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We investigate the non-linear dynamics of the electrohydrodynamic instability of a viscoelastic poly-
meric film under a patterned mask. We develop a computational model and carry out 2D numerical sim-
ulations fully accounting for the flow and electric field in both phases. We perform a thorough parametric
study and investigate the influence of the various rheological parameters, the applied voltage and the
period of the protrusions of the mask in order to define the fabrication limits of this process in the case
of patterned electrodes. Our results indicate that the effect of elasticity is destabilizing, in agreement with
earlier studies in the literature based on linear stability analysis for homogeneous electric fields. How-
ever, the significance of the normal and shear polymeric stress components is found to change drastically
as deformation advances, rendering inappropriate the lubrication approximation that neglects normal
stresses. We also find that for low values of the Ca number a metastable state arises with finite interfacial
deformation, the amplitude of which compares favourably with experimental observations in contrast
with earlier predictions using linear theory. Though the critical voltage for this metastable state appears
to be unaffected by the elasticity of the material, viscoelasticity affects the fabrication limit on the period
of the protrusions of the top electrode.

� 2015 Elsevier B.V. All rights reserved.
1. Introduction

The interaction of an externally applied electric field with a
liquid can give rise to interesting flow instabilities and pattern
formation [1]. The work of Russel and co-workers [2–6] has dem-
onstrated that the application of an electric field to an initially flat
polymer–air or polymer–polymer interface results in an electrohy-
drodynamic (EHD) instability leading to the formation of columnar
structures. These instabilities can be used in order to form well-
controlled patterns at the microscale and nanoscale with many
practical engineering applications.

The electrically-induced flow of thin liquid films has attracted
the interest of many theoretical studies. More specifically, Schaffer
et al. [3] used the lubrication approximation to determine the
dependence of the fastest growing linear mode on system param-
eters for a polymer-air interface. Lin et al. [4] conducted experi-
mental as well as theoretical work to study the dependence of
pattern wavelength on the viscosity ratio in two-layer polymeric
systems. Their modelling study predicts the wavelength to be inde-
pendent of the viscosity ratio for perfect dielectric fluids. Pease and
Russel [7] considered the stability of the interface between a leaky
dielectric liquid and air and showed that the presence of conduc-
tivity exerts a destabilizing influence leading to patterns of smaller
wavelength and much larger growth rates. Shankar and Sharma [8]
also conducted a linear stability analysis using lubrication theory
and their results indicate that, in contrast to the perfect dielectric
case, for leaky dielectrics, increasing the viscosity ratio has a pro-
found influence on the pattern wavelength.

More recently, Heier et al. [9] were interested in systems with
heterogeneous electric fields and showed through experiments
that it is possible to achieve a steady state with finite interfacial
deformation when Maxwell stresses in the fluids and surface ten-
sion are balanced. They also developed a linear model and were
able to derive an expression for the critical voltage beyond which
the amplitude grows exponentially in qualitative agreement with
their experiments. However, it should be noted that according to
Heier et al. [9] linear theory severely underestimates the amplitude
of the steady finite deformations in comparison with experimental
observations.

The nonlinear evolution of two leaky dielectric layers in a homo-
geneous electric field was examined by Craster and Matar [10]
showing that initially small perturbations grow under the action
of the destabilizing electrical forces and eventually their amplitude
saturates in the non-linear regime to give rise to spatially periodic
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Fig. 1. Schematic of the flow geometry.
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patterns. Two-dimensional numerical simulations using the lubri-
cation theory helped in elucidating the interfacial evolution, the
role of the initial thickness ratio and the effect of patterned ‘‘masks’’
on the observed three-dimensional patterns [11–14]. Several stud-
ies have also been devoted in the investigation of the stability and
dynamics of bilayers under air or another viscous liquid [15–19].
Finally, the effect of AC fields has been taken into account through
linear stability analysis and non-linear simulations by Roberts and
Kumar [20] and Gambhire and Thaokar [21].

As discussed above, the surface instability of a Newtonian fluid
under the effect of electric field has been studied extensively by
several researchers and it is now well understood. The dynamics
of fluids with complex rheology, however, has received much less
attention in the literature. The first attempt to take into account
the polymer viscoelasticity in electrically-induced flows was made
by Wu and Chou [22]. These researchers used the lubrication theory
and performed a linear stability analysis of a initially static thin
polymer film underneath a flat electrode using the Oldroyd-B con-
stitutive equation for the elastic stresses. Their results have shown
that the polymer elasticity destabilizes the system and when the
Deborah number is large enough, a resonant phenomenon appears
as a result of the interaction between the two destabilizing mecha-
nisms (the electrostatic force and the polymer elasticity). Later on,
Tomar et al. [23] used a linear constitutive equation for the stresses
(Jeffreys model) and presented a linear stability analysis taking also
into account the effect of inertia. Interestingly, they found that in
the presence of a small amount of inertia the wavelength of the fast-
est growing mode (i.e. the dominant lengthscale of the instability)
is independent of the rheological properties such as relaxation time
and solvent viscosity whereas the growth rate is affected signifi-
cantly. Their findings were confirmed recently by Espin et al. [24]
using an asymptotic expansion. The latter authors also examined
the viscoelastic effects under the influence of AC fields and found
that the impact is largest when the relaxation time and oscillation
time scale are comparable. In the case of AC fields, it is shown that
the wavelength is also affected contrary to the predictions of linear
theory for the case of DC fields [23]. The rheological characteristics
of the fluid were also shown to play a role in the case of trilayers,
indicating that its effect on the evolution of two coupled interfaces
is more involved than a purely kinetic role [25]. It should be noted
here that the aforementioned studies for viscoelastic fluids consid-
ered homogeneous electric fields (flat electrodes) and the linear sta-
bility analysis was performed around a quiescent base state.
However, in the case of a patterned mask the field becomes heter-
ogeneous and growth generates a time-dependent base state for
which linear or weakly non-linear stability analysis is difficult
necessitating the use of time-dependent simulations.

