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Abstract. Shortest-path computation is a well-studied problem in al-
gorithmic theory. An aspect that has only recently attracted attention is
the use of databases in combination with graph algorithms to compute
distance queries on large graphs. To this end, we propose a novel, efficient,
pure-SQL framework for answering exact distance queries on large-scale
graphs, implemented entirely on an open-source database system. Our
COLD framework (COmpressed Labels on the Database) may answer
multiple distance queries (vertex-to-vertex, one-to-many, kNN, RkNN)
not handled by previous methods, rendering it a complete solution for a
variety of practical applications in large-scale graphs. Experimental re-
sults will show that COLD outperforms previous approaches (including
popular graph databases) in terms of query time and efficiency, while
requiring significantly less storage space than previous methods.

1 Introduction

Answering distance queries on graphs is one of the most well-studied problems
on algorithmic theory, mainly due to its wide range of applications. Although
a lot of recent research focused exclusively on transportation networks (cf. [9]
for the most recent overview) the emergence of social networks has generated
massive unweighted graphs of interconnected entities. On such networks, the
distance between two vertices is an indication of the closeness of their entities,
i.e., for finding users closely related to each other or extracting information about
existing communities within the social media users. Although we may always use
a breadth first search (BFS) to calculate the distance between any two vertices
on such graphs, that approach cannot facilitate fast-enough queries on main
memory or be easily adapted to secondary storage solutions.

Moreover, most of the excellent preprocessing techniques available for road
networks cannot be adapted to large-scale graphs, such as social or collaboration
networks. So far, the most promising approach for this type of graphs builds on
the 2-hop labeling or hub labeling (HL) algorithm [23],[12], in which we store a



two-part label L(v) for every vertex v: a forward label Lf (v) and a backward label
Lb(v). These labels are then used to very fast answer vertex-to-vertex shortest-
path queries. This technique has been adapted successfully to road networks [2,
3, 15, 4] and quite recently has also been extended to undirected, unweighted
graphs [5, 14, 25]. The HL method has also been applied for one-to-many, many-
to-many and kNN queries in road networks [16, 17] and kNN and RkNN queries
in the context of social networks in [21].

Although hub labeling is an extremely efficient shortest-path computation
method using main memory, there are very few works that try to replicate those
algorithms for secondary storage. HLDB [18] stores the calculated hub labels for
continental road networks in a commercial database system and translates the
typical HL distance query between two vertices to plain SQL commands. More-
over, it showed how to efficiently answer kNN queries and k-best via points, again
by means of SQL queries. Recently, HopDB [25] proposed a customized solution
that utilizes secondary storage also during preprocessing. Unfortunately, both
methods have their shortcomings. HLDB has only been tested on road networks
and consequently small labels sizes (<100). Its speed would seriously degrade
for large-scale graphs due to the much larger label size. HopDB answers only
vertex-to-vertex queries and is a customized C++ solution that cannot be used
with existing database systems and, hence, has limited practical applicability.

This work presents a database framework that may service multiple distance
queries on massive large-scale graphs. Our pure-SQL COLD framework (COm-
pressed Labels on the Database) can answer multiple exact distance queries
(point-to-point, kNN) in addition to RkNN and one-to-many queries not han-
dled by previous methods, rendering it a complete database solution for a variety
of practical massive, large-scale graph problems. Our extensive experimentation
will show that COLD outperforms previous solutions, including specialized graph
databases, on all aspects (including query performance and memory require-
ments), while servicing a larger variety of distance queries. In addition, COLD is
implemented using a popular, open-source database engine with no third-party
extensions and, thus, our results are easily reproducible by anyone.

The outline of the remainder of this work is as follows. Section 2 presents
related work. Section 3 describes the novel COLD framework and its implemen-
tation details. Experiments establishing the benefits of COLD are provided in
Section 4. Finally, Section 5 gives conclusions and directions for future work.

2 Related work

Throughout this work we use undirected, unweighted graphs G(V,E) (where V
represents vertices and E arcs). A k-Nearest Neighbor (kNN) query seeks the
k-nearest neighbors to an input vertex q. The RkNN query (also referred as
the monochromatic RkNN query), given a query point q and a set of objects P ,
retrieves all the objects that have q as one of their k-nearest neighbors according
to a given distance function dist(). In graph networks, dist(s, t) corresponds to
the minimum network distance between the two objects. Formally RkNN(q) =
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{p ∈ P : dist(p, q) ≤ dist(p, pk)} where pk is the k-Nearest Neighbor (kNN) of p.
Throughout this work, we assume that objects are located on vertices and we
always refer to snapshot kNN and RkNN queries on graphs, i.e, objects are not
moving. Also, similarly to previous works, the term object density D refers to
the ratio |P |/|V |, where P is a set of objects in the graph and |V | is the total
number of vertices. Although, there is extensive literature focusing on kNN and
RkNN queries in Euclidean space, since our work focuses on graphs we will only
describe related work focusing on the latter.

Regarding road networks and kNN queries, G-tree [33] is a balanced tree
structure, constructed by recursively partitioning the road network into sub-
networks. Unfortunately, this method cannot scale for continental road networks,
since it requires several hours for its preprocessing. Moreover, it requires a target

selection phase to index which tree-nodes contain objects (requiring few seconds)
and thus, cannot be used for moving objects. Recently, the work of [17] expanded
the graph-separators CRP algorithm of [13] to handle kNN queries on road
networks. Unfortunately, (i) CRP also requires a target selection phase and thus,
cannot be applied to moving objects and (ii) it may only perform well for objects
near the query location. Hence, this solution is also not optimal. The latest work
for kNN queries on road networks is the SALT framework [22] which may be
used to answer multiple distance queries on road networks, including vertex-

to-vertex (v2v), single source (one-to-all, range, one-to-many) and kNN queries.
This work expands the graph-separators GRASP algorithms of [20] and the ALT-
SIMD adaptation [19] of the ALT algorithm and offers very fast preprocessing
time and excellent query times. For kNN queries, SALT does not require a target
selection phase and hence it may be used for either static or moving objects.

For RkNN queries on road networks, the work of [30] uses Network Voronoi
cells (i.e., the set of vertices and arcs that are closer to the generator object)
to answer RkNN queries. This work has only been tested on a relatively small
network (110K arcs) and all precomputed information is stored in a database.
Despite the fact that the preprocessing stage for computing the Network Voronoi
cells is quite costly, the queries’ executions times range from 1.5s for D = 0.05
and k = 1, up to 32s for k = 20, rendering this solution impractical for real-time
scenarios. Up until recently, the only work dealing with other graph classes (be-
sides road networks) is [32], although it has only been tested on sparse networks,
e.g., road networks, grid networks (max degree 10), p2p graphs (avg degree 4)
and a very small, sparse co-authorship graph (4K nodes). In this work, the con-
ducted experiments for values of k > 1 refer only to road networks, therefore
the scalability of this work for denser graphs and larger values of k is question-
able. Recently, Borutta et al. [10] extended this work for time-dependent road
networks, but presented results were not very encouraging. The larger road net-
work tested had 50k nodes (queries require more than 1s for k = 1) and for a
network of 10k nodes and k = 8, RkNN queries take more than 0.3s (without
even adding the I/O cost). In a nutshell, all existing contributions and methods
have not been tested on dense, large-scale graphs, cannot scale for increasing k
values and their performance highly depends on the object density D.
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Our work builds upon the 2-hop labeling or Hub Labeling (HL) algorithm
of [23, 12] in which, preprocessing stores at every vertex v a forward Lf (v)
and a backward label Lb(v). The forward label Lf (v) is a sequence of pairs
(u, dist(v, u)), with u∈V . Likewise, the backward label Lb(v) contains pairs
(w, dist(w, v)). Vertices u and w are denoted as the hubs of v. The generated
labels conform to the cover property, i.e., for any s and t, the set Lf (s) ∩ Lb(t)
must contain at least one hub that is on the shortest s− t path. For undirected
graphs Lb(v) = Lf (v). To find the network distance dist(s, t) between two ver-
tices s and t, a HL query must find the hub v ∈ Lf (s) ∩ Lb(t) that minimizes
the sum dist(s, v) + dist(v, t). By sorting the pairs in each label by hub, this
takes linear time by employing a coordinated sweep over both labels. The HL
technique has been successfully adapted for road networks in [2, 3, 15, 4]. In the
case of large-scale graphs, the Pruned Landmark Labeling (PLL) algorithm of [5]
produces a minimal labeling for a specified vertex ordering. In this work, vertices
are ordered by degree, whereas the work of [14] improves the suggested vertex
ordering and the storage of the hub labels for maximum compression. The HL
method has also been used for one-to-many, many-to-many and kNN queries on
road networks in [16] and [17] respectively. Our latest work [21] proposed Re-

Hub, a novel main-memory algorithm that extends the Hub Labeling approach
to efficiently handle RkNN queries. The main advantage of the ReHub algorithm
is the separation between its costlier offline phase, which runs only once for a
specific set of objects and a very fast online phase which depends on the query
vertex q. Still, even the costlier offline phase hardly needs more than 1s, whereas
the online phase requires usually less than 1ms, making ReHub the only RkNN
algorithm fast enough for real-time applications and big, large-scale graphs.

Regarding secondary-storage solutions, Jiang et al. [25] propose their HopDB
algorithm that suggest an efficient HL index construction when the given graphs
and the corresponding index are too big to fit into main memory. The work of [1]
introduced the HLDB system, which answers distance and kNN queries in road
networks entirely within a database by storing the hub labels in database tables
and translating the corresponding HL queries to SQL commands. Throughout
this work, we will compare our proposed COLD framework to HLDB, since to the
best of our knowledge, it is the only framework that may answer exact distance
queries entirely within a database. Moreover, within the COLD framework we
also adapt our ReHub main-memory algorithm into a database context, so that
its online phase may be translated to fast and optimized SQL queries.

3 Contribution

This section presents the COLD (COmpressed Labels on the Database) database
framework. COLD can answer multiple distance queries (vertex-to-vertex, kNN,
RkNN and one-to-many) for large-scale graphs using SQL commands. Since
COLD builds on HLDB [1] and ReHub [21], we will follow the notation and
running example presented there, for highlighting the necessary concepts and
challenges for adapting those previous works, (i) in the context of large-scale
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Vertex Hub Labels (h,d)

0 (0,0)

1 (0,1), (1,0)

2 (0,1), (2,0)

3 (0,1), (3,0)

4 (0,1), (4,0)

5 (0,2), (1,1), (5,0)

6 (0,2), (1,1), (6,0)

7 (0,2), (1,1), (7,0)

8 (0,2), (2,1), (8,0)

9 (0,2), (3,1), (9,0)

10 (0,2), (4,1), (10,0)

11 (0,3), (1,2), (5,1), (11,0)

12 (0,3), (1,2), (6,1), (12,0)

13 (0,3), (1,2), (7,1), (13,0)

Fig. 1 & Table 1: A sample Graph G and the created hub-labels

graphs for [1] and (ii) within the boundaries of a relational database manage-
ment system (RDBMS) for [21]. To this end, we chose PostgreSQL [29] for our
implementation, given that it is a popular, open-source RDBMS. Although we
use some PostgreSQL-specific data-types and SQL extensions, we do not use any
third-party extensions but only features included in its standard installation.

3.1 Implementation

The COLD framework assumes that we have a correct hub labeling (HL) frame-
work that generates hub-labels for the undirected, unweighted graphs we wish
to query. Although COLD will work with any correct HL algorithm, in this work
we use the [6] implementation of the PLL algorithm of [5] to generate the neces-
sary labels. To highlight the results of this process, the labels for the undirected,
unweighted graph G of Figure 1 are shown in Table 1. Throughout this work,
we will refer to those labels as the forward labels. The forward label L(v) for
a vertex v is an array of pairs (u, dist(v, u) sorted by hub u. Since our work
also focuses on snapshot kNN and RkNN queries, there also some objects P∈V
that do not change over time. For our specific running example we assume that
P = {4, 10, 12} and thus, we highlight the respective entries of Table 1.

