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Abstract 

It is well-known that, increasing the flow rate in polymer extrusion, the flow becomes unstable and the 

smooth extrudate surface becomes wavy and disordered to an increasing degree. In order to investigate the 

mechanisms responsible for these instabilities we perform a linear stability analysis of the steady extrusion 

of a viscoelastic fluid flowing through a planar die under creeping flow conditions. We consider the Phan-

Thien-Tanner (PTT) model to account for the viscoelasticity of the material. We employ the mixed finite 

element method combined with an elliptic grid generator to account for the deformable shape of the 

interface. The generalized eigenvalue problem is solved using Arnoldi’s algorithm. We perform a thorough 

parametric study in order to determine the effects of all material properties and rheological parameters. We 

investigate in detail the effect of the interfacial tension and the presence of a deformable interface. It is 

found that the presence of a finite surface tension destabilizes the flow as compared to the case of the stick-

slip flow. We recognize two modes, which become unstable beyond a critical value of the Weissenberg 

number and perform an energy analysis to examine the mechanisms responsible for the destabilization of 

the flow and compare against the mechanisms that have been suggested in the literature. 
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1. INTRODUCTION 

The extrusion process is widely used in the polymer industry. Most polymers used in commercial 

processing have sufficiently high molecular weight so that the polymer chains are highly entangled in the 

melt, resulting in a flow field that differs significantly from that of a Newtonian fluid, for instance a 

viscoelastic fluid experiences significant swelling as compared to the case of a Newtonian fluid [1,2].  The 

increased swelling is due to the relaxation of the polymeric chains, which, from being oriented primarily in 

the flow direction inside the die, can relax to any configuration outside it, where the flow field is completely 

rearranged. Moreover, it has been observed that below some critical flow rate the surface of the extrudate 

is smooth, whereas beyond this critical flow rate the surface becomes distorted [3-8]. First the extrudate 

surface shows a small-amplitude, high-frequency disturbance which is generally known as sharkskin. At 

higher flow rates the surface of the extrudate exhibits alternating smooth and distorted sections; this is 

known as stick-slip or spurt flow. Upon further increase of the flow rate, gross irregularities are developed, 

often called melt fracture. The onset of such flow instabilities affects significantly the quality of the final 

product and therefore imposes a limit on the rate of production in many polymer processing operations. 

The problem of steady extrusion flow has been the subject of several studies in the past, since in 

most applications accurate dimensions of the extruded products are required and the amount of the extrudate 

swelling is an important design parameter. The first attempt to address this problem theoretically was made 

by Tanner [9], who presented an elastic-fluid theory for die-swell in long dies. Tanner came up with an 

expression for the final swelling ratio of the extrudate as a function of the normal stress difference and the 

shear stress on the die wall. More recently, following in general the same ideas, Tanner presented similar 

analytic formulas for various constitutive models such as the PTT and the pom-pom model [10]. One of the 

first attempts for the numerical solution of this problem was made by Nickel et al [1] for a Newtonian fluid, 

using the finite element method, predicting with success the 13% swelling, which has been previously 

observed in experiments. Naturally several efforts followed to simulate numerically the extrusion of 

viscoelastic fluids [11-22], using a variety of constitutive models and numerical schemes, not always with 

the same success as in the case of the Newtonian fluid. The main difficulties were posed by the presence of 

a singularity at the die lip due to the fact that the boundary conditions change abruptly from no-slip along 

the wall to perfect slip along the free surface, which posed significant difficulties in the case of viscoelastic 

fluids. Nevertheless the development of efficient numerical schemes allowed the thorough study of this 

problem up to high Weissenberg numbers and the essential features of this process are now more or less 

well understood.  
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On the other hand, our understanding regarding the onset of instabilities on the extrudate surface 

beyond some critical Weissenberg number is still far from complete. Over the years several researchers 

have dealt with this problem, performing very careful experiments to reveal the conditions under which 

these instabilities arise [23-32]. Several theories for the origin of these instabilities have been put forth, but 

three are the ones that have prevailed till now. The first one associates the visual appearance of the surface 

defect with the loss of adhesion at the polymer-wall interface inside the die, the second one attributes it to 

an inherent instability of the constitutive model, while according to the third one the extrudate distortions 

could arise due to the strong stress field that develops right at the die exit and the intense extensional flow 

especially at the surface of the material that follows. 

