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Abstract. We investigate the linear stability of a film flowing down a solid substrate in the presence of soluble  
surfactants. The Navier-Stokes equations for the liquid motion are considered, together with advection-diffusion  
equations for the concentrations of the species involved, which include monomers and micelles in the bulk and  
monomers  adsorbed  at  the  liquid-air  interface.  The  adsorption-desorption  kinetics  of  the  surfactant  at  the  
interface  is  explicitly  accounted  for.  An  Orr-Sommerfeld  eigenvalue  problem  is  formulated,  and  solved  
analytically  in the limit  of  long-wave disturbances and numerically  for arbitrary wavelength using a finite  
element  method.  An extensive  parametric  study is  performed to reveal  the role of  surfactant  solubility  and  
adsorption-desorption  kinetics.  The  results  quantify  the  stabilizing  effect  of  soluble  surfactants  due  to  the  
presence of Marangoni stresses, and indicate that moderately soluble surfactants may be more effective than  
insoluble ones. Disturbances of finite wavelength are stabilized by more than an order of magnitude, and their  
detailed  behavior  depends  in  a  non-monotonic  way on  the  amount  of  surfactant  and  on  its  solubility  and  
kinetics. The above predictions provide insights for the interpretation of recent experimental findings on the  
primary instability and on the ensuing unstable dynamics of liquid films doped with soluble surfactants.

1 INTRODUCTION

The formation of waves in thin films flowing down inclined surfaces  has  attracted the interest  of  many 
researchers  in the past  because  of  their  importance  in a  broad  range of  engineering applications.  Extensive 
reviews  on the rich dynamics  of  this  system and main developments  on the field are  given  in  Craster  and  
Matar[1].

It is well known that interfacial instabilities can be significantly affected by the presence of surface-active 
materials  (surfactants).  Wave formation in  falling films is  no exception and this has  been known since the 
ancient times. The first attempts to investigate the mechanisms that are responsible for the stabilization of the 
flow were made by Benjamin[2] and Whitaker[3]. Despite the significant differences between the two approaches, 
in the case of an insoluble surfactant the analytical prediction was found to be exactly the same, providing a  
unambiguous confirmation that the elasticity is the mechanism responsible for the stabilization of the flow. The 
asymptotic analysis for large values of the elasticity parameter by Anshus and Acrivos [4] confirmed the findings 
of the previous works about the existence of a critical Reynolds number and also showed that the presence of  
surfactants results in the decrease of the growth rate and increase of the wave length of the most unstable mode. 

The effect of insoluble surfactants on the linear stability of a film flowing down a corrugated wall in the limit 
of vanishing Reynolds number was examined by Pozrikidis[5]. Subsequently, Blyth and Pozrikidis[6] presented a 
numerical solution of the Orr-Sommerfeld eigenvalue problem for finite Reynolds numbers of a film laden with 
insoluble surfactant flowing on an inclined plane and demonstrated the occurrence of the usual interfacial mode  
along with a new mode associated to the spatial variation of the surfactant concentration. The same problem was  
also studied by Pereira and Kalliadasis[7], who presented a systematic analysis of the Orr-Sommerfeld problem of 
the full Navier-Stokes and concentration equations and also investigated the non-linear dynamics in the unstable 
regime.