Vertex-to-Vertex (v2v) queries. To find the network distance dist(s, t) be-
tween two vertices s and t, a HL query must find the hub v ∈ L(s)∩L(t) that
minimizes the sum dist(s, v)+ dist(v, t). For our sample graph G, the minimum
distance between e.g., vertices 2 and 7 is d(2, 7) = 3, using the hub 0. To trans-
late this HL query into SQL commands, in HLDB [1] forward labels are stored
in a database table denoted forward where the labels of vertex v are stored as
triples of the form (v, hub, dist(v, hub)) (see Table 2). The table forward has the
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Table 2: The forward table used in
HLDB for the sample graph G

v hub dist
. . . . . . . . .
2 0 1
2 2 0
. . . . . . . . .
7 0 2
7 1 1
7 7 0
. . . . . . . . .

Table 3: The forwcold table used for
COLD for the sample graph G

v hubs dists
. . . . . . . . .
2 {0, 2} {1, 0}
. . . . . . . . .
7 {0, 1, 7} {2, 1, 0}
. . . . . . . . .

Code 1.1: V2v query for HLDB

1 SELECT MIN(n1.dist+n2.dist)

2 FROM forward n1, forward n2

3 WHERE n1.v = s

4 AND n2.v = t

5 AND n1.hub = n2.hub;

Code 1.2: V2v query for COLD

1 SELECT MIN(n1.d+n2.d) FROM

2 /* Expand hubs , dists arrays */

3 (SELECT UNNEST(hubs) AS hub ,

4 UNNEST(dists) AS d

5 FROM forwcold WHERE v = s) n1,

6 (SELECT UNNEST(hubs) AS hub ,

7 UNNEST(dists) AS d

8 FROM forwcold WHERE v = t) n2

9 WHERE n1.hub=n2.hub;

combination of (v, hub) as the primary key and is clustered according to those
columns, so that “all rows corresponding to the same label are stored together to

minimize random accesses to the database” [1]. Then we can find the distances
between any two vertices s and t by the SQL query of Code 1.1.

Although the HLDB vertex-to-vertex (v2v) query is very simple, there is one
major drawback. For such a query, HLDB has to fetch from secondary storage
the subset of |L(s)| + |L(t)| rows with common hubs. Although this is prac-
tical for road networks where the forward labels have less than 100 hubs per
vertex [3], it cannot scale for large-scale graphs where the forward labels have
thousand of hubs per vertex. Moreover, on such graphs the forward DB table
and the corresponding primary key index will become too large, which is also an
important disadvantage. To this end, we take advantage of the fact that Post-
greSQL features an array data type that allows columns of a DB table to be
defined as variable-length arrays. Hence, in COLD we store hubs and distances
for a vertex (both ordered by hub) as arrays in two separate columns (i.e., hubs
and dists) in a single row. The resulting forwcold compressed DB table is shown
in Table 3. This approach not only emulates exactly how labels are stored on
main-memory for fast v2v queries but also has considerable advantages: (i) The
forwcold DB table has exactly |V | rows (ii) The forwcold DB table has the
column v as primary key without needing a composite key. This alone facili-
tates faster queries. Moreover the size of the corresponding index will be much
smaller. In fact, our experimentation will show that the primary-key index for
forwcold may be > 4, 400× smaller than the index size of HLDB. (iii) For a v2v

6



Table 4: Necessary data structures for the sample graph G, P = {4, 10, 12} and
one-to-many, kNN and RkNN queries

Backward Labels kNN Backward RkNN Backward kNN Result (k=1)
Hub (to-many) [16] Labels (k=2) [1] Labels (k=1) [21] Obj. (Obj., dist) [21]
0 (4,1), (10,2), (12,3) (4,1), (10,2) (4,1), (12,3)

4 (10,1)
1 (12,2) (12,2) (12,2)
4 (4,0), (10,1) (4,0),(10,1) (4,0), (10,1)

10 (4,1)
6 (12,1) (12,1) (12,1)
10 (10,0) (10,0) (10,0)

12 (4,4)
12 (12,0) (12,0) (12,0)

query, COLD needs to access exactly two rows, regardless of the sizes of |L(s)|
and |L(t)|. This way, we efficiently minimized the secondary-storage utilization,
even working inside a database. The resulting SQL query for COLD is shown in
Code 1.2. There we exploit the fact that PostgreSQL “guarantees that parallel

unnesting” for hubs and distances for each nested query “will be in sync”, i.e.,
each pair (hub, dist) is expanded correctly since for the same v the respective
arrays have the same number of elements4.

Additional queries overview. For answering more complex (kNN, RkNN and
one-to-many) distance queries on a HL framework for a set of objects P , we need
to build some additional data structures from the forward labels (for undirected
graphs). Then to answer the respective query we only need to combine the for-
ward labels L(q) of query vertex q, with the respective data structure explained
in the following. Those data structures are summarized in Table 4.

For answering one-to-many queries, i.e., calculate distances between a source
vertex q and all objects in P , we need to build the backward labels-to-many by
basically ordering the forward labels of the objects by hub [16] and then by
distance for the same hub. For kNN queries we only need to keep at most the
k-best pairs (of smallest distances) per hub from the backward labels-to-many to
create the kNN backward labels [1]. In our specific example, the kNN backward
labels for k = 2 and hub 0, do not contain the pair (12, 3). Finally, for RkNN
queries, we must first calculate the kNN Results (i.e., the NN of the object 4 is the
object 10 with distance 1) and then we build the RkNN backward labels, based
on the observation that “we need to access those pairs from the backward labels-

to-many to a specific object, if and only if those distances are equal or smaller

than the distance of the kNN of this object” [21]. In our specific example, the
RkNN backward labels for k = 1 and hub 0, do not contain the pair (10,2) since
the NN of object 10 (the object 4) is within distance 1. Although for our small
graph the differences between the individual data structures seem minimal, for
larger graphs those differences become very prominent. This was also showcased
by the theoretical analysis provided in [21] which showed that backward labels-
to-many will have on average D · |HL| pairs, the kNN backward labels have at
most k · |V | pairs and the RkNN backward labels have on average ε · D · |HL|

4 http://stackoverflow.com/a/23838131
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Table 5: The knntab table used in
HLDB for the sample graph G, k = 2
and P = {4, 10, 12}

hub dist obj
0 1 4
0 2 10
1 2 12
. . . . . . . . .

Table 6: The knntab table used in
COLD for the sample graph G, k = 2
and P = {4, 10, 12}

hub dist objs
0 1 {4}
0 2 {10}
1 2 {12}
. . . . . . . . .

pairs where ε may be < 0.01 for specific datasets and experimental settings.
Moreover, Efentakis et al. [21] have shown how these additional data structures
may be constructed from the forward labels in main-memory, requiring less than
few seconds, even for the larger tested datasets.

kNN queries. To translate the HL kNN query into SQL, HLDB stores kNN
backward labels in a separate DB table denoted knntab that stores triples of the
form (hub, dist, obj) (see Table 5). The respective table knntab has the combina-
tion of (hub, dist, obj) as a composite primary key and is clustered according to
those columns. Note that in HLDB, we cannot use the combination of (hub, dist)
as a primary key, because especially in large scale graphs we will have a lot of
distance ties even for k-entries for the same hub. Then we can can answer a kNN
query from vertex q by the SQL query of Code 1.3. Again, the kNN HLDB query
has the same drawbacks as before, i.e., it has to retrieve |L(q)| rows from forward

and k · |L(q)| rows from knntab tables, for a total of (k+1) · |L(q)| rows retrieved
from secondary storage. Moreover in a database, it makes sense to create one
large knntab table for the maximum value kmax of k (e.g., for k = 16) that may
be serviced by the DB framework and that same table will be used for all kNN
queries up to k = kmax. In that case, the HLDB framework will have to retrieve
(kmax+ 1) · |L(q)| rows for every kNN query regardless of the value of k.

To remedy the HLDB drawbacks, COLD creates the knncold DB table (Ta-
ble 6) that has the columns (hub, dist, objs), whereas objects are grouped and or-
dered per hub and distance (the column objs is an array). Although for our sam-
ple graph G, the DB tables knntab and knncold seem identical, COLD’s method
offers several advantages: (i) We can now use the combination of (hub, dist)
as a primary key, which makes the respective index significantly smaller and
faster and (ii) In case of many distance ties (common to large-scale graphs) and
one large knncold DB table that services all kNN queries for values of k up to
the maximum value kmax , we only need to fetch the first k-objs entries (i.e.,
objs[1:k]) per hub and dist, which makes the later sorting faster (see Code 1.4).

One-to-many queries. Similar to how COLD handles kNN queries, for one-
to-many queries, COLD stores the backward labels-to-many in a new objcold

DB table that has an identical format to knncold, i.e., it has three columns
(hub, dist, objs) whereas objects are grouped and ordered per hub and distance.
Objcold also uses the combination of (hub, dist) as a primary key. The resulting
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Code 1.3: kNN query for HLDB

1 SELECT MIN(n1.dist+n2.dist),

2 n2.obj FROM

3 forward n1 , knntab n2

4 WHERE n1.v = q

5 AND n1.hub = n2.hub

6 GROUP BY n2.obj

7 ORDER BY MIN(n1.dist+n2.dist)

8 LIMIT k;

Code 1.4: kNN query for COLD

1 SELECT MIN(n1.d+n2.dist),

2 UNNEST(objs) AS obj FROM

3 (SELECT UNNEST(hubs) AS hub ,

4 UNNEST(dists) AS d

5 FROM forwcold WHERE v = q) n1,

6 /* k-entries per hub ,dist */

7 (SELECT hub , dist ,objs [1:k]

8 FROM knncold) n2

9 WHERE n1.hub=n2.hub

10 GROUP BY obj

11 ORDER BY MIN(n1.d+n2.dist)

12 LIMIT k;

one-to-many query (Code 1.5) is quite similar to COLD’s kNN query, but (i) it
operates on the larger objcold DB table (ii) It does not have the ORDER BY ...

LIMIT k clause and (iii) We use the entire objs array per hub and distance
instead of objs[1:k]. Note that HLDB cannot possibly support such queries
because it will need to retrieve on average |L(q)| rows from the forward table
and a total of |L(q)| · D · (|HL|/|V |) [21] rows from the corresponding objlab

table, which will be prohibitively slow for very large datasets.

Table 7: The knnres table used in
COLD for RkNN queries, the sam-
ple graph G, k = 1 and P =
{4, 10, 12}

obj dists objs
4 {1} {10}
10 {1} {4}
12 {4} {4}

RkNN queries. For RkNN queries,
COLD stores the RkNN backward la-
bels in a separate revcold DB table that
has an identical format to previous knn-

cold and objcold DB tables, i.e., three
columns (hub, dist, objs) where objects
are grouped and ordered per hub and dis-
tance and the combination of (hub, dist)
used as a primary key. COLD also stores
the kNN Results, i.e., the kNN of all ob-

jects in another knnres DB table that has the format (obj, dists, objs, ) where
obj is the primary key and objs and dists are arrays (both ordered by distance).
Therefore the kNN of object p is the objs[k] within distance dists[k] of the
respective row for p. Again it makes sense to build a knnres DB table for a max
value of kmax that may service RkNN queries for varying values of k. As a result,
during the RkNN COLD query, we will have to use an additional JOIN between
the revcold and knnres DB tables. The resulting query is shown in Code 1.6.

