily
routine, and tend to share through them increasingly more thoughts and expe-
riences of their lives. As a result, platforms, such as Twitter, are a goldmine for
the tasks of opinion mining and sentiment analysis, providing valuable informa-
tion on topics of timeliness or not, by users of varying social, educational and
demographic background.

In this paper, we examine sentiment analysis in Twitter with emphasis on
tweets written in Greek and we suggest a method based on supervised learning.
Sentiment analysis is defined as the task of classifying texts, in case of Twitter
these correspond to tweets, into categories depending on whether they express

This research has been co-financed by the European Union (European Social Fund –
ESF) and Greek national funds through the Operational Program “Education
and Lifelong Learning” of the National Strategic Reference Framework (NSRF) –
Research Funding Program: Thales. Investing in knowledge society through the
European Social Fund.

c© Springer International Publishing Switzerland 2015
S. Madria and T. Hara (Eds.): DaWaK 2015, LNCS 9263, pp. 136–148, 2015.
DOI: 10.1007/978-3-319-22729-0 11

Sentiment Extraction from Tweets: Multilingual Challenges 137

positive or negative emotion or whether they enclose no emotion at all. As a
consequence, sentiment analysis solves two classification tasks, the identification
of objective and subjective tweets and the categorization of the latter according
to their polarity. Given a number of tweets, our task is to categorize them in three
classes, positive, negative and neutral depending on the presence of features that
indicate emotion or not, as most of the times this is consistent with the sentiment
of the message [12].

Although recently many papers study the task of sentiment analysis and
many approaches have been proposed, almost all of them regard English text
and work for other languages is limited. Moreover, many studies do not report
results from comparisons with other pre-existent methods and each technique is
usually evaluated on a single dataset. Evaluation on different datasets, including
data of more than one languages, is an interesting process, which cross-checks
the performance of the methods among languages.

The contributions of our paper are summarized below:

1. We propose a novel method for classification of tweets into three categories,
positive, negative and neutral, and we evaluate our classifier on real Greek
and English tweets. Our method outperforms two of the three compared
approaches while giving statistically indistinguishable results to the third but
with significant less time.

2. We present a case study of sentiment analysis in the context of the Greek
language, unlike English that are much more studied and understood. For
this purpose we collected and manually annotated a corpus of posts in Greek
from Twitter, in order to be used as training and test data.1

3. We present extensive evaluation results and comparisons to three existing
methods developed for English on a Greek as well as an English dataset.
The purpose of these experiments is to provide the first comparative study
of different state of the art techniques over Greek data, and examine their
generalizability to address multilingual challenges. We also examine the con-
tribution of specific preprocessing and postprocessing steps through ablation
tests that demonstrate the degree to which certain steps of the proposed
method improve the accuracy of the system with regard to Greek or English.

The rest of the paper is organized as follows. Section 2 presents some repre-
sentative approaches on the problem of sentiment analysis and sect. 3 analyzes
the data used for training and testing. In Sect. 4 at first we give an overview
of our method and then we describe in detail every step of it. Results from the
evaluation of the classifier and the comparative analysis are reported in Sect. 5.
Finally, Sect. 6 concludes and presents ideas for future work.

2 Related Work

The mining and analysis of unstructured data from social networks has attracted
considerable attention in recent years. Go et al. [9] dealt with sentiment analysis

1 Data are available by emailing the authors.

138 N. Makrynioti and V. Vassalos

in Twitter, but their work was limited to positive and negative sentiments, and
does not involve the recognition of objective (neutral) tweets. The machine learn-
ing algorithms that were applied are Multinomial Naive Bayes, Support Vector
Machines (SVM) [24] and Maximum Entropy, whereas unigrams, bigrams as
well as the combination of these two were used as features. Maximum accuracy
reached 83 % and was achieved with Maximum Entropy and both unigrams and
bigrams. Pak and Paroubek [20] emphasized the preprocessing of tweets before
classification and adopted bigrams, trigrams, negation and part-of-speech tags
as features. They used entropy and introduced a variant of it called “salience”
to select the most representative features. Their results show that bigrams out-
perform trigrams and salience discriminated n-grams better than entropy. The
method described in [5] divides the classification of tweets into two stages. The
first stage classifies subjective and objective tweets, while the second categorizes
subjective tweets into positive and negative. Part-of-speech tags are used as fea-
tures in this paper too. Dictionaries of subjective terms and syntax features of
Twitter, such as hashtags, links, punctuation and words in capital letters, were
also employed. The classifier used SVM and maximum error rate for the first
stage reached 18.1 %, whereas for the second stage it reached 18.7 %.