Despite the large number of studies on the role of surfactants on film flows and the fact that this is a very old  
problem, it  appears  from the above review that the effects of surfactant  solubility and adsorption/desorption 
kinetics on the primary instability and on the unstable dynamics have not yet  been adequately addressed. In  
addition, there is  recent  experimental  activity that  points to a non-trivial  influence  of these parameters.  For 
example, Georgantaki et al[8] performed a series of experiments to study the effect  of soluble surfactants on 
inclined film flows. They have used aqueous solutions of Isopropanol (IP) and Sodium Dodecyl Sulfate (SDS) 
and found that these two agents exhibit a remarkably different influence on the flow. More specifically, it was  
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shown that, in the case of IP solutions, the inlet disturbances turned into solitary humps preceded with capillary 
ripples, as would be expected for a clean fluid with similar surface tension as the IP solution. On the contrary,  
when SDS solutions were used, the dominant structures were sinusoidal travelling waves of small amplitude. 
These structures were found to be extremely stable for a wide range of frequencies and up to high Reynolds 
numbers. Also, with respect to the primary instability, the same authors observed a strong stabilization of water  
films by the addition of SDS, whereas previous results with IP solutions[9] had shown no difference in the critical 
Reynolds  number from that  of other  clear  liquids with the same Kapitsa number.  The mechanisms that  are 
responsible for the so different behaviours of the two surfactants are unknown, and it was speculated that these 
behaviors may be interpreted as an effect of the different solubility and/or sorption kinetics of the two agents.

The scope of our study is to reveal these mechanisms and to this end we examine in detail the linear stability 
of a film laden with a non-volatile, soluble surfactant flowing down an inclined plane. We perform a systematic  
analysis  of  the  Orr-Sommerfeld  eigenvalue  problem of  the  full  Navier-Stokes  and  concentration  equations, 
taking into account mass exchange by diffusion and convection between the bulk and the interfaces, as well as 
the effect of sorption kinetics along the liquid-air interface and along the substrate. The paper is organized as 
follows. In section 2 we formulate the problem and describe the details of our model. The linear stability analysis 
is performed in section 3, and consists of an analytical  solution in the limit of disturbances with very small 
wavenumber and a numerical solution for arbitrary wavenumbers. The results are presented and discussed in this  
section, and are followed by the conclusions.

2 PROBLEM FORMULATION

2.1 Fluid mechanics
We consider the dynamics of liquid films flowing along an infinite planar wall, inclined at an angle α with 

the horizontal plane. The film is laden with a soluble, non-volatile surfactant which may adsorb at the liquid-air  
interface altering the surface tension. The fluid is Newtonian with density ρ, viscosity μ and surface tension σ; 
the  density  and  viscosity  are  considered  constant  whereas  the  surface  tension  depends  on  the  interfacial  
concentration of the surfactant.

In order to model two-dimensional dynamics, we use a Cartesian coordinate system (x,z), with x pointing in 
the streamwise and z in the cross-stream direction. The velocity field is u=u ,w , where u and w are the 
velocity components in the streamwise  and the cross-stream direction.  The liquid-air  interface  is  located at  

z=h x , t   and the liquid-solid interface at  z=0 . The flow is incompressible and governed by the 
momentum and mass conservation equations given below:

ρ  utu .∇ u =∇ P−μ∇2 u− ρ g (1)

∇ .u=0 (2)

Solutions of (1) and (2) are obtained subject to the following boundary conditions: Along the free surface, the 
velocity field satisfies the local force balance between normal and viscous stresses in the liquid. Taking the 
components of this force balance tangential and normal to the free surface we obtain

n . τ .t=t .∇ s σ (3a)

n . τ .n=2κ σ (3b)

where n and t denote respectively the outward unit normal and unit tangential vectors on the interface,
τ is the total stress tensor and 2κ is the mean curvature of the interface. In addition, along the moving 

interface we impose the kinematic boundary condition, and at the liquid-solid interface the usual no-slip and no-
penetration conditions.