We see that even the more complex RkNN query in COLD requires just a
few lines of SQL code that will work on any recent PostgreSQL version without
any need of third-party extensions or specialized index structures. In fact, all
DB tables in COLD, use only standard B-tree primary key indexes, without
any modifications. To satisfy this strict requirement, we effectively compressed
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Code 1.5: One-to-many COLD query

1 SELECT MIN(n1.d+n2.dist),

2 UNNEST(objs) AS obj FROM

3 (SELECT UNNEST(hubs) AS hub ,

4 UNNEST(dists) AS d

5 FROM forwcold

6 WHERE v = q) n1 ,

7 objcold n2

8 WHERE n1.hub=n2.hub

9 GROUP BY obj;

Code 1.6: RkNN query for COLD

1 SELECT n3.id2 ,n3.dist FROM

2 /* n3 subquery is a modified

3 one -many -query to revcold */

4 (SELECT MIN(n1.d+n2.dist) AS d3 ,

5 UNNEST(objs) AS obj FROM

6 (SELECT UNNEST(hubs) AS hub ,

7 UNNEST(dists) AS d

8 FROM forwcold WHERE v = q) n1,

9 revcold n2

10 WHERE n1.hub=n2.hub

11 GROUP BY obj

12 ORDER BY obj ,MIN(n1.d+n2.dist)

13 ) n3,

14 /* Join with knnres table */

15 (SELECT obj , dists[k] AS dist

16 FROM knnres) n4

17 WHERE n3.obj=n4.obj

18 AND n3.d3 <=n4.dist

19 ORDER BY n3.obj;

the index sizes by grouping rows per vertex (forcold table) or object (knnres
table), or by hub and distance for knncold, objcold and rknncold. And although
we used PostgreSQL specific SQL extensions for expanding the stored arrays,
latest versions of other databases (e.g., Oracle) support similar array data-types.
Hence, it would be quite easy to port COLD to other database vendors as well.

This section detailed the COLD framework in terms of design and imple-
mentation. COLD can answer multiple distance queries (v2v, kNN, RkNN and
one-to-many) based on data stored in an off-the-shelf relational database. We
also presented the actual queries used and the way the necessary data struc-
tures are stored within the database, so that our results are easily reproducible.
Although we focused on query efficiency, it is important to note that once we
create the forcold table, all the adjoining DB tables within COLD may also be
created using SQL commands (resulting queries were omitted due to space re-
strictions). This fact also shows that COLD is truly a pure-SQL framework for
servicing multiple distance queries on large-scale graphs. We also provided the
necessary theoretical details as to why the COLD framework will outperform
existing solutions. This will be further quantified in the following section.

4 Experimental Evaluation

To assess the performance of COLD on various large-scale graphs, we conducted
experiments on a workstation with a 4-core Intel i7-4771 processor clocked at
3.5GHz and 32Gb of RAM, running Ubuntu 14.04. We compare our COLD
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Table 8: Networks graphs statistics
Graph | V | | E | Avg degr. | HL | / | V | PLL Preproc. Time (s)

Facebook 4,039 88,234 22 26 0.03
NotreDame 325,729 1,090,108 3 55 6

Gowalla 196,591 950,327 5 100 13
Youtube 1,134,890 2,987,624 3 167 123
Slashdot1 77,360 469,180 6 204 11
Slashdot2 82,168 504,230 6 216 13
Citeseer1 268,495 1,156,647 4 408 110
Amazon 334,863 925,872 3 689 230
DBLP 540,486 15,245,729 28 3,628 5,720

Citeseer2 434,102 16,036,720 37 4,457 5,946

framework with a custom implementation of HLDB in PostgreSQL and with
Neo4j, a well-known, popular graph database.

We use the same network graphs as our previous work of [21] that are taken
from the Stanford Large Network Dataset Collection [26] and the 10th Dimacs
Implementation Challenge website [8]. All graphs are undirected, unweighted
and strongly connected. We used collaboration graphs (DBLP, Citeseer1, Cite-
seer2) [24], social networks (Facebook [28], Slashdot1 and Slashdot2 [27]), net-
works with ground-truth communities (Amazon, Youtube) [31], web graphs (No-
tre Dame) [7] and location-based social networks (Gowalla) [11]. The graphs’ ave-
rage degree is between 3 and 37 and the PLL algorithm creates 26−4, 457 labels
per vertex, requiring 0.03−5, 946s for the hub labels’ construction (see Table 8).

COLD and HLDB were implemented in PostgeSQL 9.3.6, 64bit with rea-
sonable settings (8192Mb shared buffers, 64Mb temp buffers). We also used
Neo4j Server v2.1.5. The Neo4j queries were formulated using Cypher, Neo4j’s
declarative query language and we report query times as they were returned by
the server. Although Cypher may theoretically facilitate one-to-many queries
(besides vertex-to-vertex), testing Neo4j with our datasets and the same num-
ber of target vertices we tested COLD with, resulted in a “java.lang.Stack
OverflowError”. Providing the server with additional resources5 had no positive
effect and thus there are no results for one-to-many queries and Neo4j.

We conducted experiments belonging to four query types: (i) vertex-to-vertex,
(ii) kNN , (iii) RkNN and (iv) one-to-many. For each experiment, we used 10,000
random start vertices, reporting the average running time. Before each exper-
iment, we restart the PostgreSQL and Neo4j servers for clearing their internal
cache and we also clear the operating system’s cache for accurate benchmarking.
All charts are plotted in logarithmic scale.

4.1 Performance on HDD

In our first round of experiments, we ran experiments on an HDD, specifically a
SATA3 Seagate Barracude ST3000DM001 7200rpm with 64Mb cache.

5 http://neo4j.com/developer/guide-performance-tuning/
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(a) Vertex-to-vertex query times (b) Memory size’s difference be-
tween COLD and HLDB

Fig. 2: Experiments on HDD for vertex-to-vertex

Vertex-to-vertex. Figure 2(a) shows results for vertex-to-vertex (v2v) queries
for COLD, HLDB and Neo4j. Results show that COLD is consistently 2 - 20.7×
faster than HLDB, with this difference amplified for the Citeseer1, Amazon and
Youtube datasets (16.8, 19.1 and 20.7 respectively). Moreover, COLD is also
9 - 143× (for the Gowalla dataset) faster than Neo4j, which exhibits stable
performance for all datasets, but is slower from both COLD and HLDB. For all
datasets, COLD requires less than 9ms for answering v2v queries.

Figure 2(b) shows the difference in memory size for the DB tables for-

cold (COLD) and forward (HLDB) and their respective primary-key (PK) in-
dexes. Results show that the size of the PK index in COLD is 3, 600 - 4, 444×
smaller than for HLDB (for DBLP and Citeseer2 respectively). As expected, the
difference in index sizes is almost identical to the |HL|/|V | ratio, since forcold

table has |V | rows and forward has |HL| rows. Likewise, the corresponding tables
are 131 - 188× smaller for COLD. Thus, the techniques used for compressing
the forward labels in COLD clearly achieve a considerable reduction in memory
size, rendering our proposed framework suitable for real-world scenarios.

kNN. Figure 3(a) shows the speedup of COLD compared to HLDB in the case
of kNN queries for D = 0.01 and k = {1, 2, 4, 8, 16}. As described in Section 3.1,
we have created two DB tables for each framework (COLD, HLDB), one for
kmax = 4 and one for kmax = 16. Then the DB table for kmax = 4 is used
for answering kNN queries for k = 1, k = 2 and k = 4 and the kNN table for
kmax = 16 is used for answering kNN queries for k = 8 and k = 16. Results
show that for k = 1, COLD is 5 - 19× faster for the five largest datasets (Ama-
zon, Citeseer,Citeseer2, DBLP. Youtube) and although this speedup degrades for
larger values of k, COLD remains consistently 2 - 10× faster even for k = 16. For
the smaller datasets, performance between COLD and HLDB is quite similar,
with COLD performing better on Facebook and Gowalla, while HLDB performs
only marginally better for Slashdot1, Slashdot2 and Notredame. In all cases,
COLD answers kNN queries for all datasets in less than 26ms even for k = 16.

In our second set of kNN experiments, we assess the performance of COLD
vs HLDB for varying values of D. For each value for D, we have build separate
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(b) Speedup of COLD vs HLDB
for k = 4 and varying values of D

Fig. 3: kNN Experiments on HDD for COLD and HLDB

versions of knntab (HLDB) and knncold (COLD) DB tables for D · |V | objects
selected at random from each dataset and kmax = 4. Figure 3(b) shows results
for k = 4 and D = {0.001, 0.005, 0.01, 0.05, 0.1}. Again, for the five largest
datasets COLD is consistently 3.4 - 23.4× faster than HLDB, whereas even for
the smaller datasets, COLD is consistently 8.6 - 11.5× faster than HLDB for the
largest value of D (for D = 0.1). Moreover, COLD may answer kNN queries for
k = 4 on all datasets and all values of D in less than 14ms.

RkNN. For RkNN experiments, we only report COLD’s performance, since
there is no other SQL framework that supports these queries. In out first exper-
iment, we report the performance of COLD for D = 0.01 and k = {1, 2, 4, 8, 16}.
For all those queries we have built one version of the knnres DB table for
kmax = 16 (see Section 3.1) and 3 separate revcold tables for kmax = {1, 4, 16}.
As expected, for RkNN queries and k = 1 we use the revcold table built for
kmax = 1, for k = 2, k = 4 we use the revcold table built for kmax = 4 and
for k = 8, k = 16 we use the revcold table built for kmax = 16. Figure 4(a)
presents the results. In all cases, COLD provides excellent query times that are
below 20ms for k = 1 in all datasets and never exceed 82ms even for k = 16.

In our second set of RkNN experiments, we assess the performance of COLD
for varying values of D. Figure 4(b) presents results for k = 1 (as this is the
typical case for RkNN queries) and D = {0.001, 0.005, 0.01, 0.05, 0.1}. Results
show that although COLD’s performance degrades for larger values of D, RkNN
query times are below 49ms for all datasets and values of D, with the exception
of Youtube and D = 0.1 (109.3ms). Thus, COLD offers excellent and stable
performance in RkNN queries for all all datasets and tested values of k and D.

One-to-Many. Again, COLD is the only SQL framework that supports one-to-
many queries. Figure 5(a) presents the corresponding results for varying values of
D (D = {0.001, 0.005, 0.01, 0.05, 0.1}). COLD answers such queries in less than a
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(a) COLD RkNN query times for
D = 0.01 and varying values of k

(b) COLD RkNN query times for k =
1 and varying values of D

Fig. 4: RkNN Experiments on HDD for COLD

(a) One-to-Many experiments for
COLD varying values of D

(b) COLD One-to-Many HDD vs
SSD

Fig. 5: One-to-many experiments for COLD

second for all datasets and values of D, except the Citeseer2 and DBLP datasets
(those with the highest |HL|/|V | ratio) that require 5601ms and 4170ms respec-
tively, for D = 0.1. For such high values of D, the one-to-many query reaches
the complexity of an one-to-all query and as expected, it cannot be any faster
on a secondary storage device. Note that even specialized graph databases like
Neo4j cannot support this type of queries for more than a 1,000 target objects,
whereas COLD answers one-to-many queries to 110,000 target objects in the

Youtube dataset in 401ms with a simple SQL query.

4.2 Performance on SSD

Having established the performance characteristics of COLD in the HDD, in our
second round of experiments, we repeat some of the previous experiments, using
a SSD to measure the impact of the secondary-storage device type to results.
The SSD used is a SATA3 Crucial CT512MX100SSD1 MX100 512GB 2.5”.
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Fig. 7: kNN and RkNN SSD performance

Fig. 6: SSD vertex-to-vertex

Vertex-to-vertex. Although the usage of
SSD favors HLDB more than COLD (see
Figure 6), COLD is consistently 1.6 - 3.2×
faster than HLDB (except Facebook, the
smallest of datasets). The SSD has almost
no impact on Neo4j and thus, COLD is now
11-171× faster than Neo4j on all datasets.
Note, than on the SSD, COLD requires less
than 0.9ms for all datasets and v2v queries,
except the Citeseer2 and DBLP datasets
(those with the highest |HL|/|V | ratio). But
even then, vertex-to-vertex queries still re-

quire less than 2.6ms for COLD.

kNN. Figure 7(a) shows the performance speedup of COLD compared to HLDB
in the case of kNN queries running on the SSD, for D = 0.01 and varying value
of k. Again, although the SSD lowers the performance gap between COLD and
HLDB, COLD is still faster on all datasets (except Facebook). In fact, COLD is
2.6 - 6.75× faster than HLDB for the high |HL|/|V | ratio datasets (Citeseer2,
HLDB) requiring less than 24.6ms even for k = 16.