Even though the paper by Pang et al. [21] is not about Twitter, it is
a benchmark and a comparison point with all the studies mentioned above.
The paper addresses the task of sentiment analysis in movie reviews. Features
include unigrams, bigrams and negation. Multinomial Naive Bayes and Maxi-
mum Entropy were tested, but SVM achieved 82.9 %, which was the maximum
accuracy. Finally, a very recent approach by Mohammad et al. [17], which used
a variety of features, including ngrams, syntax, lexicon and negation features,
achieved the highest average F-score (69.02 %) with a SVM classifier in SemEval
2013 (International Workshop on Semantic Evaluation) and the task of senti-
ment analysis in Twitter [18]. Our work falls into the same category with the
aforementioned studies, but apart from the certain difference of experimenting
on Greek data, we apply a different combination of features and preprocess-
ing steps, followed by a novel postprocessing negation identification step, which
attempts to recognize the structure of negation in text and reverse the given
prediction, rather than affect the features used for classification. Moreover, we
reproduce published methods and present comparisons of them on a multilingual
fashion, experimenting on datasets from two languages, Greek and English. All
the above approaches belong to the category of supervised learning, but many
studies have also performed unsupervised sentiment analysis. Due to limited
space, we do not mention them here.

As stated earlier, there is lack of studies concerning other languages than
English and the task is not sufficiently examined from this perspective. The
paper by Atteveldt et al. [4] presents a system for automatically determining
the polarity of relations between actors, e.g. politicians and parties, and issues,
such as unemployment and healthcare, in Dutch text. To determine the polarity
of relations, the authors use existing techniques for sentiment analysis in Eng-
lish and show that these methods can be translated to Dutch. Another study

Sentiment Extraction from Tweets: Multilingual Challenges 139

that addresses the multilingual perspective of the task is presented by Boiy
and Moens [6]. The authors propose a supervised method for sentiment analysis
and perform experiments on English, Dutch and French blog reviews and forum
texts. There is also work about sentiment analysis on Modern Standard Arabic
at the sentence level [2]. Arabic is a morphologically-rich language in contrast
to English and the authors propose some Arabic-specific features along with the
more commonly used and language-independent ones. Another work by Abbasi
et al. [1] performs sentiment analysis on hate/extremist group forum postings
in English and Arabic, and evaluates a variety of syntactic and stylistic features
for this purpose. A method on Chinese data is also proposed by Zhao et al. in
[26]. We are aware of a paper regarding reputation management on Greek data
[22], but it presents a commercial product very briefly and in the abstract, and
cannot be reproduced. Thus, our method not only is described extensively and
in detail, but is also compared with other methods in the literature.

Finally, with regard to papers that compare methods and systems of senti-
ment analysis, such as [10] and [3], we take a step further and present compar-
isons in more than one languages.

3 Data

In this section we describe the datasets that are used for training and testing.
Details about the size and contents of each dataset are given by Table 1. The
Greek training data were collected between August 2012 and January 2015. Part
of positive and negative tweets are based on subjective terms and around 20 % of
neutral tweets were gathered from accounts of newspapers and news sites. The
rest were streamed randomly. Respectively, Greek test set consists of random
tweets posted between October 2013 and January 2015. We used Twitter Search
and Streaming API2 for the collection. Both training set and test set were labeled
by three annotators. The calculated Fleiss’ kappa [7] for the training set is 0.83,
which is interpreted as almost perfect agreement, whereas for the test set is
0.691, which denotes substantial agreement. We will refer to the Greek training
and test set as GR–train and GR–test.

For experiments on English we use training and test data provided by the
organizers of SemEval 2013 [18] for the task of sentiment analysis in Twit-
ter. The organizers collected tweets according to popular topics, which included

Table 1. Datasets

Dataset Positive Negative Neutral Total

GR–train 1870 2940 3190 8000

GR–test 261 249 378 888

Sem–train 3287 1601 4175 9063

Sem–test 1572 601 1640 3813

2 https://dev.twitter.com/.