2.2 Mass transfer
To account for the presence of soluble surfactants, we utilize the surfactant kinetic model of Edmonstone et  

al[10]  that allows for two surfactant species in the bulk (monomers and micelle aggregates) and one at each 
interface. The interaction between the bulk concentration of monomer, c ,and the concentration of adsorbed 

monomer at the interface, ca , is denoted by the following kinetic law,

Sac⇔ ca (4)

where Sa is the fraction of the interface area that is not covered with monomer, and is defined as in terms of  

the  concentration, ca∞ ,  at  close  packing,  as Sa=1−ca/ca∞ .  Note  that  the  above  "reaction"  is 



George Karapetsas and Vasilis Bontozoglou

characterized by rate constants k1, k2 , which determine the fluxes between phases. For example, the bulk and 

the gas-liquid interface exchange monomers by a flux J ba , according to the expression

J ba=k1 c∣z=h Sa−k2 ca=−Dn . ∇ c z=h (5)

The evolution of monomer concentrations at the gas-liquid interface and in the bulk is described by standard  
convection-diffusion  equations,  taking  into  account  the  motion  of  the  interface.  Finally,  to  complete  the 
description, we choose the Sheludko equation[11] as the constitutive relation to describe the dependence of the 
interfacial  tension on surfactant  concentration. This model is nonlinear and asymptotes to a minimal surface 
tension, which makes it appropriate for use at high surfactant concentrations. 

2.3 Scaling and linearization
We non-dimensionalize lengths and velocities by the Nusslet film thickness H and velocity U , and the 

interfacial  and  bulk  concentrations  by  the  closely  packed  value, ca∞ ,  and  by  the  critical  micelle 

concentration, ccmc , respectively. As a result, the following dimensionless parameters appear:

Re=
χ
2

sinα , χ=
g H3

ν2 , Ka=
σc

ρg1 /3 ν4 /3 , Σ=
σ c

σm

, Sci=
ν
Di

, Pei=Re Sci i=a ,b 

βa=
ca∞

H ccmc

, k a=
k 2 H

U
, Ra=

k 1 ccmc

k 2 ca∞

, ξ a=βa Ra=
k1

H k2

(6)

At this point, it is instructive to attach physical significance to the various dimensionless parameters just  
defined. Term βa compares the maximum amount that can adsorb on the interface to the maximum amount 

that can reside in the bulk as monomer. Term Ra is a ratio of the maximum possible forward and backward 

reaction rate  for  the adsorption process.  Term ξ a is  the ratio of the kinetic constants  of the forward  and 
backward  reaction  for  the  interface-bulk  interaction,  and  thus  provides  a  direct  measure  of  the  surfactant  
solubility in the bulk liquid[1]. We note that most of the recent theoretical literature refers to insoluble surfactants, 
and thus ξ a≫1 is a useful limit for comparisons. 

Next, we select as base case the flow with a flat interface and spatially uniform surfactant concentrations
c0 ,ca0 in equilibrium. We perturb the flow around this base case, and linearize the equations assuming that  

the  disturbances  are  small.  Finally,  we define  flow perturbations  in  terms  of  a  streamfunction  and  expand 
parameters in normal modes as follows,

ψ x , z , t =Ψ  zexp λtikx  (7)

resulting in an Orr-Sommerfeld-like equation in terms of the eigenvalue λ ,  backed by a set of boundary 
conditions.  This  eigenvalue  system  is  solvable  analytically  in  the  long-wave  limit  by  an  expansion  in  the 
wavenumber, k , of the form

Ψ  z =Ψ 0 z  λ0Ψ 1 z  λ1ikΨ 2 z λ2 k 2Ok 3 (8)

For arbitrary wavenumber, the set is solved numerically by a Galerkin finite-element method. The weak form of  
the equations  is derived by applying the divergence theorem, and all the variables are approximated by the use  
of  quadratic  Lagrangian  basis  functions.  The  order  of  the  equation  is  reduced  to  2nd  by  the  substitution

Ψ zz=Φ .

3 RESULTS

3.1 Long-wave limit
The analytic solution for the critical conditions, derived in the long-wave limit, is as follows:

Re c=
5
4

cot α
15
4

Ma
3ξaca0−12

3ξaca0−124
(8)
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where Ma=E0
Ka

χ2 /3 sin α
and E0=

3ca0 Σ
1 /3−1

[1ca0Σ
1/3
−1]4

 is the surface elasticity.