RkNN. Figure 7(b) presents the results of the RkNN query time performance
on COLD for D = 0.01 and varying value of k. Results show that SSD usage
accelerates COLD by only 20% at most, which clearly demonstrates that COLD
effectively minimized secondary storage utilization and thus adding a better
secondary-storage medium provides minimal benefits for RkNN queries.

One-to-Many. Finally, Figure 5(b) compares one-to-many queries on HDD
and SSD for COLD. Again, the SSD usage accelerates COLD by only 2- 30%,
which further confirms the optimal secondary storage utilization of COLD.
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4.3 Summary

Our experimentation has shown that our proposed COLD framework outper-
forms previous state-of-the-art HLDB in all performance benchmarks, including
query performance, memory size and scalability. Using HDDs, COLD is 2−21×
faster for vertex-to-vertex queries and 5 − 19× faster for kNN queries and the
largest datasets. Using SSDs, COLD is 1.6− 3.2× faster than HLDB for vertex-
to-vertex and up to 6.75× faster for kNN queries. COLD also requires up to
4, 444× less storage space (indexes) and up to 188× less storage space (DB ta-
bles) used for storing forward labels. Even specialized graph databases like Neo4j
are outperformed by COLD, which is up to 143× faster. Most importantly COLD
may service additional (RkNN, one-to-many) queries, not handled by any other
previous secondary-storage solutions, while providing excellent query times and
optimal secondary-storage utilization even on standard hard drives.

5 Conclusions

This work presented COLD, a novel SQL framework for answering various exact
distance queries for large-scale graphs on a database. Our results showed that
COLD outperforms existing solutions (including specialized graph databases)
on all levels, including query performance, secondary storage utilization and
scalability. Moreover, COLD also answers RkNN and one-to-many queries, not
handled by previous methods. This establishes COLD as a competitive database-
driven framework for querying large-scale graphs. The paper gives the design and
implementation details of COLD using a popular, open-source database system
along with the actual SQL queries used in our implementation. This should allow
for a simple replication of our results and encourage other researchers to expand
the COLD framework towards handling more complex queries and test-cases.
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ABSTRACT 

In this paper, we present a summary of our work on RDF keyword 
search. Given a set of keywords, our method automatically 
generates a set of candidate SPARQL queries, and their natural 
language description, to be evaluated on the RDF data graph. We 
discuss our approach, highlighting current and future directions. 

1. INTRODUCTION 
Linked Data is the most common practice for publishing, sharing 
and managing information in the Data Web, and is implemented 
with the RDF technology: a) RDF is used for the representation 
and modeling of structured and semi-structured data on the Web 
and b) RDF links are used to interlink data from different data 

sources. SPARQL is the de facto query language for RDF. 
However, forming SPARQL queries requires both knowing the 
SPARQL syntax, as well as knowing the vocabulary used to 
describe the data. For this reason, keyword-based search has been 
proposed, allowing an intuitive way for searching an RDF dataset.  

In this short paper, we present a summary of our previous work in 
[1, 2], highlighting current and future directions. Specifically, we 
present our approach for keyword search on graph-structured data, 
and in particular RDF graph. Our method, instead of providing 
answers directly from the RDF data graph, automatically 
generates a set of candidate SPARQL queries, i.e., SPARQL 

queries that try to capture users information need as expressed by 
the keywords used. To further assist our collaborators in the 
evaluation process, we provide also a natural language description 
of the generated SPARQL queries. To achieve this, we exploit the 
SPARQL2NL [3] engine which allows the verbalization of 
SPARQL queries into natural language. A fully functionable 
prototype is available at: 

http://snf-624527.vm.okeanos.grnet.gr:8080/KeywordSearchDiana/web/ 

2. METHOD 
Briefly, given a set of n keywords, we perform the following steps 
in order to generate candidate SPARQL queries: 

1. For each keyword !! , we retrieve all its matches !! on 

the RDF data graph. 

2. We calculate all possible combinations ! ! !!!!!!

!!!!! ! !!! ! !!!! !!! !!! ! !! !!! ! !!! !!! 

of all the matched elements  !! where ! ! !!! ! !. 

3. For each combination ! ! ! that contains one matched 

element !! !per keyword!!!, we create an augmented 

summary graph !!. 

4. From each augmented summary graph !!, we generate 

the query pattern graph !
!

!"
! 

5. We translate each query pattern graph  !
!

!"
! into a 

SPARQL query.     
Next, we elaborate on the details. Consider the biological RDF 
dataset shown in Figure 1. The dataset is depicted as an RDF data 
graph, where oval shape vertices represent RDF entities, diamond 

shape vertices represent RDF classes and rectangle shape vertices 
represent literals. Similarly, dashed edges represent entity-to-
attribute properties, while solid ones represent inter-entity 
properties. Let us assume that the user has provided the keywords 
MIMAT0000251, name and hasTarget. The first step is to match 
the keywords to elements in the RDF data graph:  

1. MIMAT0000251 matches to the literal “MIMAT0000251” 

that is  connected via the property “accession”  with an RDF 

entity of “Mature” type,   

2. name matches to the literal “NAME” that is connected via 

the  property “change” met with RDF entity of type “Mature” 

and to the entity-to-attribute property “name” met with 

entities of type “Hairpin”, “Mature”,  “Species” and “Gene”, 

resulting in 5 possible matches,  and  

3. hasTarget matches to the inter-entity property “hasTarget” 

met with subject of type “Interaction” and object of type 

“Transcript”.   

The second step is to calculate all possible combinations of the 
matched elements and for each combination c create the 
augmented summary graph !!, extrapolate the query pattern graph 

!!
!"
!and map it to a SPARQL query. In this example, there are 5 

possible combinations. Let us examine one combination, where 
the name keyword  matches to the literal “NAME”.  

Augmented symmary graph. The augmented summary graph !! 

is a combination of an aggregated representation of the RDF data 
graph !, enriched with graph elements for each matched 

element!!! ! ! ! !!! !!. More specifically, all RDF entities from 

the RDF data graph ! that have the same type of RDF class are 
represented by a vertex labelled with the name of the RDF class.  

Similarly, all inter-entity properties of the same type are 
represented by a directed edge between the aggregated vertex 
representation of the subjects and the aggregated vertex 
representation of the objects. The edge is also labelled with the 
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property's name. Note that entity-to-attribute properties as well as 
literal values are omitted from the summary representation. 
Overall, the augmented graph is actually an abstraction of the 
RDF data graph !. The augmented summary graph !! contains 

also graph elements for each element !! from the set of matched 

elements !. More specifically, if the matched element  !! is a 

literal value, then the graph is extended by a directed edge and a 
vertex. The edge represents the entity-to-attribute property that the 
matched element is met with in the RDF data graph, while the 

vertex is the matched element !!!itself. Note that the edge is 

attached from the aggregated vertex representation of the subject 
to the newly inserted vertex. Similarly, if the matched element !! 

is an entity-to-attribute property, then the graph is extended by a 
directed edge and a vertex. The edge represents the entity-to-
attribute property, i.e. the matched element !!, and it is attached 

from the aggregated vertex representation of the subject to the 
newly inserted vertex. The difference from the previous case is 
that the latter vertex represents the unknown literal of the 

property. Note that if the same entity-to-attribute property is met 
with multiple RDF entities of different RDF types in the RDF data 
graph that would lead to different sets !. An example of the 

Augmented Summary Graph for the combination under 
investigation is shown in Figure 2.  

Query pattern graph. In order to extract the query pattern 

graph!!!
!"
!from the augmented summary graph !!, we calculate 

the shortest paths between every pair of matched elements and we 
combine all of them into one connected subgraph. Note that 
during the shortest path calculations we ignore the directionality 
of the edges. Moreover, since a matched element !! , i.e. a source 

or sink of the shortest path algorithm, can also be an edge, then 
the distance between two matched elements counts the number of 
both vertices and edges that needs to traverse across the 
augmented summary graph !!. 

For the Augmented Summary Graph of Figure 2, since we have 
three keywords, we need to calculate three shortest paths, which 
are the following ones: 

1. MIMAT0000251 → accession → Mature  →  hasMature → 

Interaction  →  hasTarget, 

2. MIMAT0000251 → accession → Mature  → change → 

NAME and 

3. NAME  → change → Mature → hasMature →   Interaction  

→ hasTarget.      

We then combine the shortest paths into a single connected 
component, resulting to the query pattern graph shown in Figure 

3. Note that the extra node “Transcript” is attached to the property 
“hasTarget” in order to form a complete triple pattern, although it 
is not part of any of the shortest paths. 

Candidate SPARQL generation. The final step of the mapping 

process is to translate the query pattern graph !!
!"

 into a 

SPARQL query.  Note that the vertices of the query pattern graph 

!!
!"

 are either known or unknown literal values and aggregated 

representations. We need to connect the latter type of vertices and 

the vertices of unknown literal values with variables in order to 
form the SPARQL triple patterns. Note that labels of the vertices 
can be used as constants in the triple patterns, while the labels of 

the edges as predicates. To produce conjunctive SPARQL queries, 

given the above observations for every vertex !! ! !!!
!"
!, we 

perform the following:  

• if ! is a literal, do nothing 

• if ! is an unknown literal, then connect the vertex into a new 

variable !"#!!!. 

• If ! is a aggregated representation for entities of RDF type 

class with label !"#$! ! ! !"#$$ , then the vertex is 

connected into a new variable !"# ! !and produce the 

following SPARQL triple !"# ! !rdf:type !"#$! ! .  

Similarly, for every edge !! ! !!!
!"

: 

• If ! represents an inter-entity property between a vertex 

!"#$%&' and a vertex !"#$%&!!then we produce the triple 

pattern: 

!"# !"#$%&' !!"#$! ! !!"# !"#$%& .! 

• If ! represents an entity-to-attribute property between a 

vertex !"#$%&' and a vertex !"#$%&! that is a literal, then we 

produce the triple pattern: 

!"# !"#$%&' !!"#$! ! !!"#$! !"#$%& .! 

Figure 1. Example of an RDF data graph 



• If ! represents an entity-to-attribute property between a 

vertex !"#$%&' and a vertex !"#$%&! that is an unknown 

literal, then we produce the triple pattern 

 !"# !"#$%&' !!"#$! ! !!"# !"#$%& . 

In our example, the pattern graph of Figure 3 is mapped to the 
following SPARQL query: 

!"#"$%&'(&')&'%&*+","&

-'(&.&/0.1.2(1345.630718&')&.&/0.1.2).39548&'%&.&/0.1.2%5.1:650;38&&

'(&/0.1.2<.:).3954&')8&'(&/0.1.2<.:%.5=43&'%8&&

')&/0.1.2.664::071&>)()?%@@@@ABCD8&')&/0.1.26<.1=4&>E?)"D8F 

3. DISCUSSION AND CONCLUSIONS 
The keyword search problem over graph structured data has been 
widely explored [4,5,7]. These works follow three basic steps: a) 
mapping the keyword elements to structured data elements b) 
connect the keyword elements by searching for substructures on 
the data, and c) return as output the retrieved substructures, given 
a scoring function. Our method follows the approach in [6], 
where, instead of computing the answers directly on the data, they 

produce structured queries from RDF summary graphs [6, 8]. 
Compared to [6], we do not focus on top-k queries. Also, we 
create multiple augmented graphs, and use the notion of shortest 
paths to create a query pattern graph. 