As was noted above, most of the research studies in the litera-
ture employ linear theory, which is valid only for small distur-
bances. One crucial issue, however, is not only to predict the
band of unstable wavenumbers in the linear regime but also to
determine accurately the behaviour of the system in the non-linear
regime. For the latter, the majority of the research groups make use
of the lubrication theory in order to interpret experimental results.
Pease and Russel [26,27] argued, however, that in many cases the
experiments were carried out for conditions under which the lubri-
cation approximation is not strictly valid. They compared the pre-
dictions of a generalised model with those of lubrication theory
against experimental results and found a better agreement with
the former. Very recently, a detailed comparison was also pre-
sented by Gambhire and Thaokar [21] for both DC and AC fields,
which indicated large deviations for the predicted wavelength.
Moreover, in the case of viscoelastic fluids, the deficiencies of the
lubrication approximation are expected to be enhanced due to
the significant underestimation of normal stresses and to the fact
that non-linear viscoelastic effects are not taken into account.
Examples of fully non-linear simulations without making use of
the lubrication approximation are the works of [28–31] who stud-
ied primarily cases involving heterogeneous electric fields. Yang
et al. [30], motivated by the work of Heier et al. [9], considered a
sinusoidally patterned top electrode and performed non-linear
simulations using a boundary/finite element method to determine
the critical parameters for instability of the liquid film. Their
results indicate that linear analysis can significantly over-predict
the critical voltage for instability. Li et al. [31] were also interested
in heterogeneous electric fields and investigated the effect of vari-
ous geometric features of the patterned electrode to determine the
fabrication limits of this process using a diffuse interface method.

The scope of this work is to investigate the non-linear dynamics
of a viscoelastic material under the influence of an heterogeneous
electric field taking fully into account the viscoelastic effects. We
avoid making any assumptions, such as using lubrication approxi-
mation, in order to describe the flow dynamics as accurately as
possible. We perform two-dimensional transient numerical simu-
lations, using the finite element method combined with an elliptic
grid generation scheme for the determination of the unknown
position of the interface. The viscoelasticity of the polymeric film
is taken into account using the affine Phan–Thien Tanner model.
We perform an extensive parametric analysis to determine the
effects of the various geometric and rheological parameters on
the evolution of the interface and on the fabrication limits of this
process. Our results indicate that the elasticity of the material does
not affect the critical voltage for instability but affects the fabrica-
tion limit on the period of the top electrode protrusions. We also
discuss about the validity of lubrication theory in the case of visco-
elastic materials.

The remainder of the paper is organized as follows. In Section 2,
we describe the system of governing equations and outline the
numerical method used for its numerical solution. The results are
presented and discussed in Section 3. Finally, the concluding
remarks are given in Section 4.

2. Problem formulation

We consider the dynamics of two perfect dielectric fluids sand-
wiched between two rigid, and impermeable electrodes. The elec-
trodes can be either flat or periodically patterned as shown in
Fig. 1; w and p denote the width and the height of the protrusions,
respectively, and s denotes the spacing between the protrusions.
The bottom fluid is considered to be a polymeric viscoelastic film
surrounded by a Newtonian liquid, with initial thickness, d. Both
fluids, which are initially stationary, are taken to be incompressible
with the lower (upper) fluid having a density q1 (q2), dielectric
constants �1 (�2); these properties are assumed to be constant.
The viscosity of the upper fluid is also constant and denoted by
l2. The viscoelastic fluid has a zero-shear viscosity l1 ¼ ls þ lp,
where ls and lp are the viscosities of the solvent and the polymer,
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respectively, and relaxation time k. The surface tension of the
liquid–liquid interface, r, is assumed to be constant. The top and
bottom electrodes are maintained at constant potentials
/2ðy ¼ HðxÞÞ ¼ U and /1ðy ¼ 0Þ ¼ 0, respectively.

We scale all lengths with the maximum distance between the
top and bottom electrodes, Hm, velocities with V� ¼ �oU2=ðl1HmÞ,
pressure and stresses with l1V�=Hm and electric potential with
the potential difference U. Substituting this scaling into the govern-
ing equations and boundary conditions, the dimensionless groups
that emerge are the Reynolds number, Re ¼ q1V�Hm=l1, the Stokes
number, St ¼ q1gH2

m=ðl1V�Þ, the capillary number, Ca ¼ l1V�=r,
the Weissenberg number, Wi ¼ kV�=Hm, which is a measure of
the elasticity of the polymeric liquid, the density ratio,
Di ¼ qi=q1, the viscosity ratio, Mi ¼ li=l1, and the solvent viscosity
ratio of the polymer liquid, b ¼ ls=l1.

Inserting the previously defined characteristic quantities into
the momentum and mass conservation equations, we obtain:

DiRe
@vi

@t
þ vi � rvi

� �
�r � Ti þ Stez ¼ 0; ð1Þ

r � vi ¼ 0; ð2Þ

where r denotes the gradient operator, subscript i indicates the
corresponding fluid, vi is the velocity vector and Ti is the total stress
tensor given by

Ti ¼ �PiI þ si þmi: ð3Þ

Here Pi denotes the pressure, I is the identity tensor and si the extra
stress tensor

s1 ¼ sp;1 þ 2bM1c1; ð4Þ
s2 ¼ 2M2c2: ð5Þ

Note that for the viscoelastic material the extra stress tensor is split
into a purely viscous part, 2bM1c1, and a polymeric contribution,
sp;1. ci denotes the rate of strain tensor

ci ¼
1
2
rvi þrvT

i

� �
: ð6Þ

The Maxwell stress tensor, denoted by mi, describes the interac-
tion of fluid i with the electric field, Ei, and is defined as

mi ¼ �iEiEi �
1
2
�iEi � EiI: ð7Þ

Note that due to the absence of free charge from the bulk of the
fluid and since �1 and �2 are spatially independent, r �mi ¼ 0.
Therefore it becomes evident that Maxwell stresses will not have
any contribution in Eq. (1) but nevertheless enter the problem
through the interfacial boundary conditions. The Maxwell stresses
depend on the local intensity of the electric field. Under the electro-
static approximation and for an electrically neutral fluid, Maxwell’s
equations reduce to the following set of equations

r � ð�iEiÞ ¼ 0; ð8Þ
r � Ei ¼ 0: ð9Þ

Since the electrical field is irrotational, we can define a potential
function /i such that