In the limit of an insoluble surfactant ( ξ a≫1 ) the above equation reduces to

Rec=
5
4

cot α
15
4

Ma (9)

in agreement with the expression given in the literature [7]. For a clear liquid, Ma=0 , both equations lead to 
the well  known prediction for  a  Newtonian falling film. It  is  interesting to note that  this prediction is also 
recovered in the limit of an interface saturated with a mildly soluble surfactant ( ca01, ξ a finite), as well 

as in the limit of a very soluble surfactant  ( ξ a≪1 ).  The latter prediction is in agreement with recent 
experiments[9] with the highly soluble surfactant  Isopropanol,  which show a behavior  reminiscent of a clear  
liquid with reduced surface tension.

Figure 1. a) Dependence of critical χ on the total amount of surfactant, Mtot. b) Dependence of the interfacial 
concentration (and interfacial amount of surfactant) at maximum stability of the flow as function of surfactant 

solubility. The rest of the parameters are α=90o, βa=0,01, Ra=1, ka=0,01, Sca=100.

We start by considering the critical conditions, which correspond to the onset of long-wave disturbances. A 
question of evident interest is the effect on stability of the total amount of surfactant contained per unit area of  
the channel. To this end, we present in figure 1a the critical χ as a function of  Mtot, for three different values of 
the  solubility  parameter.  The lines  in  this  figure  depict  the  analytical  solution,  while  the  points  depict  the 
numerical solution taking also into account the presence of micelles for large surfactant concentrations.

It  is  notable  that  the  dependence  on  Mtot is  not  monotonic,  exhibiting  maximum  stabilization  at  an 
intermediate value below the cmc. For very small, as well as for large values of Mtot, the critical χ approaches the 
limit of the clean fluid. This is somewhat counter-intuitive because one would expect that the more surfactant is  
present in the system the more stable the system would be. However, we should keep in mind that it is not the  
amount  of  surfactant  that  stabilizes  the  flow,  but  actually  the Marangoni  stresses,  which  are  related  to  the 
elasticity of the interface. When the surfactant exhibits significant solubility, the behavior is further complicated  
because of two competing effects: With increasing amount of surfactant, the dimensionless elasticity grows. At 
the  same  time,  the  growth  in  bulk  concentration  provides  higher  driving  force  for  mass  transfer  with  the  
interface, leading to the attenuation of surface tension gradients. As a result, when the adsorbed surfactant at the 
liquid-air interface approaches saturation, surface tension gradients decrease and therefore the Marangoni effects  
become less significant. 

The parametric variation of the curves in figure 1a with  ξa motivates investigation of two complementary 
issues: how does the location and how does the magnitude of the maximum in the critical conditions depend on 
surfactant solubility. Thus, in the following we study Mtot,max and ca0,max as function of ξa. The variation in the 
location of the maximum with surfactant solubility is shown in \figure 1b. The solid line in figure 1b, depicts the  
interfacial  surfactant concentration for maximum  χ. For an insoluble surfactant  the flow is most stable for a 
nearly  saturated  interface.  On  the  other  hand,  with  increasing  surfactant  solubility,  ca0,max decreases 
monotonically, and for highly soluble surfactant it reaches a plateau. This is explained by the previous argument 
relating increased solubility to the ability of the flow to attenuate surface tension gradients. 
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3.2 Disturbances of arbitrary wavelength
Having analyzed the limit k 0 , we now focus on the behavior of disturbances of finite wavelength. 