We have performed [1] a preliminary evaluation of our method. 
We asked domain experts to provide keyword queries for the RDF 
dataset of Figure 1, along with natural language descriptions. 
Then, we checked whether the generated SPARQL queries and 
the natural language descriptions are close to the descriptions 
provided. Results [2] are promising, since most of the generated 
descriptions match those of users’. We plan to work further on the 

following directions: (a) investigate alternative ways for building 
query pattern graphs, (b) investigate search diversification 
semantics, (c) adopt string matching methods for keyword-to-
node matching, and (d) evaluate the performance of data 
structures used to make the keyword-to-SPARQL translation. 
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Abstract. In this paper, we outline our work on developing a disk-based
infrastructure for efficient visualization and graph exploration operations
over very large graphs. The proposed platform, called graphVizdb, is
based on a novel technique for indexing and storing the graph. Partic-
ularly, the graph layout is indexed with a spatial data structure, i.e.,
an R-tree, and stored in a database. In runtime, user operations are
translated into efficient spatial operations (i.e., window queries) in the
backend.

Keywords: graphVizdb, graph data, disk based visualization tool, RDF graph
visualization, spatial, visualizing linked data, partition based graph layout.

1 Introduction

Graph visualization and exploration is a core task in various application domains,
such as scientific data management, social networks and the Data Web. The wide
availability of vast amounts of graph-structured data, RDF in the case of the
Data Web, demands for user-friendly methods and tools for data exploration and
knowledge uptake. We consider some core challenges related on the management
and visualization of very large RDF graphs; e.g., the Wikidata RDF graph has
more than 300M nodes and edges.

First, their size exceeds the capabilities of memory-based layout techniques
and libraries, enforcing disk-based implementations. Then, graph rendering is
a time consuming process; even drawing a small part of the graph (containing
a few hundreds of nodes) requires considerable time when we assume real-time
systems. The same holds for graph interaction and navigation. Most operations,
such as zoom in/out and move, are not easily implemented to large dense graphs,
as their implementations require redrawing and re-layout large parts of them.

Related works in the field handle very large graphs through hierarchical vi-
sualization approaches. Although hierarchical approaches provide fancy visual-
izations with low memory requirements, their applicability is heavily based on
the particular characteristics of the input dataset. In most cases, the hierarchy
is constructed by exploiting clustering and partitioning methods [?,?,?,?,?]. In
other works, the hierarchy is defined with hub-based [?] and destiny-based [?]
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techniques. [?] supports ad-hoc hierarchies which are manually defined by the
users. Some of these systems offer a disk-based implementation [?,?,?] whereas
others keep the whole graph in main memory [?,?,?,?,?].

In the context of the Web of Data [?,?,?,?,?,?,?], there is a large number
of tools that visualize RDF graphs (adopting a node-link approach); the most
notable ones are ZoomRDF [?], Fenfire [?], LODWheel [?], RelFinder [?] and
LODeX [?]. All these tools require the whole graph to be loaded on the UI. Sev-
eral tools that follow the same non-scalable approach have also been developed
in the field of ontology visualization [?,?].

In contrast to all existing works, we introduce a generic platform, called
graphVizdb, for scalable graph visualization that do not necessarily depend on
the characteristics of the dataset. The efficiency of the proposed platform is
based on a novel technique for indexing and storing the graph. The core idea
is that in a preprocessing phase, the graph is drawn, using any of the existing
graph layout algorithms. After drawing the graph, the coordinates assigned to
its nodes (with respect to a Euclidean plane) are indexed with a spatial data
structure, i.e., an R-tree, and stored in a database. In runtime, while the user is
navigating over the graph, based on the coordinates, specific parts of the graph
are retrieved and send to the user.

2 Platform Overview

The graphVizdb platform is built on top of two main concepts: (1) it is based
on a “spatial-oriented” approach for graph visualization, similar to approaches
followed in browsing maps; and (2) it adopts a disk-based implementation for
supporting interaction with the graph, i.e., a database backend is used to index
and store graph and visual information.

Partition-based graph layout. Here we outline the partition-based approach
adopted by the graphVizdb in order to handle very large graph. Recall that, for
graph layout, the graph is drawn once in a preprocessing phase, using any of
the existing graph layout algorithms. However several graph layout algorithms
require large amount of memory in order to draw very large graphs. In order to



overcome this problem, our partition-based approach (outlined in Figure 1) is
described next.

(1) Initially, the graph (RDF) data is divided into a set of smaller sub-
graphs (i.e., partitions) using a graph partitioning algorithm. At the same time,
the graph partitioning algorithm tries to minimize the number of edges con-
necting nodes in different partitions. (2) Then, using a graph layout algorithm,
each of the sub-graph resulted from the graph partitioning, is visualized into
a Euclidean plane, excluding (i.e., not visualizing) the edges connecting nodes
through different partitions (i.e., crossing edges). (3) The visualized partitions
are organized and combined into a “global” plane using a greedy algorithm whose
goal is twofold. First, it ensures that the distinct sub-graphs do not overlap on
the plane, and at the same time it tries to minimize the total length of the cross-
ing edges. (4) Based on the “global” plane, the coordinates for each node and
edge are indexed and stored in the database.

Spatial operations for graph exploration. In graphVizdb, most of the user’s
requests are translated into simple spatial operations evaluated over the database.
In this context, window queries (i.e., spatial range queries that retrieve the in-
formation contained with in a specific spatial region) are the core operation for
most user’s requests. The user navigates on the graph by moving the viewing
window. When the window is moved, its new coordinates with respect to the
whole canvas are tracked on the client side, and a window query is sent to the
server. The query is evaluated on the server using the R-tree indexes. This way,
for each user request, graphVizdb efficiently renders only visible parts of the
graph, minimizing in this way both backend-frontend communication cost as
well as rendering and layout time. Additionally, more sophisticated operations,
e.g., abstraction/enrichment zoom operations are also implemented using spatial
operations.

Implementation. We have implemented a graphVizdb prototype1 which pro-
vides interactive visualization over large graphs. The prototype offers three main
operations: (1) interactive navigation, (2) multi-level exploration, and (3) key-
word search. We use MySQL for data storing and indexing, the Jena framework
for RDF data handling, Metis2 for graph partitioning, and Graphviz3 for drawing
the graph partitions. In the front-end, we use mxgraph4, a client-side JavaScript
visualization library. A video presenting the basic functionality of our prototype
is available at: vimeo.com/117547871.
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Abstract. The purpose of data visualization is to offer intuitive ways
for information perception and manipulation, especially for non-expert
users. The Web of Data has realized the availability of a huge amount
of datasets. However, the volume and heterogeneity of available infor-
mation make it difficult for humans to manually explore and analyse
large datasets. In this paper, we present rdf:SynopsViz, a tool for hier-
archical charting and visual exploration of Linked Open Data (LOD).
Hierarchical LOD exploration is based on the creation of multiple levels
of hierarchically related groups of resources based on the values of one or
more properties. The adopted hierarchical model provides effective infor-
mation abstraction and summarization. Also, it allows efficient -on the
fly- statistic computations, using aggregations over the hierarchy levels.

Keywords: Visual analytics, Semantic Web, LOD, RDF visualization, Data
exploration, RDF Statistics, RDF Charts, Faceted search, RDF Facets.

1 Introduction

The purpose of data visualization is to offer intuitive ways for information per-
ception and manipulation that essentially amplify, especially for non-expert
users, the overall cognitive performance of information processing. This is of
great importance in the Web of Data, where the volume and heterogeneity of
available information make difficult for humans to manually explore and analyse
large datasets. An important challenge is that visualization techniques must offer
scalability and efficient processing for on the fly visualization of large datasets.
They must also employ appropriate data abstractions and aggregations for avoid-
ing information overloading due to the size and diversity of the data presented
to the user. Finally, they must be generic and provide uniform and intuitive
visualization results across multiple domains.

In this work, we present rdf:SynopsViz, a framework for hierarchical charting
and exploration of Linked Open Data (LOD). Hierarchical LOD exploration re-
alized through the creation of multiple levels of hierarchically related groups of
resources based on the values of one or more properties. For example, a numer-
ical group, characterized by a numerical range, comprises all resources with a
property value within the range of this group. Hierarchical browsing can address



the problem of information overloading as it provides information abstraction
and summarization [1]. It can also offer rich insights on the underlying data when
combined with rich statistical information on the groups and their contents.

The key features of rdf:SynopsViz framework are summarized as follows: (1)
It adopts a hierarchical model for RDF data visualization, browsing and analysis.
(2) It offers automatic on-the-fly hierarchy construction based on data distribu-
tion, as well as user-defined hierarchy construction based on user’s preferences.
(3) Provides faceted browsing and filtering over classes and properties. (4) Inte-
grates statistics with visualization; visualizations have been enriched with useful
statistics and data information. (5) Offers several visualizations techniques (e.g.,
timeline, chart, treemap). (6) Provides a large number of dataset’s statistics re-
garding the: data-level (e.g., number of sameAs triples), schema-level (e.g., most
common classes/properties), and structure level (e.g., entities with the larger
in-degree). (7) Provides numerous metadata related to the dataset: licensing,
provenance, linking, availability, undesirability, etc. The latter are useful for as-
sessing data quality [13].

2 Framework Overview

The architecture of rdf:SynopsViz is presented in Figure 1. Our scenario involves
three main parts: the Client GUI, the rdf:SynopsViz framework, and the input
data. The Client part, corresponds to the framework’s front-end offering sev-
eral functionalities to the end-users (e.g., statistical analysis, facet search, etc.).
rdf:SynopsViz consumes RDF data as Input data; optionally, OWL-RDF/S vo-
cabularies/ontologies describing the input data can be loaded. Next, we describe
the basic components of the rdf:SynopsViz framework.

In the preprocessing phase, the Data and Schema Handler parses the in-
put data and inferes schema information (e.g., properties domain(s)/range(s),
class/property hierarchy, type of instances, type of properties, etc.). Facets Gen-

erator generates class and property facets over input data. Statistics Generator

computes several statistics regarding the schema, instances and graph structure
of the input dataset, such as the number of different types of classes and proper-
ties, or the number of sameAs triples, or finally the average in/out degree of the
RDF graph, respectively. Metadata Extractor collects dataset metadata which
can be used for data quality assessment. Hierarchical Model Module adopts our
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hierarchy model and stores the initial data enriched with the information com-
puted during the preprocessing phase.

During runtime the following components are involved. Hierarchy Specifier is
responsible for managing the configuration parameters of our hierarchy model,
e.g., the number of hierarchy levels, the number of nodes per level, and pro-
viding this information to the Hierarchy Constructor. Hierarchy Constructor

implements the hierarchy model. Based on the selected facets, and the hierarchy
configuration: it determines the hierarchy of groups and the contained triples,
and computes the statistics about their contents (e.g., range, variance, mean,
number of triples contained, etc.). Visualization Module allows the interaction
between the user and the framework, allowing several operations (e.g, navigation,
filtering, hierarchy specification) over the visualized data.

3 Implementation & Demonstration Outline

Implementation. rdf:SynopsViz is implemented on top of several open source
tools and libraries. Regarding visualization libraries, we use Highcharts1, for
the area and timeline charts. and Google Charts2 for treemap and pie charts.
Additionally, it uses Jena framework3 for RDF data handing and Jena TDB for
RDF storing.

The web-based prototype of rdf:SynopsViz is available at 83.212.125.131:
8084/synopsViz. Also a video demonstrating the scenario presented below is
available at http://youtu.be/8v-He1U4oxs.

Demonstration scenario. First, the attenders will be able to select a dataset
from a number of offered real-word datasets (e.g., dbpedia, Eurostat, World
Bank, U.S. Census, etc.) or upload their own. Then, for the selected dataset,
the attendees are able to examine several of the dataset’s metadata, and explore
several datasets’s statistics.

Using the facets panel, the attenders are able to navigate and filter data based
on classes, numeric and date properties. In addition, through facets navigation
several information about the classes and properties (e.g., number of instances,
domain(s), range(s), IRI, etc.) are provided to the users through the UI.

The attenders are able to navigate over data by considering properties’ val-
ues. Particularly, area charts and timeline-area charts are used to visualize the
resources considering the user’s selected properties. Classes’ facets can also be
used to filter the visualized data. Initially, the top level of the hierarchy is pre-
sented providing an overview of the data, organized into top-level groups; the
user can interactively zoom in and out the group of interest, up to the actual
values of the raw input data. At the same time, statistical information concern-
ing the hierarchy groups as well as their contents (e.g., mean value, variance,
sample data, etc.) are presented.