Ei ¼ �r/i: ð10Þ

By combining Eqs. (8) and (10) we get the following equation

r � ð�ir/iÞ ¼ 0: ð11Þ

To complete the description, a constitutive equation that
describes the rheology of the viscoelastic material is required in
order to determine the polymeric part of the extra stress tensor.
As such, we use the following differential model that has been pro-
posed by [32]
Yðsp;1Þsp;1 þWiŝp;1 ¼ 2ð1� bÞM1c1: ð12Þ

The symbol ^ over the viscoelastic stress denotes the Gordon–
Schowalter derivative defined as

bX ¼ @X
@t
þ v1 � rX � ðrv1 � nsc1Þ

T � X � X � ðrv1 � nsc1Þ; ð13Þ

where X is any second order tensor. Two forms of the PTT model are in
common use, the linearised form [32], where the function Yðsp;1Þ is

Yðsp;1Þ ¼ 1þ aPTT Wi
ð1� bÞM1

trðsp;1Þ; ð14Þ

and the exponential form [33]

Yðsp;1Þ ¼ exp
aPTT Wi
ð1� bÞM1

trðsp;1Þ
� �

: ð15Þ

In the present study we have used the exponential form of the PTT
model. Both versions of the PTT model have two parameters, ns and
aPTT . The first one is related to the non-affine motion of the polymer
chains with respect to the macroscopic motion of the continuum. By
setting ns equal to zero no such motion or slip is allowed; for the
rest of the paper ns will be considered to be zero. The Gordon–
Schowalter derivative reduces to the upper convective one and
the fluid model is referred to as the affine PTT model. The second
parameter, aPTT , imposes an upper limit to the elongational viscos-
ity, which increases as this parameter decreases, while it introduces
elongational thinning. Moreover aPTT is related to the shear-thinning
behaviour of the model. The predictions for the elongational and
shear viscosity of this model for various values of aPTT appear in
Fig. 9 of [34]. By setting both aPTT ¼ 0 and ns ¼ 0, the PTT model
reduces to the Oldroyd-B model. Retaining the zero values for aPTT

and ns and additionally setting b ¼ 0, the PTT model reduces to
the UCM model.

In order to solve accurately and efficiently the flow inside the
viscoelastic material we employ the elastic viscous split stress
EVSS-G formulation [35,36]. This method consists of splitting the
polymeric part of the extra stress tensor into a purely elastic and
a viscous part

sp;1 ¼ Rþ 2ð1� bÞM1c1: ð16Þ

Moreover, an independent interpolation of the components of the
velocity gradient tensor is introduced

G ¼ rv1: ð17Þ

The former splitting ensures the elliptic nature of the momentum
equations even in the absence of a solvent (b ¼ 0), while the latter
substitution makes the approximations in the constitutive equation
of the elastic stress and the velocity gradient compatible to each
other. This scheme has been used with success in the past
[34,37,38] permitting the calculations up to very high Weissenberg
numbers.

2.1. Boundary conditions

Solution of the above set of equations is determined subject to
the following boundary conditions.

On the solid walls we apply the usual no-slip and no-penetra-
tion boundary conditions while on the two edges of the physical
domain (x ¼ 0; L) we apply periodic conditions.

Along the liquid–liquid interface the velocity is continuous

v1 ¼ v2; ð18Þ

and the flow field satisfies the local interfacial force balance
between the stresses in both liquids

n � T1 ¼ n � T2 þ
2Hn
Ca

; ð19Þ



Fig. 2. Typical grid with 3 levels of local refinement adjacent to the liquid–liquid
interface for Wi ¼ 0, Ca ¼ 30; d ¼ 0:3; s ¼ 0:8;p ¼ 0:2;w ¼ 0:2; L ¼ 4 at time
t ¼ 26:04.

4 G. Karapetsas, V. Bontozoglou / Journal of Non-Newtonian Fluid Mechanics 217 (2015) 1–13
where n denotes the unit normal pointing towards the upper liquid,
2H is the mean curvature of the interface

2H ¼ �rs � n; ð20Þ

and rs is the surface gradient operator, defined as

rs ¼ I � nnð Þr: ð21Þ

In addition, along the moving interface we impose the kinematic
boundary condition,

@f
@t
þ vi � rf ¼ 0; ð22Þ

where f describes the position of the interface. A balance of the nor-
mal and tangential component of the electric field gives the conti-
nuity of the potentials and the electric displacement across the
interface

/1 ¼ /2; ð23Þ
n � ð�1r/1Þ ¼ n � ð�2r/2Þ: ð24Þ

Finally to complete our model we have to set a datum pressure and
as such, we impose a zero value to the pressure at a node of the top
electrode, Pðx ¼ 0; y ¼ 1Þ ¼ 0. Initially the film is considered to be
static and the liquid–air interface is flat; no initial perturbation is
applied.

2.2. Elliptic grid generation

The above set of equations is combined with an elliptic grid
generation scheme capable of following the deformations of the
physical domain. This method has been successfully applied in
flows that exhibit large deformations in steady state [37] and tran-
sient calculations [39–41]. The grid generation scheme consists of
a system of quasi-elliptic partial differential equations, capable of
generating a boundary fitted discretization of the deforming
domain occupied by the liquid. With this scheme the physical
domain ðx; yÞ is mapped onto a computational one ðg; nÞ. A fixed
computational mesh is generated in the latter domain while,
through the mapping, the corresponding mesh in the physical
domain follows its deformations. The mapping is based on the
solution of the following system of quasi-elliptic partial differential
equations

r � ða � rgÞ ¼ 0 ð25Þ

r � d

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

n þ y2
n

x2
g þ y2

g

s
þ ð1� dÞ

 !
rn

" #
¼ 0 ð26Þ

where

a ¼
1 0
0 a

� �
; a P 1: ð27Þ

The subscripts denote differentiation with respect to the indicated
variable. The parameter a forces the n-coordinate lines to be equi-
distant in the y-direction and d is a parameter that controls the
smoothness of the mapping relative to the degree of orthogonality
of the mesh lines. These parameters are adjusted by trial and error;
here we set a ¼ 100 and d ¼ 0:1. For a more detailed description of
this method the interested reader may refer to [42–44].