Results are  derived by numerical  integration  of  the Orr-Sommerfeld  equation by a standard Galerkin  finite 
element  method.  Figures  2a,b  show the  critical  modified  Reynolds  number,  χc,  as  function  of  disturbance 
wavenumber for different amounts of surfactant. Figure 2a is a magnification of figure 2b at small values of  χ 
and k. It is evident that the addition of a small amount of surfactant results in drastic stabilization of practically  
all disturbances of finite length. This is still valid even for wavelengths three orders of magnitude larger than the  
liquid film thickness. Though the primary instability is a long-wave one, the above behavior will have serious 
consequences in the non-linear evolution of the flow. In particular, it is expected that higher harmonics will grow 
far more reluctantly than in the clear liquid, and the transition to solitary waves will be delayed, leaving a broad 
regime with sinusoidal or nearly sinusoidal traveling waves. This prediction is in agreement with recent data, 
which showed that the free surface is dominated by small-amplitude sinusoidal waves over a very wide range of  
flow rates and inlet disturbance frequencies.

Figure 2. a) Neutral curves for different values of Mtot; comparison with analytical solution for a clean fluid. 
b) Zoom of figure 2a for 0<k<0,01. c) Dispersion curves for different values of Mtot and for χ=50. d) Wave 

velocity of the most unstable mode at critical χ as a function of the wavenumber, k. The rest of the parameters 
remain the same as in figure 1. 

In the small wavenumber range, and with increasing amount of surfactant, the neutral curves in figures 2a,b  
tend to accumulate  around a rough asymptote.  The variation at  higher  wavenumbers  is  more complex, and  
eventually becomes non-monotonic. More specifically, an inflection point appears, which above Mtot=0.3 leads 
to a local maximum in χ. Further increase in the amount of surfactant renders higher wavenumbers progressively 
less stable.  Figure 2c presents the dispersion curves for the same values of  Mtot  as in figure 2a,b. The non-
monotonic effect of Mtot that was discussed in fig. \1 is also apparent here. For a given value of χ=50, the growth 
rate of the disturbances (and in particular the most dangerous one) decreases for small values of Mtot, reaches a 
minimum around  Mtot=0.5 and increases again for large values of  Mtot.  Similar is also the behaviour of the 
wavenumber of the most dangerous mode and the cut-off wavenumber. 

Finally, in figure 2d we present the wave velocity of the marginally unstable mode at neutral stability as a 
function of the wavenumber and for different amounts of surfactant. In agreement with previous studies[12], we 
find that the wave velocity decreases in the presence of surfactant.  It is also shown that wave velocity decreases 
with increase of the wavenumber and that it reaches an asymptotic value for very high surfactant concentrations. 
It is notable though that the variation with Mtot is now strictly monotonic. Therefore, the wave velocity appears 
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to depend directly on the surface concentration of the soluble surfactant, and not on the surface elasticity,  as  
determined by the combination of stretching and diffusion/convection. 

It is worth noting that the abrupt decrease of the wave velocity for high values of Mtot may also provide an 
explanation for the non-monotonic neutral curves that appear in fig. 2b. As the wave moves from the left to the 
right, it continuously sweeps surfactant by convection, thus inducing surface tension gradients that stabilize the 
flow. With the decrease of the wave velocity, as the wavenumber increases, less surfactant will be swept by the 
wave and the induced gradient will decrease. On the other hand, the surface tension gradient becomes more 
intense for  high wavenumbers  because  the variation of the concentration  takes  place in smaller  space.  The  
interplay between these two actions can be responsible for the non-monotonic dependence of the critical χ on the 
wavenumber. 

3.3 Adsoprtion kinetics
Next, we consider  the role of sorption kinetics at  the liquid-air interface,  which is potentially of central  

importance, and which has typically been neglected in simplified treatments of the problem. Thus, in figure 3 we 
examine the parametric effect of  ka on the  curves of neutral stability for the reference case of figure 1. It is 
expected that  for long-wave perturbations (k<<1) the kinetics will not be very important  because there will 
always be enough time for the different species to reach equilibrium around the interface. Indeed, as it can be 
seen in figure 3, for k = 0 the critical χ is the same for all values of ka. This result is in direct agreement with the 
analytical expression that has been derived in the limit of k -> 0, where there is no dependence of the critical Re 
on the value of ka. 

Figure 3. Neutral curves for different values of ka. The rest of the parameters remain the same as in figure 1. 