1 www.highcharts.com
2 developers.google.com/chart
3 jena.apache.org



In addition, the attenders are able to navigate over data, through class hi-
erarchy. Selecting one or more classes, the attenders can interactively navigate
over the class hierarchy using treemaps. In rdf:SynopsViz the treemap visualiza-
tion has been enriched with schema and statistical information. For each class,
schema metadata (e.g., number of instances, subclasses, datatype/object prop-
erties) and statistical information (e.g., the cardinality of each property, min,
max value for datatype properties’ ranges, etc.) are provided.

Finally, the attenders can interactively modify the hierarchy specifications.
Particularly, they are able to increase or decrease the level of abstraction/detail
presented, by modifying modifying both the number of hierarchy levels, and
number of nodes per level.

4 Related Work

A large number of works studying issues related to RDF or LOD visualization
and analysis have been proposed in the literature [2,3,4,5]. Additionally, numer-
ous tools offering RDF or Linked Open Data visualization have been developed,
e.g., Sgvizler [6], LODWheel [7], Payola [8], CubeViz [9], KC-Viz [10], RelFinde4,
Welkin5, IsaViz 6, RDF-Gravity7, etc.

In the context of RDF and Linked Open Data statistics, RDFStats [14] calcu-
lates statistical information about RDF datasets. LODstats [11] is an extensible
framework, offering scalable statistical analysis of Linked Open Data datasets.

Regarding the quality assessment issues, [13] studies the criteria which can be
used in Linked Data quality assessment. [14] review millions of RDF documents
to analyse Linked Data conformance. Finally, several frameworks for the quality
assessment in the Web of Data, have been proposed LINK-QA [15], Sieve [16],
WIQA [17]. In contrast to existing approaches, we provide hierarchical RDF
data visualization enriched with data statistics. The hierarchical model solves the
visualization overload issues, offering efficient, on the fly statistical computations
over hierarchy levels. Finally, due to hierarchical model our tool can efficiently
handle and analyse very large datasets.

5 Conclusions

In this paper we have presented rdf:SynopsViz, a framework for hierarchical chart-
ing and exploration of Linked Open Data. The hierarchical model adopted by our
framework can address the problem of information overloading, offering an ef-
fective mechanism for information abstraction and summarization. Additionally,
the adopted model allows the efficient statistic computations, using aggregations
over the hierarchy levels.

4 www.visualdataweb.org/relfinder.php
5 simile.mit.edu/welkin
6 www.w3.org/2001/11/IsaViz
7 semweb.salzburgresearch.at/apps/rdf-gravity



Some future extensions of our tool include the application of more sophis-
ticated filtering techniques (e.g., SPARQL-enabled browsing over the data), as
well as the addition of more visual techniques and libraries.
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Abstract: The Linked Data paradigm is the most common practice for publishing, sharing and managing information 

in the Data Web. Linkzoo is an IT infrastructure for collaborative publishing, annotating and sharing of 

Data Web resources, and their publication as Linked Data. In this paper, we overview LinkZoo and its main 

components, and we focus on the search facilities provided to retrieve and explore RDF resources. Two 

search services are presented: (1) an interactive, two-step keyword search service, where live natural 

language query suggestions are given to the user based on the input keywords and the resource types they 

match within LinkZoo, and (2) a keyword search service for exploring remote SPARQL endpoints that 

automatically generates a set of candidate SPARQL queries, i.e., SPARQL queries that try to capture user’s 

information needs as expressed by the keywords used. Finally, we demonstrate the search functionalities 

through a use case drawn from the life sciences domain. 

1  INTRODUCTION 

The Data Web has completely changed the way we 

create, interlink and consume large volumes of 

information. More and more corporate, 

governmental and user-generated datasets break the 

walls of traditional “private” management within 

their production site, are published, and become 

available for potential data consumers. The Data 

Web extents current Web infrastructure to a global 

data space containing and connecting data from very 

diverse domains. 

The Linked Data paradigm is the most common 

practice for publishing, sharing and managing 

information in the Data Web, and offers a new way 

of data integration and interoperability. The main 

concept in Linked Data is that all resources 

published on the Web are uniquely identified by a 

URI, and typed links (instead of traditional Web 

hyperlinks) between URIs are used to semantically 

connect resources. Reusing existing URIs rather than 

creating new ones, and pointing from one dataset to 

another by referencing these URIs, forms the Linked 

Open Data cloud (Bizer et al., 2009). 

Linked Data is mainly implemented with the 

Resource Description Framework (RDF). An RDF 

representation is a set of statements about resources, 

known as triples, i.e. expressions of the form subject 

predicate object. The subject refers to a resource to 

be described. Actually, the subject is a URI 

reference to that resource, which identifies it 

unambiguously. Predicates are usually terms from 

existing vocabularies and ontologies and are also 

identified by URIs. Finally, the object can be either a 

literal or a URI that refers to another RDF resource. 

We will refer to triples whose objects are literals as 

entity-to-attribute properties, and to triples whose 

objects are entities as inter-entities properties. A set 

of RDF triples can be represented by a directed 

labelled graph, known as the RDF data graph. 

However, in practice, RDF triples are stored in 

relational database systems, native triple/quad stores 

or graph DBMS (Faye et al, 2012; Bizer & Schultz, 

2008).  To query Linked Data, the SPARQL query 



language is used (Prud’Hommeaux & Seaborne, 

2008). 

In this paper, we briefly describe LinkZoo 

(Meimaris et al., 2014), a web-based platform for 

collaborative management, editing and sharing of 

Data Web resources, and we mainly focus on the 

search facilities. Two LinkZoo search services are 

presented: (1) an interactive, two-step keyword 

search service, where live natural language query 

suggestions are given to the user based on the input 

keywords and the resource types they match within 

LinkZoo, and (2) a keyword search service for 

exploring remote datasets, which automatically 

generates a set of candidate SPARQL queries that 

try to capture user’s information need as expressed 

by the keywords used.  

To demonstrate the services’ effectiveness, we 

describe a real use case where the search facilities of 

LinkZoo are combined to effectively address user 

needs when working with a scientific Linked Data 

set. Furthermore, we perform a preliminary 

effectiveness study to evaluate the keyword search 

service with query candidates. LinkZoo is available 

at: http://www.linkzoo.gr:9000 with 

credentials (user: data_2015, password: data_2015) 

for the demo account. 

 

Figure 1: Linkzoo Architecture. 

2 LINKZOO OVERVIEW 

2.1  Architecture 

The architecture of LinkZoo is shown in Figure 1. 

The Storage Layer is built on top of a persistent 

quad store, while the system’s functionality is based 

on four basic modules: the Profile Management 

module, the Resource Action Management module, 

the View Management module, and the Search 

module. The Profile Management module is 

responsible for the administration of user accounts, 

handling actions such as user administration, 

account management, ascribing namespaces and 

named graphs to users. The Resource Action 

Management module provides processing and 

editing of resources such as importing, annotating 

and dereferencing. It is responsible for handling all 

actions associated with each type of resource. Also, 

it provides resource sharing functionality among 

users.  The View Management module controls the 

lifecycle of views and folders; it also manages 

containment relationships between resources, folders 

and views. Views can be considered as different 

workspaces where the same resources can be 

organized in various ways. Finally, the Search & 

Exploration Module is responsible for the searching 

facilities implemented in LinkZoo. Specifically, it 

implements different search mechanisms as well as 

faceted browsing capabilities for private and public 

user graphs. A more in-depth discussion of the 

Search module is presented in Section 3. 
 

2.2 Resource model 

The LinkZoo Resource Representation Model 

captures the following aspects: (i) resource 

descriptive metadata, (ii) resource interlinking, and 

(iii) view definitions and containment relationships 

of resources in views and folders. Common 

vocabularies such as RDFS, Dublin Core Terms and 

FOAF are used to model non-functional metadata 

(e.g. labels, creators, etc.). Moreover, users can 

import existing ontologies or define new ones under 

their own schema namespace. Given that a resource 

can co-exist in many user accounts (e.g., in case two 

users happened to import the same resource), 

resource definitions and views in LinkZoo depend 

on user context. Multiple parallel versions of 

resource definitions are stored in their owners’ 

named graphs. LinkZoo handles a variety of 

resource types, e.g., files, URLs, contacts, RDF 

datasets and remote SPARQL endpoints. 

Furthermore, folders, i.e., resource collections, are 

also modelled as a special resource type, and, thus, 

can be annotated, shared and linked accordingly. We 

have defined an extensible taxonomy of resource 

types that includes various levels of specialization 

for each type. This way, we allow for different 

handling of each resource type or sub-type.  



2.3 Resource Annotations 

In LinkZoo, users can annotate resources and enrich 

their definition with new triples. Many established 

ontologies and vocabularies have been imported in 

the tool for quick access, while new properties can 

also be created on demand, under each user’s custom 

schema namespace. Annotation can be performed 

manually and collaboratively, as well as 

automatically. In the case of URL resources, 

external APIs are used to automatically enrich the 

imported URLs by parsing their content and 

extracting related Linked Data entities (specifically 

DBPedia and Freebase resources). In particular, 

LinkZoo utilizes the Alchemy API (Alchemy API, 

2015) but other similar services can be used as well. 

2.4 Sharing and Collaboration 

LinkZoo resources can be collaboratively annotated 

and enriched with new knowledge. This is achieved 

by sharing resources with other users, with 

appropriate roles and privileges. Three levels of 

privileges, represented by three user roles, ensure 

proper sharing and usage among users. These are the 

owner, editor and viewer. Owners and editors of 

resources are able to share/unshare, annotate and 

delete them. Viewers cannot perform any kind of 

write-related operation that alters the state of the 

resource in the storage, and are thus limited to read-

only actions of their shared resources. Furthermore, 

resources can be private or public. Shared 

directories pass on their sharing status to their 

contained items, and whenever a new resource is 

inserted into a folder, it automatically becomes 

available to the folder’s shared users. 

2.5 Linked Data Publication 

Creating and publishing resources as Linked Data is 

a key feature of LinkZoo.  This means that created 

resources are automatically assigned dereferenceable 

URIs, which can be used for external linking and 

referencing. These URIs follow a simple minting 

schema that takes into account the type of resource 

as well as a unique identifier created dynamically. 

Dereferencing is performed when there are 

appropriate permissions, thus restricting external 

users with no authorization from getting access to 

descriptions of private resources. Unauthorized 

dereferencing returns a limited description. 

However, for a private resource, a public 

dereferenceable URI can be generated on demand, 

allowing the user to offer access to others without 

changing its status. If the user owns a LinkZoo 

account, he can choose to import the item to his 

account. Also, the platform offers serialized RDF 

exporting facilities for selected resources. 

2.6 Static and Dynamic Views 

The default exploring and browsing mode of 

LinkZoo follows the traditional folder-based 

approach of file systems with visual interfaces. 

However, LinkZoo exploits the semantics of the 

resources to provide multiple ways of organization. 

Users are able to organize their resources based on 

their properties and store the results as linked views.  

Views leverage the semantic web by offering 

intuitive means for organizing, searching and 

discovering new resources either within the platform 

or the entire LOD cloud. In essence, views act as 

workspaces and can be specialized in two sub-types, 

namely static and dynamic. These can be 

parallelized with materialized and non-materialized 

views in relational models respectively. Dynamic 

views are result sets of particular queries that are 

associated with the views. This way, the various 

annotations of resources are used as organizational 

factors, depending on the user’s needs. For instance, 

the user can create a dynamic view with the query 

“Find all hairpins that produce mature with name 

hsa-mir-147a”. This will organize into a dedicated 

workspace all resources that are matched by the 

evaluation of this query. Updating the dynamic view 

will result in repopulating the view based on the 

updated query result set. 