In order to solve the above system of differential equations,
appropriate boundary conditions must be imposed. On the fixed
boundaries, we impose the equations that define their position,
and the remaining degrees of freedom are used for optimally dis-
tributing the nodes along these boundaries. Along the moving
liquid–liquid interface we simply impose the kinematic equation.

We should note here that special care was taken for the mesh
near the interface. In order to resolve adequately the flow, a more
refined mesh around this region is needed. To this end, we have
introduced a local refinement scheme using the h-method [45].
In order to illustrate the quality of the resulting mesh produced fol-
lowing our method we present in Fig. 2 a typical grid; here we
show for clarity the domain 1 < x < 3.

In order to solve numerically the governing equations along
with the elliptic grid equations, we used the mixed finite element
method; this numerical scheme has been used with success in the
past [34,37–40]. Detailed information about the weak formulation
of all the equations is given in the Appendix A. Finally, the set of
algebraic equations is integrated in time with the implicit Euler
method introducing an automatic adaptation of the time step for
ensuring the convergence of the above iteration scheme and opti-
mizing code performance.

3. Results

As shown in Fig. 1 we consider a periodically patterned elec-
trode as a mask to induce the fabrication of similar structures in
the liquid. For the purposes of this study we will consider that
the width and the height of the protrusions are w ¼ 0:2 and
p ¼ 0:2, respectively. Since the effect of these geometric character-
istics have been discussed in detail for the case of a Newtonian
liquid by [31], we will keep these values constant and focus our
attention on the remaining parameters of our model. The size of
the domain will be considered to be L ¼ 4ðsþwÞ unless stated
otherwise. For the rest of the paper we will also consider creeping
flow conditions and set Re ¼ 10�5, ignore gravitational effects,
St ¼ 0, and consider density and viscosity ratios typical of liquid–
air systems, D2 ¼ 0:001;M2 ¼ 0:001.

3.1. Newtonian fluid

To set the stage for the discussion that follows, it is useful to
examine first the case of a Newtonian fluid (Wi ¼ 0). In Fig. 3 we
present contour plots for the velocity field, pressure and electric
potential at t ¼ 26:04 for Ca ¼ 30; d ¼ 0:3 and s ¼ 0:8; for clarity
we present here only part of our computational domain
(1 6 x 6 3). The liquid film is initially flat and quiescent. Upon
the application of voltage the liquid experiences non-uniform elec-
trostatic forces, due to the spatial heterogeneity of the electric field
that is created by the top electrode, and liquid is drawn towards
the protrusions, destabilizing the liquid–air interface. The flow
field appears to be symmetric around the protrusions giving rise
to symmetric structures that follow closely the geometrical charac-
teristics of the top electrode. The pressure varies mainly inside the
liquid phase (see Fig. 3c) and becomes minimum at the crest,
whereas in the gas phase it remains almost constant (approxi-
mately equal to the datum pressure) due to the fact that the viscos-
ity of the gas is very small. The contour lines of the electric



Fig. 3. Contour plots of (a) vx , (b) vy , (c) P and (d) electric potential at t ¼ 26:04 for Wi ¼ 0, Ca ¼ 30; �1 ¼ 2:5; �2 ¼ 1; d ¼ 0:3; s ¼ 0:8;p ¼ 0:2;w ¼ 0:2; L ¼ 4.
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potential are depicted in Fig. 3d. The deflection of the equipotential
lines at the liquid–air interface is due to the difference of dielectric
properties of the materials.

For the given set of parameters the height of the interface below
the protrusions increases continuously until the liquid comes into
contact with the top electrode; the simulation is stopped before we
actually reach that point. Heier et al. [9] have shown that by
manipulating the combined effect of Maxwell stresses and surface
tension it is possible to achieve a steady state interfacial deforma-
tion avoiding contact with the top electrode. In order to investigate
this possibility, we examine in Fig. 4a the parametric effect of the
capillary number, Ca, in the temporal evolution of the maximum
amplitude of the interfacial perturbation. Recall that Ca compares
electric to capillary stresses. For the lowest Ca we confirm that
the amplitude initially grows and then saturates, indicating that
electric and capillary forces balance exactly. This situation evi-
dently corresponds to a static equilibrium, as there is no driving
force for flow. The equilibrium amplitude increases with Ca as
depicted in Fig. 4c, and its maximum values are in the order of
10% of the electrode spacing.

According to the linear theory developed by Heier et al. [9] the

dimensionless amplitude Z ¼ f0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2ð1� dþ d=�pÞ=Ca

q
, where

f0 ¼ ðhmax � hminÞ=2 and k ¼ 2p=ðsþwÞ should depend linearly on
�s=ð1� s2Þ, where � ¼ p=½2ð1� dþ d=�pÞ� and

s ¼ ð1� 1=�pÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ca=½k2ð1� dþ d=�pÞ3�

q
. Heier et al. [9] correlated

experimental data of Z by a power-law dependence on
�s=ð1� s2Þ, and found that the exponent is not equal to one -as
expected from their linear theory- but actually is much higher,
approximately equal to 4.5. The results of our non-linear calcula-
tions, plotted in terms of the above dimensionless parameters,
are shown in Fig. 4b. We observe that the correlation by a
power-law is not completely satisfactory, as the slope in log–log
coordinates gradually increases. However, an approximate value
for the exponent is 3.2, which is significantly higher than the linear
prediction and a bit lower than the experimental value.

The long-time results depicted in Fig. 4a indicate that the equi-
librium state is not stable but is eventually destroyed and some
peaks reach the upper electrode. The process by which the inter-
face disintegrates is shown in Fig. 5 for Ca ¼ 8 and involves loss
of the spatial periodicity imposed by the electrode spacing. We
note however that the time-scale for this process is at low Ca an
order of magnitude higher than the time-scale for growth of the
equilibrium amplitude. Thus, the equilibrium state may actually
be considered as metastable.