140 N. Makrynioti and V. Vassalos

named entities previously extracted by a Twitter-tuned NER system [23], and
used Mechanical Turk for annotation. We will refer to SemEval training and test
set as Sem–train and Sem–test respectively.

4 Overview of Approach

The approach we adopt consists of three main steps: (1) Preprocessing of data.
(2) Feature engineering. (3) Reversal of classifier’s prediction for a tweet due to
negation identification. The proposed method takes into account not only inflec-
tion but also word stress, both characteristics of morphologically-rich languages,
and suggests a novel technique to reduce the negative effect of the combination
of both in classification performance. Moreover, it treats identification of nega-
tion as a postprocessing step and attempts to capture its structure, which is a
much different approach than adding a special suffix to bag-of-words features
that most methods do until now. The aforementioned steps are described in
detail in the following sections.

4.1 Preprocessing

Preprocessing is applied to both training and test set. The first step of pre-
processing is the removal of noise from the data. Elements that do not indicate
the polarity of a tweet are considered as noise. Such elements are listed below.
(1) URL links. (2) Mentions of other users. (3) The abbreviation RT, which indi-
cates that a tweet is a retweet of another one. (4) Stop words, including articles
and pronouns. Stop words are extremely common words, which appear to be of
little value in deciding the sentiment of a text.

Because users use plethora of emoticons/hashtags, we choose to replace posi-
tive emoticons3 with the emoticon “:)” and negative emoticons4 with the emoti-
con “:(”. A number of hashtags, such as #fail and #win, are also replaced
with the former two emoticons. The aim of this step is to group the emoti-
cons/hashtags in two categories and to avoid the need of importing tweets in the
training set for each one of them. In addition to the above replacements, possible
repetitive vowels encountered in a word are reduced to one, whereas repetitive
consonants are reduced to two.

Capitalization and removal of accent marks are the next steps. An accent
mark over the vowel in the stressed syllable is used in Greek to denote where
the stress goes, e.g. (good morning). In order to avoid mistakes due
to omission of stress marks and incorrect use of capital letters versus lowercase
letters, we remove these marks from tweets and transform them to uppercase.
Stemming is the third and last step, and is used mostly to compensate for data
sparseness. Stems are generated by George Ntais’ Greek stemmer [19] for Greek
and by Lovins stemmer [15] via the Weka data mining software [11] for English.

3 List of positive emoticons: :-), :), :o), :], :3, :c), :>, =], 8), =), :}, :ˆ), <3, ˆ ˆ, ;>,
(:, ;), (;, :d, :D.

4 List of negative emoticons: >:[, :-(, :(, :-c, :c, :-<, :<, :-[, :[, :{, :’(, :/ .

Sentiment Extraction from Tweets: Multilingual Challenges 141

The previous steps are applied to the test set too. However, the preprocessing
of test set involves an additional step: part-of-speech tagging. It takes place
before stemming and is an auxiliary step for the process of negation identification
(Sect. 4.3), which follows classification. After the replacements, we annotate the
words of each tweet with part-of-speech tags, which are not taken into account
by the classifier to predict the class, but are used in patterns whose intention
is to detect negation. A Greek part-of-speech tagger [13] is used for the tagging
process in Greek, whereas in English the Carnegie Mellon University (CMU)
Twitter Natural Language Processing (NLP) tool was selected [8].

4.2 Features

Feature engineering follows the bag-of-words representation with unigrams and
term presence. Due to the limit in the number of characters that compose a
tweet, a unigram is enough to denote the sentiment in most of the cases. For
some unigrams there is a dependency with a particular class, while others do not
give any information under any circumstances about the polarity. We decided
to keep only a subset of them in order to eliminate noisy features and build a
simpler model. We experimented with two methods, Information Gain and Chi
Squared [14]. They both gave equally good results, so Information Gain is chosen
arbitrarily for the experiments displayed in sections below.