However, we see that, for disturbances with larger wavenumbers, this is clearly not the case. In particular, we 
plot in figure 3 the result for an insoluble surfactant, and observe that, for the lowest value of  ka shown, the 
neutral curve for the soluble surfactant follows it very closely, for all wavenumbers except for a very narrow 
range around zero. We should note at this point that to enable such a comparison between a soluble and an 
insoluble  surfactant  we  have  selected  two  cases  with  similar  levels  of  interfacial  concentration,  cao.  The 
similarity between the case of  a soluble and an insoluble surfactant  for large wavenumbers  may be readily 
understood  by  considering  that,  when  the  kinetics  are  relatively  slow  and  the  disturbances  have  short 
wavelength, there will not be enough time for the species to approach equilibrium, and the system will behave as 
though the monomers that have been adsorbed at the liquid-air interface are isolated from the monomers in the 
bulk.

It is concluded, based on the above, that for small values of the kinetic parameter ka there is strong selection 
of  wavelengths  that  are  unstable,  and,  on the contrary,  when the  kinetics  are  fast  enough  a wide  range  of  
wavelengths becomes unstable almost simultaneously, i.e. for similar values of Re. This behavior is expected to 
have significant implications on the non-linear dynamics of the flow. For example, assuming that ka=0,001 and 
that the flow rate is such that  χ=70, we conclude from figure 3, that, a long-wave disturbance in the narrow 
unstable range will grow remaining roughly sinusoidal, because higher harmonics are stable and will die away.  
On the contrary,  if  ka=0,1 there is a wide unstable range and therefore the initial long-wave disturbance will 
interact  with  its  superharmonics  and  end  up  in  the  formation  of  solitary  humps.  The  persistence  of  near-
sinusoidal waves recently reported in the presence of soluble surfactant SDS[8], is plausibly explained by this 
mechanism. 
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4 CONCLUSIONS

We investigated the linear stability of a film flowing down a solid substrate in the presence of a soluble 
surfactant.  We used  a  detailed  surfactant  model,  which  considers  monomers  and  micelles  in  the  bulk,  and 
monomers adsorbed with Langmuir kinetics at the gas/liquid and the solid/liquid interfaces. The Navier-Stokes 
equations  for  the  liquid  motion  and  the  advection-diffusion  equations  for  surfactant  concentrations  were 
linearized around the base flow, resulting in an Orr-Sommerfeld eigenvalue problem that was solved analytically 
in the limit of long-wave disturbances, and numerically for arbitrary wavelength using a finite element method.

The instability was shown to be a long-wave one, and the derived analytic solution indicated that, among all 
the model parameters, critical conditions depend only on the solubility of the surfactant and on its interfacial  
concentration. An interesting finding was that, for a given total amount of surfactant, a moderately soluble one  
may produce stronger stabilization than the insoluble one. Optimum conditions were also found to vary with 
solubility, the insoluble surfactant maximizing its performance at the tightest interfacial packing, whereas the  
soluble one at a fraction of it. These observations were explained by the competing effect of mass exchange 
between the interface and the bulk, which short-circuits surface tension gradients, and thus attenuates Marangoni  
stresses.

Disturbances of finite wavelength were considered in detail, because (though they are not the most dangerous 
ones) they have a strong bearing on nonlinear dynamics. It was found that small amounts of surfactant drasticaly 
stabilize the entire spectrum of nonzero wavenumbers, and that the effect maximizes at intermediate amounts 
and then drops again.  This non-monotonic variation was related to the observed strong decline of the phase 
speed  of  finite-wavelength  waves  towards  an  asymptotic  value  of  one,  with the increase  in  the  amount  of 
surfactant.  The adsorption/desorption kinetics was also shown to have a strong infuence on the dynamics of  
finite wavelengths, with very slow kinetics leading to a virtually frozen interface and an insoluble-like behavior. 
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