Increasing the Ca number, the effect of surface tension becomes
less significant and the destabilization of the interface takes place
sooner. Plotting the time that is needed for hmax � hmin ¼ 0:4 (a con-
venient arbitrary criterion) it is possible to evaluate the threshold
in the Ca number beyond which the metastable state is not
observed (see Fig. 4b) and we find that for the given set of param-
eters it is approximately equal to Ca � 10. According to linear the-
ory [9,30] the critical Ca can be evaluated using the following
expression

Cacr ¼ k2 �pð1� p=2� dÞ þ d
	 
3

�pð�p � 1Þ2
; ð28Þ

where k is the wavenumber of the interfacial perturbation which is
assumed to largely follow the pattern of the top electrode. For the
given set of parameters and assuming that the dimensionless wave-
length of the initial disturbance is approximately equal to sþw, we
get Cacr ¼ 40:89. It appears that linear theory significantly over-pre-
dicts the critical voltage and this was also found to be true in the
non-linear simulations presented by [30].

The loss of interfacial periodicity that is observed in the evolu-
tion of the metastable equilibrium appears to be a more general
characteristic of the present problem. In support of this argument,



Fig. 4. (a) Evolution of the amplitude for various Ca. (b) Time that is needed for hmax � hmin ¼ 0:4 as a function of the Ca number. Dependence of (c) hmax � hmin on Ca at t ¼ 100
for various Wi and (d) the dimensionless amplitude Z on �s=ð1� s2Þ. The remaining parameters are Wi ¼ 0; �1 ¼ 2:5; �2 ¼ 1;d ¼ 0:3; s ¼ 0:8; p ¼ 0:2;w ¼ 0:2; L ¼ 4.

Fig. 5. Profiles of the liquid–air interface for Ca ¼ 8 at t = 100, 400, 500.
Wi ¼ 0; �1 ¼ 2:5; �2 ¼ 1;d ¼ 0:3; s ¼ 0:8; p ¼ 0:2;w ¼ 0:2; L ¼ 4.

Fig. 6. Long time profiles of the liquid–air interface for various Ca and for
Wi ¼ 0; �1 ¼ 2:5; �2 ¼ 1; d ¼ 0:3; s ¼ 0:8;p ¼ 0:2;w ¼ 0:2; L ¼ 4.
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we present in Fig. 6 the long-time profiles of the liquid–air inter-
face for three different values of the Ca number. We observe that
for values higher than the ’critical’ Ca the deformation of the inter-
face remains periodic, following closely the spatial periodicity
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imposed by the top electrode, during the entire evolution toward
formation of columnar structures. On the other hand, for low Ca
the spatial periodicity of the interface is eventually destroyed,
despite the initial periodicity of the metastable state. The evolution
is always a coarsening process similar to the one described in [46].
More specifically, some pillars expand at the expense of shrinkage
of their neighbours and this is essentially an Ostwald ripening
phenomenon.

The mechanism responsible for the ripening process can be
rationalized as follows. Initially, the wavelength of the interface
perturbation is imposed by the pattern of the electrode which
induces non-uniform Maxwell stresses to the interface. Note that
for the parameters that have been used in this study the wave-
length is 2–5 times smaller than the wavelength of the fastest
growing mode which is predicted by linear theory for flat elec-
trodes. Even though this represents a barrier which is set by the
effect of surface tension it can be overcome due the effect of the
heterogeneous electric field. For cases that growth is sufficiently
fast, the mode which is imposed by the patterned electrode will
dominate and the pattern of the electrode will be replicated in
the film retaining its periodic structure. On the other hand, if
growth is relatively slow or the system reaches equilibrium the
mode of the natural wavelength, which is dominated by the effect
of surface tension, is given the time to grow and eventually domi-
nate the flow.

One question that arises is whether these non-periodic solu-
tions are physically meaningful or are affected in any way by the
size of our domain and the application of periodic conditions at
the edges. To investigate this, we have repeated the calculations
for Ca ¼ 10 doubling the size of the computational domain and
the long-time profile of the interfacial height is presented in
Fig. 7. Note that the solution for the short domain have been
extended periodically in the x-direction. Comparing the results
for the two domains we find that, although the profiles present
some similarities, they are far from identical. Nevertheless, we
observe that in both cases the structures evolve by a rough dou-
bling of the spatial periodicity that results from merging of neigh-
bouring crest, with the growing hump ‘‘hesitating’’ between the
respective electrode protrusions. Still, we are unable to conclude
if the evolution by period-doubling is a general trend or is dictated
by the imposed periodic boundary conditions. For Ca ¼ 20 the
solutions using the sort or long domain are identical and are not
presented here for conciseness.

In practice in order to produce well-ordered polymeric micro-
structures over large distances it is important to operate in condi-
tions where the induced structures are periodic. Apart from using
the applied voltage to control the induced patterns, as shown above,
it is also possible to tune the film thickness and the geometrical
Fig. 7. Long time profiles of the liquid–air interface for different sizes of the
computational domain for Wi ¼ 0;Ca ¼ 10; �1 ¼ 2:5, �2 ¼ 1;d ¼ 0:3; s ¼ 0:8;p ¼ 0:2;
w ¼ 0:2.
characteristics of the top electrode such as the periodicity of the
protrusion as well as their width and depth. In Fig. 8 we depict a flow
map to investigate the various flow patterns that may arise for var-
ious distances of the protrusions and different mean initial thick-
ness of the polymer. Our calculations indicate the existence of two
different regimes. The circles denote the regime where the induced
structures are periodic whereas the triangles correspond to non-
periodic solutions. These are separated by a curve with filled circles
which is used to indicate near critical conditions. To determine
whether the pattern is periodic or not, we evaluate the standard
deviation of the position of each peak from the mean value, �hp, when
the highest peak has reached h ¼ 0:7. If the standard deviation is
lower than 0.001 then the structure is considered periodic whereas
for higher values the structure is considered to be non-periodic.
From Fig. 8 we deduce that increasing the initial film thickness, d,
the minimum distance of the protrusions decreases significantly
and therefore the fabrication limit of the induced patterns decreases
as well. A similar configuration to ours was studied recently by Li
et al. [31] using a diffuse interface method and it would be useful
to compare their predictions for the period limit of the protrusions
against our calculations using the sharp interface approach. For the
fluid properties (r ¼ 0:038 N/m) and applied voltage (70 V) that
were used by Li et al. [31] we deduce that Ca � 11:4. For this set
of parameters we get that the predicted critical distance between
the electrode protrusions is approximately equal to s ¼ 0:85 which
is in very good agreement with the predictions presented by these
authors.
3.2. Viscoelastic fluid