Apart from word ngrams, lexicons of subjective terms, which contain terms
with association to positive and negative sentiments, may provide various fea-
tures for sentiment analysis. There are plenty of subjective lexicons in English,
but we are not aware of any such lexicons in Greek. Nonetheless, we attempted
to create manually two simple Greek subjective lexicons, one with positive words
and one with negative words according to their prior polarity. Words were derived
from random tweets, not contained in GR–train or GR–test, or translated from
subjective English lexicons. The positive lexicon contains 199 words and the
negative one consists of 292 words. We use two simple features, the presence of
positive/negative terms of such lexicons in Greek tweets and more sophisticated
features, such as those proposed in [17], for English data. In the aforementioned
paper, lexicon-based features proved to be useful for the task of sentiment analy-
sis. We present our conclusions about this kind of features in Sect. 5.

4.3 Negation Identification and Polarity Reversal

Negation identification is based on patterns of part-of-speech tags combined with
negation words. We attempt to identify these patterns in each tweet and store
the token that is negated. For example, the Greek word (not) followed by
a verb and an adjective constitutes a negation pattern. If a tweet contains the
phrase (The movie wasn’t good), the former negation
pattern will be identified due to the word , the verb (both correspond
to wasn’t) and the adjective (good). Then the token , which is the one
that is negated, will be stored. Nine frequent patterns are recognized for Greek
and eight for English. The detection of negation aims to reverse the prediction

142 N. Makrynioti and V. Vassalos

given by the classifier for a tweet from positive to negative or from negative to
positive. If the prediction is neutral, no change is made. So following the decision
of the classifier, we first check if a negated token is stored for the tweet. If yes,
then we examine if this token belongs to the features that are present in the
tweet. Suppose we have the aforementioned tweet for which we have kept the
token as the negated token. If the unigram is one of the features
and its value is 1, which indicates that this feature is present in the tweet, then
the appropriate reversal of polarity will be performed. Otherwise, it will not.

4.4 Challenges of the Greek Language

The Greek language has a highly inflective nature that reduces the effective-
ness of usual bag-of-words features. Greek verbs and adjectives are inflected for
person, number and gender, which affects mostly the suffixes of the words. The
various suffixes due to inflection increase ngram features, many of which are not
contained in the training set. Hence, classification performance decreases. As a
countermeasure to the inflective nature of Greek, the words of each tweet are
replaced by their stems, assuming that stems are enough to denote the sentiment
of a tweet in most cases.

Except from inflected verbs and adjectives, stress marks used in Greek make
things even more complicated. Twitter users often forget to add these marks or
they add them at the wrong syllable, creating this way a number of different ver-
sions of the same word (e.g. is a different unigram from).
As stated earlier, we chose to remove accent marks in order to reduce ngram
features, but in case of stemming this choice may lead to mistaken predictions.
Specifically, although stemming operates positively and helps the method to gen-
eralize better on unseen data (a conclusion that is drawn from the ablation tests
included in Sect. 5.4), there is a case where it operates negatively: the stem of two
words is the same whereas their polarities are different. For example the Greek
words (agree) and (according to) have completely different
meaning. The first word has positive polarity, whereas the second is neutral.
Since the stem of both words is , there is no information to reveal the
original word before stemming. As unigrams are used for predictions after stem-
ming, the above case may be handled incorrectly. The described phenomenon
can be frequently seen in Greek, even with words that are spelled exactly the
same, but because they are stressed differently, their meaning changes. Note that
these words are not homonyms as the word “like” for example, which serves both
as verb and as proposition. In fact, purely homonyms with different polarity are
extremely rare if non existent in the Greek language.

In order to handle the particular cases properly, a database is created with
each record storing the following information: (i) stem, (ii) part-of-speech tag,
(iii) polarity. The presence of unigrams (if any), on which the classifier based each
prediction, are stored. If one of them, along with its part-of-speech tag, exists
in the database, it is replaced with another one that has the same polarity.
Specifically, if the unigram that exists in the database is positive, it will be
replaced with the emoticon “:)”, whereas if it is negative, it will be replaced with

Sentiment Extraction from Tweets: Multilingual Challenges 143

the emoticon “:(”. Finally, if the unigram is neutral, an article will replace it. At
the moment, seven such cases are identified and stored in the database. However,
this database can be continually improved by a user feedback mechanism.

The described particularities show that depending on language, different pre-
processing steps may improve the performance of the classifier and thus it is not
trivial to suggest a method that proves to be best for every language.