3 RESOURCE SEARCH AND 

EXPLORATION 

Search and exploration in LinkZoo combines 

keyword-based search with property-based faceted 

browsing. Specifically, we have implemented an 

“on-the-go” search mechanism that serves 

suggestions based on the taxonomy of resource types 

as well as the properties of resources. This type of 

search is applied on LinkZoo resources that have 

been imported to or shared with a user’s account. 

Furthermore, we have implemented a “search–with-

query-candidates” mechanism that can be used to 

query remote endpoints imported in LinkZoo. This 

way, LinkZoo allows exploring, importing, and 

annotating remote datasets. Therefore, by combining 

the search functionalities, users can first find 

relevant endpoints and then query them explicitly.  



LinkZoo also provides exploration by faceted 

browsing. In every folder shown to the user, the 

system also shows all properties from triples with 

the contained resources as subjects. Then, upon 

selection of a property, the objects in the triples of 

that property will be listed in the form of virtual 

folders for further exploration. For instance, in a 

folder that contains MP3 audio files, the property 

mo:genre will be selectable for faceted browsing. 

Then, the MP3 resources will be organized to virtual 

folders based on the distinct values of the mo:genre 

property. The keyword search and property filtering 

methods can be combined and applied in an 

exploratory manner. 

3.1 Search with on-the-go suggestions 

An interactive, two-step search process is 

implemented for the exploration of the user’s 

imported and shared data within LinkZoo. Natural 

language query suggestions are given to the user 

based on the input keywords and the resource types 

they match. For instance, by typing “Research”, the 

user will be prompted to select a suggestion from a 

list that contains queries of the form “find URLs with 

rdfs:seeAlso dbpedia:Research”, if a similar pattern 

exists in the user’s data. Upon selection of a 

suggested query, the relevant results will be shown 

in a virtual folder. These can then be further 

processed in bulk for annotation, moving, deleting 

and other resource-specific operations. This kind of 

search works incrementally, on the results 

previously fetched. For example, after the user 

selects “find URLs with rdfs:seeAlso 

dbpedia:Research” and the relevant results are 

fetched, further keyword exploration will suggest 

queries based only on the current result set and not 

on the whole set of user data. The above points can 

Figure 3. One of the 5 possible Augmented Summary Graphs for the keywords MIMAT0000251, name and hasTarget for 

the data graph shown in Figure 2. 

Figure 2. Example of an RDF data graph. 



be summarized in the following steps: (1) Each 

keyword entered by the user is matched to objects of 

the triples of the user’s resources. The distinct 

predicate-object pairs that are matched are ordered 

by their resource types. (2) The system feeds back 

suggestions of the form “find {resource_type} with 

{predicate} {object} “. For example, “find URLs 

with rdfs:seeAlso dbpedia:Research”. (3) The user 

selects a suggestion and the system builds a query 

based on the resource type and the predicate object 

pairs found in (1). (4) The system feeds back the 

results of the query in (3) to the user. (5) The user 

goes back to (1) and enters a new keyword in order 

to refine the results. 

3.2 Search with query candidates 

A key feature of LinkZoo is a search service that 

assists the user to explore remote RDF data sources 

and to retrieve RDF entities, which, in turn, can be 

imported in LinkZoo. Given a set of keywords, 

LinkZoo returns a set of candidate SPARQL queries 

that try to capture user’s information need as 

expressed by the keywords. Briefly, given a set of n 

keywords, we perform the following steps: (1) For 

each keyword , we retrieve all its matches  on 

the RDF data graph. (2) We calculate all possible 

combinations

 of all the 

matched elements  where . (3) For 

each combination  that contains one matched 

element per keyword , we create an augmented 

summary graph . (4) From each augmented 

summary graph , we generate the query pattern 

graph  and finally (5) we translate each query 

pattern graph   into a SPARQL query. Next, we 

elaborate on the details. 

Let’s consider that we have an RDF dataset as 

the one shown in Figure 2. The dataset is depicted as 

an RDF data graph, where oval shape vertices 

represent RDF entities, diamond shape vertices 

represent RDF classes and rectangle shape vertices 

represent literals. Similarly, dashed edges represent 

entity-to-attribute properties, while solid ones 

represent inter-entities properties. Let's us assume 

that the user has provided the keywords 

MIMAT0000251, name and hasTarget. The first step 

is to match the keywords to elements in the RDF 

data graph: (1) MIMAT0000251 matches to the 

literal “MIMAT0000251” that is  connected via the 

property “accession” with an RDF entity of 

“Mature” type, (2) name matches to the literal 

“NAME” that is connected via the  property 

“change” met with RDF entity of type “Mature” and 

to the entity-to-attribute property “name” met with 

entities of type “Hairpin”, “Mature”,  “Species” and 

“Gene”, resulting in 5 possible matches, and (3) 

hasTarget matches to the inter-entities property 

“hasTarget” met with subject of type “Interaction” 

and object of type “Transcript”.  The second step is 

to calculate all possible combinations of the matched 

elements and for each combination c create the 

augmented summary graph . In this example, 

there are 5 possible combinations. Let's examine one 

combination, where the name keyword  matches to 

the literal “NAME”.  

Augmented summary graph. The augmented 

summary graph  is a combination of an aggregated 

representation of the RDF data graph , enriched 

with graph elements for each matched 

element . More specifically, all 

entities from the RDF data graph  that have the 

same type of RDF class are represented by a vertex 

labelled with the name of the RDF class. Similarly, 

all inter-entities properties of the same type are 

represented by a directed edge between the 

aggregated vertex representation of the subjects and 

the aggregated vertex representation of the objects. 

The edge is also labelled with the property's name. 

Note that entity-to-attribute properties as well as 

literal values are omitted from the summary 

representation. Overall, the augmented graph is 

actually an abstraction of the RDF data graph .  

The augmented summary graph  contains also 

graph elements for each element  from the set of 

matched elements . More specifically, if the 

matched element   is a literal value, then the 

graph is extended by a directed edge and a vertex. 

The edge represents the entity-to-attribute property 

that the matched element is met with in the RDF 

data graph, while the vertex is the matched element 

itself. Note that the edge is attached from the 

aggregated vertex representation of the subject to the 

newly inserted vertex. Similarly, if the matched 

element  is an entity-to-attribute property, then 

the graph is extended by a directed edge and a 

vertex. The edge represents the entity-to-attribute 

property, i.e. the matched element , and it is 

attached from the aggregated vertex representation 

of the subject to the newly inserted vertex. The 

difference from the previous case is that the latter 

vertex represents the unknown literal of the 

property. Note that if the same entity-to-attribute 

property is met with multiple RDF entities of 

different RDF types in the RDF data graph that 

would lead to different sets . An example of the 

Augmented Summary Graph for the combination 

under investigation is shown in Figure 3.  



Query pattern graph. In order to extract the 

query pattern graph from the augmented 

summary graph , we calculate the shortest paths 

between every pair of matched elements and we 

combine all of them into one connected subgraph. 

Note that during the shortest path calculations we 

ignore the directionality of the edges. Moreover, 

since a matched element  , i.e. a source or sink of 

the shortest path algorithm, can also be an edge, then 

the distance between two matched elements counts 

the number of both vertices and edges that needs to 

traverse across the augmented summary graph . 

For the Augmented Summary Graph of Figure 3, 

since we have three keywords, we need to calculate 

three shortest paths. We then combine the shortest 

paths into a single connected component, resulting 

to the query pattern graph shown in Figure 4. Note 

that the extra node “Transcript” is attached to the 

property “hasTarget” in order to form a complete 

triple pattern, although it is not part of neither of the 

shortest paths. 

Candidate SPARQL generation. The final step 

of the mapping process is to translate the query 

pattern graph  into a SPARQL query.  Note that 

the vertices of the query pattern graph  are either 

known or unknown literal values and aggregated 

representations. We need to connect the latter type 

of vertices and the vertices of unknown literal values 

with variables in order to form the SPARQL triple 

patterns. Note that labels of the vertices can be used 

as constants in the triple patterns, while the labels of 

the edges as predicates. To produce conjunctive 

SPARQL queries, given the above observations for 

every vertex , we perform the following:  

· if  is a literal, do nothing 

· if  is an unknown literal, then connect the 

vertex into a new variable . 

· If  is a aggregated representation for entities of 

RDF type class with label  , 

then the vertex is connected into a new variable 

and produce the following SPARQL 

triple rdf:type .  

Similarly, for every edge : 

· If  represents an inter-entities property between 

a vertex  and a vertex then we 

produce the triple pattern 

 .  

· If  represents an entity-to-attribute property 

between a vertex  and a vertex  

that is a literal, then we produce the triple 

pattern .  

· If  represents an entity-to-attribute property 

between a vertex  and a vertex  

that is an unknown literal, then we produce the 

triple pattern 

 . 

In our example, the pattern graph of Figure 4 is 

mapped to the following SPARQL query. 
SELECT ?I ?M ?T WHERE 
{?I a diana:Interaction. 

?M a diana:Mature. 

?T a diana:Transcript. 

?I diana:hasMature ?M. 
?I diana:hasTarget ?T. 
?M diana:accession “MIMAT0000251”. 
?M diana:change “NAME”.}  

4 DEMONSTRATION 

In this section we demonstrate the search capabilities 

of our tool. We employ a use case taken from the 

DIANA linked dataset. The dataset contains 

aggregated information from well-known biology 

databases, including ENSEMBL, miRBase and 

KEGG pathway, of the microRNA world published 

in RDF, available at the endpoint 
http://leonardo.imis.athena-

innovation.gr:8891/diana/sparql. 

Let us consider the following scenario: a user is 

engaged in a bioinformatics research project which 

concerns control mechanisms for cancer studies, and 

more specifically it focuses on the regulatory 

microRNA molecules. To this end, the user has 

gathered resources and data from a variety of 

sources, such as publications from PubMed, and data 

from the Gene Expression Atlas, the Experimental 

Factor Ontology and DIANA.  Some of these 

resources have been imported by the user himself, 

while others have been shared to him by his 

collaborators. Publications are modelled either with 

the file or URL type and are annotated with metadata 

provided by the user and collaborators as well as 

external enrichment services. On the other hand, the 

Figure 4. The Query Pattern Graph extracted from the 

Augmented Summary Graph of Figure 3. In dashed style, 

we depict the matched elements. 



imported datasets are modelled as resources of the 

type DataCollection, which allows the exploration 

of a remote RDF dataset via our search-with-query-

candidates mechanism. Similarly to other resource 

types, DataCollection resources are annotated with 

descriptive metadata. 

We consider that the user has either limited 

knowledge of the RDF vocabulary used to describe 

the datasets, or limited experience with SPARQL. 

To overcome this problem, LinkZoo offers the 

capability of keyword search for identifying and 

exploring RDF datasets. The user can identify 

potential datasets that fit his criteria, based on 

metadata annotations. In this case, he is looking for 

datasets that contain microRNA data, and to that end 

he uses the search-on-the-go utility to eventually 

identify the DIANA dataset.  

After identifying DIANA as the dataset to work 

with, the user is interested in collecting information 

about zebrafish miRNAs, in order to evaluate a 

potential correlation with human cancer cell 

metastasis. To achieve this, he types the words 

“zebrafish hairpin” into the keyword search box and 

as a result he gets two possible SPARQL queries. 

Both generated queries will search for publications 

that are annotated with the mesh term “zebrafish” 

and are related with miRNAs of hairpin type. In the 

first query, the “hairpin” keyword matches to the 

RDF class diana:Hairpin and imposes a direct 

constraint that the property diana:hasMirna of the 

RDF class diana:PaperMirnaConnection will 

retrieve only Hairpin entities, while in the second 

one the “hairpin” keyword matches to the literal 

value of the property diana:mirnaType of the 

RDF class diana:PaperMirnaConnection, 

imposing an indirect constraint to the property 

diana:hasMirna. Moreover, the first query will 

also retrieve the RDF entities of the connected 

Hairpins, while the second will not. The data he 

retrieved from the keyword search request, could 

provide useful information that would allow the user 

to further explore the dataset. Also, the user can 

retrieve results by selecting one of the generated 

queries, and incorporate them as new resources in 

his LinkZoo account, in order to annotate them and 

share them with his collaborators.  