Next we proceed with our investigation taking into account the
effect of viscoelasticity of the polymeric film by studying the case
of a PTT fluid. To start with, we present in Fig. 9 contour plots for
the velocity field, pressure and electric potential at t ¼ 28:44 for
Wi ¼ 2;Ca ¼ 20; d ¼ 0:3 and s ¼ 0:8; for clarity we present here
only part of our computational domain (1 6 x 6 3). As in the case
of the Newtonian fluid for the given set of parameters we end up
with a symmetric flow field around the protrusions and the
induced structures are also symmetric. The velocity in the normal
direction at the crest is higher and as a result the crest reaches the
same height sooner for the case of the viscoelastic fluid than a
Newtonian fluid with similar surface tension. Though this trend
agrees with the findings of linear theory (which suggests that the
growth rate increases with the elasticity of the material [22,23]),
Fig. 8. Flow map for Wi ¼ 0;Ca ¼ 20; �1 ¼ 2:5; �2 ¼ 1; p ¼ 0:2;w ¼ 0:2; L ¼ 4ðsþwÞ.



Fig. 9. Contour plots of (a) vx , (b) vy , (c) P and (d) electric potential at t ¼ 28:44 for Wi ¼ 2;Ca ¼ 20; b ¼ 0; aPTT ¼ 0:05; �1 ¼ 2:5; �2 ¼ 1;d ¼ 0:3; s ¼ 0:8;p ¼ 0:2;w ¼ 0:2; L ¼ 4.

Fig. 10. Contour plots of (a) sp;xx , (b) sp;yy and (c) sp;xy at t ¼ 28:44 for Wi ¼ 2;Ca ¼ 20, b ¼ 0; aPTT ¼ 0:05; �1 ¼ 2:5; �2 ¼ 1;d ¼ 0:3; s ¼ 0:8; p ¼ 0:2;w ¼ 0:2; L ¼ 4.

8 G. Karapetsas, V. Bontozoglou / Journal of Non-Newtonian Fluid Mechanics 217 (2015) 1–13
the behaviour at finite deformations is presently interpreted differ-
ently in terms of the normal and shear stresses.

Iso-contours of the polymeric part of the stress components at
an advanced stage of interfacial deformation is depicted in
Fig. 10. The values of these components along the interface are
plotted in Fig. 11 for two different times, corresponding to early
(linear) and advanced (nonlinear) stage of the pillar growth. (We
note that the contour lines given here and subsequently in this
paper have been derived from the raw data without any post-pro-
cessing for smoothing them. In spite of the sharp variations of
stress components near the crests of the film, these contour lines
remain smooth throughout the simulations. Apparently sp;xx and
sp;yy develop boundary layers on the front, the accurate resolution
of which required the local mesh refinement described earlier.)

As intuitively expected – and also concluded from Fig. 10b – the
normal stress, sp;yy, is extentional in the core of the crest and thus



(a) (b)

Fig. 11. Interface height disturbance and profiles of sp;xy; sp;xx and sp;yy along the interface at (a) t ¼ 0:0027 (b) t ¼ 24:3. The remaining parameters are the same as in Fig. 9.
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resists elongation of the pillar. However, Fig. 11 indicates that the
relative intensity of this resistance decreases with deformation, as
sp;yy is proportional to deformation at the linear stage but strongly
displaced towards lower values later. The explanation of this relax-
ation is provided by the behaviour of the normal stress sp;xx, which
retains negative – i.e. compressive – values along the core of the
pillar. The compressive x-component acts to thin the pilar and thus
relaxes polymeric stresses in the y-direction. Finally, the shear
component sp;xy also resists deformation according to Fig. 10c,
and thus has a stabilizing role for highly deformed pillars.

It is noteworthy that according to Wu and Chou [22], who
employ the lubrication approximation for analysis of the initial
stages of deformation growth, the xy-component is the only one
that survives in the linear limit and has a destabilizing effect. As
it is shown in Fig. 11, this is actually true only at the very early
stages of the flow. The magnitudes in Fig. 10c indicate that at finite
growth normal stresses are dominant, being roughly two times lar-
ger than the xy stress component. Thus, the usual assumption of
reduced order models based on the lubrication approximation –
according to which the normal stresses are negligible – is clearly
not valid at the late stages of the flow.

In Fig. 12a we examine the effect of the capillary number, Ca,
and present the evolution of the maximum amplitude of the inter-
facial perturbation for Wi ¼ 5. Similarly to the case of a Newtonian
fluid, for low Ca numbers we find that the amplitude initially
grows and reaches a metastable state of a quasi-static low ampli-
tude deformation, before eventually the pillars start growing again
and reach the top electrode; as in the case of Newtonian fluids, the
amplitude is found to increase with Ca (see Fig. 12c). We note that
the power-law exponent of the dependence of the dimensionless
amplitude Z on �s=ð1� s2Þ is not affected by the elasticity of the
material. This indicates that the difference with the experimental
value found in [9] should perhaps be attributed to the presence
of free charge along the liquid–air interface which is not taken into
account by our model. For higher values of the Ca number, the
amplitude continuously grows until the liquid reaches the
protrusions.

In Fig. 12b, we evaluate the threshold in the Ca number for the
appearance of the metastable states for three different values of
the Wi number in a similar manner to Fig. 4b. We find that the time
spent in the metastable state is not affected by the elasticity of the
material and this is also reflected in the value of the ‘critical’ Ca
number which is Ca � 10 independent of the value of the Wi num-
ber. On the other hand, we find that for high Ca the time that is
needed to achieve hmax � hmin ¼ 0:4 decreases considerably with
Wi; This characteristic growth time is further reduced with
increase of Ca as the role of surface tension becomes less signifi-
cant. The above behaviour is probably due to the effect of shear
and elongational thinning which is attributed to the PTT fluid by
the finite value of the parameter aPTT . When the capillary number
is well beyond its critical value, the growth rate of the disturbances
is large, resulting in high rates of deformation. High deformation
rates render the effect of shear and elongational thinning – which
facilitate growth of the pillars – gradually more significant.