5 Experiments

There are two versions of the proposed method that are developed for the exper-
iments. The first one uses SVM as the classification algorithm and we will refer
to it as #Sentiment v1. The second version is called #Sentiment v2 and uses
Logistic Regression. SVM uses linear kernel and the value of parameter C is
1.0. The implementations of both algorithms are provided by the Weka data
mining software. The section of experiments is divided in two parts. The first
part presents the results of the evaluation on the Greek dataset collected by
us, whereas the second includes results of experiments on English data provided
by SemEval 2013. In these subsections we also compare the proposed method to
three pre-existing methods developed for English [5,9,17], which we followed and
implemented according to the descriptions in the corresponding papers. We will
refer to these methods as Go method, Mohammad method and Barbosa method
according to the first author. Due to space restrictions we do not describe these
methods, but of course we provide the corresponding references for details.

The evaluation metrics we report in the experiments are average precision,
recall and F-score, i.e. the sum of the corresponding metrics for each class divided
by the number of classes. We also use McNemar’s test [16] to check the statistical
significance of the difference in performance between systems in each experiment.

5.1 Greek Data

The experiments of this section concern the evaluation on Greek data gathered
by us, i.e. the GR–test. We present a comparison between the two versions of our
system and the three pre-existing methods described above. For Barbosa method
we implement only two lexicon features, number of positive and number of
negative words, as all other lexicon features depend on the structure of the
MPQA lexicon [25], which is separated into strong subjective and weak subjec-
tive terms (this distinction does not exist in current Greek lexicons). Figure 1 dis-
plays the evaluation results of the five systems, #Sentiment v1, #Sentiment v2,
Go method, Mohammad method and Barbosa method on Greek data. As far
as our method is concerned, the difference in F-score between #Sentiment v1
and #Sentiment v2 on GR–test is statistically significant, which means that
SVM outperforms Logistic Regression. However, our performance is statistically
indistinguishable from Mohammad method. The other two methods by Go and
Barbosa achieve much lower average F-scores.

144 N. Makrynioti and V. Vassalos

Fig. 1. Results on Greek data (GR–train for training and GR–test for testing)

The main conclusion of this experiment is that just the use of unigrams as
features is not enough to achieve high accuracy in a classification problem with
three classes. The Go method was originally tested on a two-class classification
of English tweets and generated good results, but the extension of the method
to three classes and on another language seems not so simple and would need
further preprocessing steps/features to work. This is demonstrated by #Senti-
ment v1, #Sentiment v2 and Mohammad method, which also support the use
of unigrams, but extend it with lexicon features, more preprocessing, such as
stemming or feature selection, and achieve to reach higher average F-scores.
Mohammad method addresses inflection by keeping all ngram features, which
however means a much larger model and more training time.

5.2 English Data

This section is dedicated to experiments on English data provided by the orga-
nizers of SemEval 2013. Again we present a comparison between the system
proposed (only #Sentiment v1, which is the best version according to the pre-
vious experiments) and the other three methods.

The evaluation results on the SemEval dataset (Sem–train and Sem–test)
are displayed in Fig. 2. #Sentiment v1 and Mohammad method are again sta-
tistically indistinguishable and give the highest F-scores. Again methods that
include both ngram and lexicon features, along with preprocessing and feature
selection techniques, perform better on English data.

Sentiment Extraction from Tweets: Multilingual Challenges 145

Fig. 2. Results on SemEval data (Sem–train for training and Sem–test for testing)

5.3 Time Consumption

In this section we present time performance results of the methods using the
number of predicted tweets per second and training time. All methods ran on a
single machine with an Intel Core i5 processor at 2.6 GHz and 16 GB of RAM.
Details about time consumption of each method are given by Table 2.

Table 2. Time consumption

Method Predicted tweets/sec Training time (minutes)

#Sentiment v1 16 tweets/sec 8.45 min

Mohammad method 9 tweets/sec 14.91 min

Go method 807 tweets/sec 5.9 min

Barbosa method 8 tweets/sec 15 min

Although #Sentiment v1 and Mohammad method are indistinguishable in
terms of F-score, #Sentiment v1 needs 43 % less prediction and training time.
This difference in time performance is reasonable, since Mohammad method gen-
erates more features, such as part-of-speech and Twitter syntax features (RTs,
hashtags, e.g.), which based on the experimental results they do not contribute
that much to accuracy, but they increase processing time. Go method is by far
the fastest method. This is because it only involves unigram features, which
are quickly generated. Nevertheless, they fail to predict test data effectively as
experimental results demonstrated.