4.1 Preliminary Evaluation 

In order to evaluate the search with query 

candidates, we perform an effectiveness study. We 

have asked our biologists collaborators to provide 

keyword queries along with a description in natural 

language of the required information. We have 

aggregated 5 queries for the DIANA dataset. An 

example query is ““Alzheimer's disease” mature” 

and the corresponding description is “Retrieve all 

mature miRNAs that are related with Alzheimer’s 

disease”. To evaluate the effectiveness of our 

generated queries we order them in reverse order 

given  the number of triple patterns they contain and 

we calculate the Reciprocal Rank metric defined as 

RR = 1/r where r is the rank of the correct query. 

Given our problem definition, a query is correct if it 

matches the information needs as explained in the 

provided natural language description. Figure 5 

shows the Reciprocal Rank we have calculated for 

the 5 queries for the DIANA dataset. In the 4 out of 

5 queries, we got an RR of 1 meaning that we were 

able to get the information required by the users. 

5 RELATED WORK 

Collaborative editing and annotating has been 

explored and addressed thoroughly on the schema 

level. Tools available for collaborative ontology 

editing are presented in (Auer et al., 2006; Farquhar 

et al., 1997; Tudorache et al., 2013). However, these 

require expertise on the schema level. Regarding the 

management of heterogeneous resources, Personal 

Information Management (PIM) systems and tools 

have been implemented, employing common 

representation semantics as an abstraction layer 

(Bernardi et al., 2011; Franz et al., 2007; Sauermann 

et al., 2006). However, these address the 

management of resources in non-collaborative 

communities and are thus limited to individual 

usage. 

On the other hand, the keyword search problem 

over structured data, tree structured (Cohen et al., 

2003; Kimelfeld & Sagiv, 2006) or graph structured 

(He et al., 2007; Bhalotia et al., 2002), is a problem 

that has widely been explored. Βasic steps in those 

works involve 1) mapping the keyword elements to 

data elements 2) searching for substructures on the 

data that connect the keyword elements and 3) return 

as output the substructures given a scoring function. 

Figure 5. Reciprocal Rank for the DIANA dataset. 



(Tran et al., 2009) proposed a different solution to 

the keyword search problem, where instead of 

computing for the answers directly, it computes 

structured queries allowing the user to choose the 

appropriate one. LinkZoo’s approach on keyword 

search with query candidates follows (Tran et al., 

2009) approach to generate SPARQL queries, but 

uses a different exploratory method. In particular, 

we create multiple augmented graphs one per 

keywords combination and use the notion of shortest 

paths to create a query pattern graph. 

6 CONCLUSIONS 

In this paper, we have presented LinkZoo, an IT 

infrastructure for collaborative management of 

heterogeneous resources on the Web. LinkZoo 

provides an environment for modelling and 

publishing data such as files, websites, datasets and 

people as RDF, and allows for their coexistence in 

shared contexts. Furthermore, we have presented the 

various types of search capabilities implemented in 

the platform. These span from trivial text searching 

within a user’s data to more elaborate data-guided 

exploration and searching over imported RDF data 

collections. Finally, we have demonstrated the 

usability of the search functions through a use case 

drawn from the life sciences domain. 

Currently, keyword search expects exact 

matches of terms. In the future, we will extend this 

functionality to automatically suggest terms from the 

RDF data graph. Another direction will be to extend 

the matching procedure by enabling also ontology 

matching (Euzenat & Shvaiko, 2013). Furthermore, 

to assist user understanding of the produced 

candidate SPARQL queries, we intend to also show 

natural language descriptions of the generated 

candidates. Finally, we also plan to perform an 

extensive evaluation of our search services, in term 

of completeness of the results, time and memory 

requirements for indices creation, performance.  
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RDivF: Diversifying Keyword Search

on RDF Graphs
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Abstract. In this paper, we outline our ongoing work on diversifying
keyword search results on RDF data. Given a keyword query over an
RDF graph, we define the problem of diversifying the search results
and we present diversification criteria that take into consideration both
the content and the structure of the results, as well as the underlying
RDF/S–OWL schema.

Keywords: Linked Data, Semantic Web, Web of Data, Structured Data.

1 Introduction

As a growing number of organizations and companies (e.g., Europeana, DBpedia,
data.gov, GeoNames) adopt the Linked Data practices and publish their data
in RDF format, going beyond simple SPARQL endpoints, to provide more ad-
vanced, effective and efficient search services over RDF data, has become a major
research challenge. Especially, since users prefer searching with plain keywords,
instead of using structured query languages such as SPARQL, there has been an
increasing interest on keyword search mechanisms over RDF data [1,2,3].

Most of the proposed works return themost relevant RDF results, in the form
of graphs or trees. Relevance, in this case, is typically defined in terms of (a) con-
tent similarity between the elements comprising a result and the query terms and
(b) result compactness, which means that smaller trees or graphs are preferred.
The drawback is that this leads to result sets that are often characterized by a
high degree of redundancy. Moreover, significant information is often lost, since
graph paths that connect two entities and might denote a significant relation
between them are omitted to satisfy the compactness requirement. Moreover,
most approaches do not consider the rich structure and semantics provided by
the RDF data model. For instance, an effective RDF keyword search method
should treat RDF properties (edges) as first-class citizens, since properties may
provide significant information about the relations between the entities being
searched.

⋆

This research has been co-financed by the European Union (European Social Fund ESF) and
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As an example, consider a user searching for “Scarlett Johansson, Woody

Allen” over the DBpedia dataset. An effective approach should, at least ini-
tially, consider all the possible ways these two entities are related. Since there
exist various roles and relations between these two entities, e.g., Woody Allen
may appear as either a director or an actor, this leads to a large and com-
plex result set, containing several overlapping or similar results. The plethora
of different relation combinations requires a mechanism that reduces informa-
tion redundancy, allowing the system to return to the user a more concise and
also more meaningful and informative result set. This can be achieved by intro-
ducing a diversification step into the retrieval and ranking process. Ideally, the
system should return to the user results that cover different aspects of the exist-
ing connections between these entities, e.g., a movie where they played together,
a movie directed by Woody Allen where Scarlett Johansson appears, an award
they shared, etc.

Although the diversification problem has been extensively studied for docu-
ment search [7,8,9], the structured nature of RDF search results requires differ-
ent criteria and methods. Most of the approaches regarding keyword search on
graphs [1,2,5] limit their results to trees (particularly, variations of Steiner trees);
only few allow subgraphs as query answers [3,4]. Among them, [3] is the most
relevant to our work; however, it does not address the diversification problem
and it also does not consider the schema of the data. A different perspective is
followed in [6], where a keyword query is first interpreted as a set of possible
structured queries, and then the most diverse of these queries are selected and
evaluated.

In this paper, we introduce a diversification framework for keyword search
on RDF graphs. The main challenges arise from the fact that the structure
of the results, including additional information from the underlying schema,
needs to be taken into account. This is in contrast to the case of diversifying
unstructured data, where the factor of content (dis)similarity is sufficient. In our
framework, called RDivF (RDF + Diversity), which we are currently developing,
we exploit several aspects of the RDF data model (e.g., resource content, RDF
graph structure, schema information) to answer keyword queries with a set of
diverse results. To the best of our knowledge, this is the first work addressing
the issue of result diversification in keyword search on RDF data.

2 Diversifying RDF Keyword Search

Assume an RDF graph G(V,E), where V is the set of vertices and E the set
of edges. Optionally, G may be associated with an RDF schema, defining a
hierarchy among classes and properties. Let q = {{t1, t2, . . . , tm}, k, ρ} be a
keyword query comprising a set of m terms (i.e., keywords), a parameter k

specifying the maximum number of results to be returned, and a parameter
ρ that is used to restrict the maximum path length between keyword nodes (i.e.,
vertices), as will be explained later. Assume also a function M : t → Vt that
maps a keyword t to a set of graph nodes Vt ⊆ V .



Definition 1. (Direct Keyword Path). Assume two nodes u, v ∈ V that
match two terms t, s of a query q, i.e., u ∈ Vt and v ∈ Vs. Let P be a path
between u and v. P is called a direct keyword path if it does not contain any
other node that matches any keyword of the query q.

Definition 2. (Query Result). Assume an RDF graph G and a query q. A
subgraph Gq of G is a query result of q over G, if: (a) for each keyword t in q,
there exists exactly one node v in Gq such that v ∈ Vt (these are called keyword

nodes), (b) for each pair of keyword nodes u, v in Gq, there exists a path between
them with length at most ρ, (c) for each pair of keyword nodes u, v in Gq, there
exists at most one direct keyword path between them, and (d) each non-keyword
node lies on a path connecting keyword nodes.

The above definitions leed to query results that contain pair-wise connections
among all the terms in the query. That is, in our framework, we are interested in
results that can be graphs and not only spanning trees, which is the typical case
in previous approaches. This is based on the intuition that we want to emphasize
on the completeness of relationships between query terms rather than on the
criterion of minimality. Note that the aspect of minimality is still taken into
consideration in our definition by means of the conditions (c) and (d) above.

Now, assume a function r : (Gq, q) → [0, 1] that measures the relevance be-
tween the query q and a result Gq, and a function d : (Gq, G

′
q) → [0, 1] that

measures the dissimilarity between two query results Gq and G′
q. Let also fr,d

be a monotone objective function that combines these two criteria and assigns a
score to a result set R w.r.t. the query q, measuring how relevant the included
results are to the query and how dissimilar they are to each other. We assume
that |R| > k. Then, the goal of the diversification task is to select a subset of k
results so that this objective function is maximized. Formally, this can be defined
as follows.

Definition 3. (Diversified Result Set). Assume an RDF graph G, a query
q, and the functions r, d, and fr,d as described above. Let R denote the result
set of q over G. The diversified result set Rk is a subset of the results R with
size k that maximizes fr,d, i.e., Rk = argmax

R′⊆R,|R′|=k

fr,d(R
′).

Following this approach, in order to select a diversified result set for keyword
queries over RDF graphs, one needs to determine appropriate functions for r, d,
and fr,d. Regarding the latter, [8] presents several objective function and studies
their characteristics. The same functions can also be used in our case, since this
aspect is independent from the nature of the underlying data. Therefore, we
focus next on specifying the relevance and dissimilarity functions, r and d, in
our setting.

3 Diversification Criteria

The main challenge for diversifying the results of keyword queries over RDF
graphs, is how to take into consideration the semantics and the structured na-
ture of RDF when defining the relevance of the results to the query and the



dissimilarity among results. In this section, we outline a set of criteria for this
purpose, which can be used for specifying the functions r and d, as described
above.

The relevance of a result to the query takes into consideration two main
factors. The first factor refers to text-based matching between the nodes in the
result graph and the keywords in the query. This aspect is essentially covered
by the function M that maps query terms to graph nodes. This function can be
modified to return, for each graph node, a degree of match m ∈ [0, 1] between
this node and a corresponding query keyword. In addition, a threshold τ can be
specified in the query, so that only nodes with m ≥ τ are returned. The second
factor refers to the fact that results should be concise and coherent. One step
to ensure this is the minimality criterion included in Definition 2. Furthermore,
we need to consider structural and semantic homogeneity of the result, so that
the results can be more meaningful to the user. This is an intra-result measure,
capturing the homogeneity among the nodes, edges and paths in the result graph.
For example, this would assign a higher score to a path where all the edges are
labelled with the same property. Moreover, RDF schema information can be
taken into account, i.e., scoring based on class or property hierarchy and least
common ancestors.

The dissimilarity among results can be defined by comparing paths between
corresponding pairs of keyword nodes. This takes into account both structural
properties, e.g., path lengths or common subpaths, and semantic information,
i.e., classes and properties corresponded to the nodes and edges along the path.
The main objective here is, for each result, to obtain paths that are similar to
other paths in the result, but dissimilar to paths in other results. This objective is
not restrained to textual similarity only, but takes also into account the semantic
similarity of classes and properties inferred by the schema.
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