The effect of the Ca number on the induced structures for the
case of a viscoelastic fluid with Wi ¼ 1 is presented in Fig. 13 where
we plot the long-time profiles of the liquid–gas interface. Clearly,
we find that decreasing the value of Ca and as the critical Ca for
destabilization is approached the spatial periodicity of the struc-
tures is lost similarly to the case of a Newtonian fluid (see
Fig. 6). Next, we keep the Ca number constant and vary the value
of Wi (see Fig. 14). In the case of the Newtonian fluid the interface
exhibits a periodic structure with pillars of equal size. With
increasing Wi number a coarsening process takes place with the
central pillars growing faster drawing fluid from their neighbours.
It appears therefore that the bulk elasticity of the viscoelastic



(c)
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Fig. 12. (a) Evolution of the amplitude for various Ca and for Wi ¼ 5. (b) Time that is needed for hmax � hmin ¼ 0:4 as a function of the Ca number for various Wi. (c)
Dependence of the dimensionless amplitude Z on �s=ð1� s2Þ. The remaining of the parameters are b ¼ 0; aPTT ¼ 0:05; �1 ¼ 2:5, �2 ¼ 1; d ¼ 0:3; s ¼ 0:8;p ¼ 0:2;w ¼ 0:2; L ¼ 4.

Fig. 13. Long time profiles of the liquid–air interface for various Ca and for
Wi ¼ 1;b ¼ 0; aPTT ¼ 0:05; �1 ¼ 2:5, �2 ¼ 1; d ¼ 0:3; s ¼ 0:8;p ¼ 0:2;w ¼ 0:2; L ¼ 4.

Fig. 14. Long time profiles of the liquid–air interface for various Wi and for
Ca ¼ 15;b ¼ 0; aPTT ¼ 0:05, �1 ¼ 2:5; �2 ¼ 1; d ¼ 0:3; s ¼ 0:8;p ¼ 0:2;w ¼ 0:2; L ¼ 4.
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material has a similar effect to surface tension, which can also be
interpreted as the elasticity of the interface, and does not affect
only the growth rate but also the wavelength of the disturbances.
However it should be noted that the effect of the bulk elasticity
appears to be much weaker that the effect of surface tension.
Our simulations indicate that the effect of elasticity becomes larger
for Ca numbers close to the ’critical’ value whereas its effect
decreases for high values of Ca.

As was noticed above, in order to produce well-ordered poly-
meric micro-structures over large distances it is important to know
under which conditions it is possible to get periodic structures. To
examine the effect of elasticity on the fabrication limits of this pro-
cess we produced the map shown in Fig. 15. Here each point in the



Fig. 15. Flow map for Ca ¼ 20;b ¼ 0; aPTT ¼ 0:05; �1 ¼ 2:5; �2 ¼ 1;d ¼ 0:3;p ¼ 0:2;
w ¼ 0:2; L ¼ 4ðsþwÞ.

Fig. 17. Long time profiles of the liquid–air interface for two different values of b and
for Wi ¼ 5;Ca ¼ 12; aPTT ¼ 0:05, �1 ¼ 2:5; �2 ¼ 1; d ¼ 0:3; s ¼ 0:8;p ¼ 0:2;w ¼ 0:2;
L ¼ 4.
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graph represents a simulation for the given value of the distance
between the protrusions, s, and the corresponding Wi number.
The open circles denote the case where we find solutions preserv-
ing the spatial periodicity whereas the triangles correspond to non-
periodic solutions. The solid circles on the other hand denote near
critical conditions; we used the same criterion for critical condi-
tions as described in Fig. 8. From this figure we deduce that the
spacing between the protrusions, s, that results in periodic struc-
tures increases significantly with Wi; this effect appears to saturate
for high values of the Wi number. The critical s will impose a fab-
rication limit on the width of the channels that can be manufac-
tured, and it appears from the above that the more elastic the
material, the higher the minimum width of the channels that can
be achieved.

At this point, we should note that early studies using linear the-
ory for homogeneous electric fields were suggesting that viscoelas-
ticity affects the growth rate but leaves unaffected the wavelength
of the most dangerous mode. We find this to be true also for het-
erogeneous electric fields at early times when the amplitude of
the disturbances is small. However, as the amplitude becomes lar-
ger and non-linear effects come into play this is no longer true for
the case of heterogeneous electric fields. Viscoelasticity does affect
the wavelength of the induced structures and needs to be taken
into account for designing the process efficiently.
Fig. 16. Evolution of the disturbance amplitude for (a) b ¼ 0 and variou
Ca ¼ 20; �1 ¼ 2:5; �2 ¼ 1;d ¼ 0:3; s ¼ 0:8; p ¼ 0:2;w ¼ 0:2; L ¼ 4.
3.3. Effect of rheological parameters aPTT and b and dielectric constant,
�1

We continue our study by investigating the effect of the rheolog-
ical parameters of the Phan–Thien Tanner model. Parameter aPTT

controls the level of the elongational viscosity, and as it approaches
zero the elongational viscosity increases to infinity. The influence of
this parameter is more involved because it also affects the shear vis-
cosity of the fluid. The predictions of the model for various values of
this parameter can be found in [34]. To examine the effect of aPTT ,
we have plotted in Fig. 16 the evolution of the amplitude of the
maximum peak with time for two values of Wi and for various val-
ues of aPTT . For Wi ¼ 1 the curves are found to be identical for all
three values of aPTT , which suggests that shear and elongational
thinning do not have a significant effect in this case. On the other
hand, for Wi ¼ 5 the dynamics are slightly affected with regards
to the time that exponential growth is initiated. Nevertheless, the
long-time profiles are not affected significantly and remain almost
identical for all values of aPTT ; not shown here for conciseness. This
is a clear indication that shear and elongational thinning may affect
to some extent the dynamics of the flow but do not have any signif-
icant effect on the induced structures and therefore do not have to
be taken into account in the design process.