146 N. Makrynioti and V. Vassalos

5.4 Sensitivity Analysis

We also performed ablation tests in order to check how the omission of different
steps of our method affects performance. Table 3 shows the effect of negation
identification, feature selection and stemming on Greek and English data. The
remarkable change in F-score in Greek after the omission of stemming is expected
due to the inflective nature of the language. Notably, negation identification does
not seem to matter a lot. This is probably due to the fact that many tweets are
neutral and their polarity is not reversed, but also that the technique suffers
from low recall. It tends to be quite precise and correctly reverse polarity when
a negation pattern is captured and the negated token is one of the classification
features. However, in many cases the negated token does not belong to the
features and even though the pattern is again captured, no reversal takes place.

Table 3. Results of sensitivity analysis

Modification Avg F-score on Greek Avg F-score on English

No modification 68.6 % 64.2 %

Without negation identification 68.7 % 64.1 %

Without feature selection 66.7 % 62.2 %

Without stemming 63.1 % 62.2 %

6 Conclusion and Future Work

We present a method for sentiment analysis in Twitter focused on the Greek
language. We perform the first multilingual comparative analysis and report
comparison results to three leading existing methods, from experiments on two
different datasets (Greek and English). Our method clearly outperforms two of
the three methods we compared against in sentiment extraction, while being
statistically indistinguishable from the third. However, the proposed method
needs 43 % less time for predictions and training. These experiments reveal that
the generalization of a method to different languages or from a two to a three
class classification problem is not trivial. Moreover, they give evidence about
the effect of different preprocessing steps and features, such as stemming, in
performance for Greek and English. An interesting idea to pursue in the future
is the assignment of sentiment to the correct entity in the tweet.

References

1. Abbasi, A., Chen, H., Salem, A.: Sentiment analysis in multiple languages: feature
selection for opinion classification in web forums. ACM Trans. Inf. Syst. 26(3),
12:1–12:34 (2008)

Sentiment Extraction from Tweets: Multilingual Challenges 147

2. Abdul-Mageed, M., Diab, M.T., Korayem, M.: Subjectivity and sentiment analysis
of modern standard arabic. In: Proceedings of the 49th Annual Meeting of the
Association for Computational Linguistics: Human Language Technologies: Short
Papers . HLT 2011, vol. 2, pp. 587–591. Association for Computational Linguistics,
Stroudsburg, PA, USA (2011)

3. Annett, M., Kondrak, G.: A comparison of sentiment analysis techniques: polariz-
ing movie blogs. In: Bergler, S. (ed.) Canadian AI. LNCS (LNAI), vol. 5032, pp.
25–35. Springer, Heidelberg (2008)

4. Atteveldt, W.V., Ruigrok, N., Schlobach, S.: Good news or bad news? conduct-
ing sentiment analysis on dutch text to distinguish between positive and negative
relations. J. Inf. Technol. Polit. 5(1), 73–94 (2008)

5. Barbosa, L., Feng, J.: Robust sentiment detection on twitter from biased and
noisy data. In: Proceedings of the 23rd International Conference on Computational
Linguistics: Posters, pp. 36–44. Association for Computational Linguistics (2010)

6. Boiy, E., Moens, M.F.: A machine learning approach to sentiment analysis in mul-
tilingual web texts. Inf. Retrieval 12(5), 526–558 (2009)

7. Fleiss, J., et al.: Measuring nominal scale agreement among many raters. Psychol.
Bull. 76, 378–382 (1971)

8. Gimpel, K., Schneider, N., O’Connor, B., Das, D., Mills, D., Eisenstein, J.,
Heilman, M., Yogatama, D., Flanigan, J., Smith, N.A.: Part-of-speech tagging for
twitter: annotation, features, and experiments. In: Proceedings of the 49th Annual
Meeting of the Association for Computational Linguistics: Human Language Tech-
nologies: short papers. HLT 2011, vol. 2, pp. 42–47 (2011)

9. Go, A., Bhayani, R., Huang, L.: Twitter sentiment classification using distant
supervision. Processing 150(12), 1–6 (2009)

10. Gonçalves, P., Araújo, M., Benevenuto, F., Cha, M.: Comparing and combining
sentiment analysis methods. In: Proceedings of the First ACM Conference on
Online Social Networks. pp. 27–38. COSN ’13, ACM, New York, NY, USA (2013)

11. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.:
The weka data mining software: an update. SIGKDD Explor. Newsl. 11(1), 10–18
(2009)

12. Hu, X., Tang, J., Gao, H., Liu, H.: Unsupervised sentiment analysis with emotional
signals. In: Proceedings of the 22nd International Conference on World Wide Web.
WWW 2013 (2013)

13. Koleli, E.: A new Greek part-of-speech tagger, based on a maximum entropy clas-
sifier. Master’s thesis, Athens University of Economics and Business (2011)

14. Liu, H., Setiono, R.: Chi2: Feature selection and discretization of numeric
attributes. In: 1995 Proceedings of Seventh International Conference on Tools with
Artificial Intelligence, pp. 388–391. IEEE (1995)

15. Lovins, J.B.: Development of a stemming algorithm. Mech. Translation Comput.
Linguist. 11, 22–31 (1968)

16. McNemar, Q.: Note on the sampling error of the difference between correlated
proportions or percentages. Psychometrika 12(2), 153–157 (1947)

17. Mohammad, S., Kiritchenko, S., Zhu, X.: Nrc-canada: building the state-of-the-art
in sentiment analysis of tweets. In: Second Joint Conference on Lexical and Com-
putational Semantics (*SEM), Proceedings of the Seventh International Workshop
on Semantic Evaluation (SemEval 2013), vol. 2, pp. 321–327 (2013)

148 N. Makrynioti and V. Vassalos

18. Nakov, P., Rosenthal, S., Kozareva, Z., Stoyanov, V., Ritter, A., Wilson, T.:
Semeval-2013 task 2: sentiment analysis in twitter. In: Second Joint Conference on
Lexical and Computational Semantics (*SEM), Proceedings of the Seventh Inter-
national Workshop on Semantic Evaluation (SemEval 2013), vol. 2, pp. 312–320
(2013)

19. Ntais, G.: Development of a Stemmer for the greek Language. Master’s thesis,
Stockholm’s University (2006)

20. Pak, A., Paroubek, P.: Twitter as a corpus for sentiment analysis and opinion
mining. In: Proceedings of the Seventh Conference on International Language
Resources and Evaluation (LREC 2010). European Language Resources Associ-
ation (ELRA) (2010)

21. Pang, B., Lee, L., Vaithyanathan, S.: Thumbs up?: sentiment classification using
machine learning techniques. In: Proceedings of the ACL-02 Conference on Empir-
ical Methods in Natural Language Processing, vol. 10, pp. 79–86. Association for
Computational Linguistics (2002)

22. Petasis, G., Spiliotopoulos, D., Tsirakis, N., Tsantilas, P.: Sentiment analysis for
reputation management: mining the Greek web. In: Likas, A., Blekas, K., Kalles,
D. (eds.) SETN 2014. LNCS, vol. 8445, pp. 327–340. Springer, Heidelberg (2014)

23. Ritter, A., Clark, S., Mausam, Etzioni, O.: Named entity recognition in tweets: an
experimental study. In: Proceedings of the Conference on Empirical Methods in
Natural Language Processing, pp. 1524–1534. EMNLP 2011 (2011)

24. Vapnik, V.: Statistical Learning Theory. Wiley, New York (1998)
25. Wilson, T., Wiebe, J., Hoffmann, P.: Recognizing contextual polarity in phrase-

level sentiment analysis. In: Proceedings of the Conference on Human Language
Technology and Empirical Methods in Natural Language Processing. HLT 2005,
pp. 347–354 (2005)

26. Zhao, J., Dong, L., Wu, J., Xu, K.: Moodlens: an emoticon-based sentiment analysis
system for chinese tweets. In: Proceedings of the 18th ACM SIGKDD International
Conference on Knowledge Discovery and Data mining, pp. 1528–1531. KDD 2012
(2012)