The ratio of the solvent viscosity to the total viscosity, b, is also
an important parameter because it also influences the level of vis-
coelasticity in the momentum balance. The effect of b is examined
in Figs. 16b and 17. As it is shown, the solvent viscosity has a sig-
nificant impact on the flow dynamics and for low values of b leads
s aPTT , (b) aPTT ¼ 0:05 and various b. The remaining parameters are



Fig. 18. Profiles of the liquid–air interface for three different values of �1 and for
Wi ¼ 2;Ca ¼ 20; aPTT ¼ 0:05;b ¼ 0, �2 ¼ 1;d ¼ 0:3; s ¼ 0:8; p ¼ 0:2;w ¼ 0:2; L ¼ 4.
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to an acceleration of the pillar growth. However, increasing further
b, the Newtonian contribution increases considerably with respect
to the polymeric one and the behaviour of the film approaches the
Newtonian limit. The inset in Fig. 16b depicts the early time
dynamics where it is clearly shown that the growth rate for small
disturbances depends monotonically on b in agreement with the
results of linear theory presented in [23]. As it is shown in
Fig. 17, for b ¼ 0 and for the particular choice of the remaining
parameters, the film deviates from the Newtonian case. The addi-
tion of some Newtonian contribution reduces the levels of elastic-
ity in the fluid decreasing in turn the fabrication limit on the period
of the protrusions of the top electrode.

Finally, the effect of the dielectric constant, �1, is depicted in
Fig. 18 where we have plotted the liquid-interface profiles at the
time instant for each case that the height of the pillars becomes
equal to 0.5. It is found that the pillars grow faster with increasing
�1 due to the higher intensity of the electric field that the liquid
experiences. Regarding the shape of the formed pillars we find that
with increasing �1 the pillars become thinner at the peaks and flat-
ter at the troughs; the pillars acquire a quasi triangular shape for
the highest value of �1 ¼ 5.

4. Conclusions

We carried out a numerical investigation of the flow of both a
Newtonian and a viscoelastic film under the action of an heteroge-
neous electric field imposed by the presence of a patterned elec-
trode. The mixed finite element method was used combined with
a quasi-elliptic mesh generation scheme, which allows an accurate
description of the large deformations of the liquid–air interface.
The viscoelastic behaviour of the polymeric film was modelled
using the PTT constitutive law. Simulations up to high Weissenberg
numbers were successful by using the EVSS-G/SUPG formulation
for the numerical discretization and weighting of the constitutive
equations. Attention was focused on the non-linear dynamics of
the flow, and it was interrogated in particular how the dynamics
is influenced by the rheological characteristics of the material
and how in turn it affects the fabrication limits of this process.

We have shown that for low values of the Ca number a metasta-
ble state of finite amplitude interfacial deformation arises before
eventually the perturbations grow until they reach the top elec-
trode; during the late stages of the flow a coarsening process also
takes place. Our non-linear simulations provide a better agreement
with experimental observations for the amplitude of the pseudo-
steady state in comparison to the earlier predictions of linear the-
ory [9]. We have shown that under the influence of a patterned
electrode the effect of elasticity is more involved than what is sug-
gested by linear theory for the case of an homogeneous electric
field. We find that shear polymeric stresses are destabilizing at
early times, as predicted by linear theory, but become stabilizing
at later stages of the flow. Normal stresses, on the other hand,
become increasingly important as the liquid–air interface deforms,
destabilizing the film. It is shown that at late times normal stresses
become dominant and cannot be ignored, as it is usually done
under the lubrication approximation, for the accurate prediction
of the flow dynamics. We also find that the fabrication limit on
the period of the electrode protrusions appears to depend on the
elasticity of the material, contrary to the predictions of linear the-
ory of a constant most dangerous wavelength in the case of a flat
electrode (homogeneous electric field). Finally, the amplitude of
the pseudo-steady interfacial deformations appears to be unaf-
fected by the elasticity of the material and the same is also true
for the critical voltage below which these metastable states arise.
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Appendix A. Finite element formulation

The physical domain was discretized using triangular elements.
We approximate the velocity vector, the position vector and the
potential with six-node Lagrangian basis functions, wj, and the
pressure, the elastic stresses, as well as the velocity gradients with
three-node Lagrangian basis functions, vj.

For the momentum, mass balances and the Laplace equation for
the potential, we employ the finite element/Galerkin method,
which after applying the divergence theorem results in the follow-
ing weak forms:Z
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@vi
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þvi �rvi

� �
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n � r/i½ �wjdS ¼ 0: ðA:3Þ

where dV and dS are the differential volume and surface area,
respectively. The surface integral that appears in the momentum
equation is split into as many parts as the number of boundaries
of the physical domain and the relevant boundary condition is
applied therein.

The weak form of the mesh generation equations is derived
similarly by applying the divergence theorem:Z
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The continuous approximation for the components of the veloc-
ity gradient tensor is written asZ

V
G�rv1½ �vjdV ¼ 0: ðA:6Þ

The constitutive equation due to its hyperbolic character is discret-
ized using the streamline upwind Petrov–Galerkin (SUPG) method
proposed by [47]
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Z
V

Yðsp;1ÞRþWiR̂þ2Wið1�bÞM1P̂�2ð1�bÞð1�Yðsp;1ÞÞM1P
h i

xjdV ¼0; ðA:7Þ

where P ¼ 1=2ðGþ GTÞ and the definition of the Gordon–Schowalt-
er derivative is given by

bX ¼ @X
@t
þ v1 � rX � ðrv1 � nsPÞT � X � X � ðrv1 � nsPÞ: ðA:8Þ

The weighting function xj is formed from the finite element basis
function for the elastic stress components according to

xj ¼ vj þ h
jv1j
rvj; ðA:9Þ

where jv1j is the mean velocity and h is a characteristic length in
each element. The mean velocity jv1j in an element is defined as
the mean value of the velocity at the vertices of the corresponding
element. As a characteristic length, h, we used the square root of the
area of each triangular element.
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