The effect of slippage was investigated by Ramamurthy [23] initiating a new period of studies of 

slip in polymers and the relation between slip and extrusion instabilities. His experiments indicated a change 

in the slope in the flow curve corresponding to the onset of the sharkskin regime. Ramamurthy suggested 

that the vanishing of the instabilities was a consequence of improved adhesion. The latter scenario, 

however, is contradicted by the fact that these instabilities could be delayed significantly using materials in 

the polymer or the die-wall that promote slip of the fluid with respect to the die with very good results in 

the quality of the product [5,31]. Moreover, other researchers presented experiments, i.e. Kissi et al. [25,26], 

with continuously changing of the slope over the stable and sharkskin regimes, which show that sharkskin 

occurs without the presence of macroscopic slip [25]. The change of slope was attributed to shear thinning 

of the fluid, whereas sharkskin effects were observed to initiate at the die exit and diminish with the 

downstream distance from it. The effect of a non-monotonic slip-law along the die wall has been 

investigated in refs [33-35]. Their dynamic simulations showed that in the presence of compressibility [33] 

or viscoelasticity [34, 35] the flow could become oscillatory inside the die causing the shape of the free 

surface to become wavy, each case leading, however, to different type of oscillations. The first one leads to 

oscillations similar to the stick-slip instability whereas the second one leads to small amplitude high-

frequency oscillations reminiscent of sharkskin [7]. 

The second mechanism suggests that in order for the flow to become unstable the constitutive law 

should be non-monotonic, i.e. exhibit non-monotonicity of the shear stress/shear rate curve in simple shear 

Poiseuille flows [4]. Indeed, it has been argued that this mechanism may lead to an unstable flow [36-38], 

but this mechanism is not supported by the ideas in refs. [7,39,40]. Moreover, the recent theoretical study 

by Karapetsas & Tsamopoulos [39,40], who considered the linear stability of the stick-slip flow (a 

simplification of the die swell problem in the limit of an infinite surface tension) ignoring the presence of 

slip and using the affine PTT model, i.e. a monotonic constitutive equation for the stresses, has shown that 
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a non-monotonic slip law or a non-monotonic constitutive law, although it may be present, is not truly 

essential for the appearance of extrusion instabilities. 

The third possible mechanism for the sharkskin instability claims that it results from the coupling 

of the strong and primarily extensional stress at the die exit, as the velocity field adjusts from the no-slip 

boundary condition to the free-surface condition. Polymer chains are stretched during this tensile 

deformation, which causes the highly entangled polymer to respond like a rubber [5] leading to the cracking 

of the fluid.  This idea was first suggested by Cogswell [41] and partially confirmed by experiments by 

Kissi et al. [26] and Migler et al. [42] among others. The experiments of Migler et al. [42], in particular, 

demonstrate that there is no disturbance of the velocity within 20 μm from the die exit, thus refuting the 

idea that temporary loss of adhesion inside the die is necessary to initiate the instability. Actually, they 

suggested that the cause of sharkskin resides not in the flow boundary condition in the tube, but in the flow 

conditions just past the tube exit due to the high stretching rates that the fluid experiences in this area. In 

fact it has been proposed that the definition of sharkskin should be given to an instability initiated at the die 

exit [7]. This hypothesis is supported by the linear stability analysis of the stick-slip flow presented by 

Karapetsas and Tsamopoulos [40]. In this study it was shown that the flow becomes unstable beyond some 

critical value of the Weissenberg number and that the perturbed flow of the most unstable mode has a 

spatially periodic structure, which is initiated at the rim of the die and extends for up to 2–5 die gaps 

downstream, but is confined close to the surface of the extrudate, in qualitative agreement with the 

experimental observations. Their analysis suggests that the instability is indeed generated by the 

combination of the abrupt change of the velocity and stress fields at the die lip and the strong extension that 

the extruded polymer undergoes near its surface.  

Extrusion instabilities appear at the liquid-air interface and therefore it is reasonable to assume that 

interfacial effects may also play a role and a complete examination of this problem should take these effects 

into account. The most prominent effect of the extrusion flow is the significant swelling of the material as 

it exits the die. One important question that may arise is: “how does the swelling affect the stability 

characteristics of the extrusion flow?” Karapetsas and Tsamopoulos [39,40] ignored the effect of interfacial 

deformation by considering the limit of infinite surface tension. In the present work we take into account 

fully the effect of a deformable liquid-air interface in order to study the stability of the steady die swell 

problem and our efforts focus on determining the effect of surface tension on the critical conditions for 

instability as well as the wavenumber of the most dangerous mode. Our approach is similar to that in [40], 

i.e. we solve the steady die swell problem and perform a linear stability analysis around this base state 

solution. Since it has been already shown that the stability characteristics for the two-dimensional and 



5 
 

axisymmetric stick-slip flow are qualitatively similar [40], we will restrict our study in the case of a planar 

die. 

The rest of this paper is organized as follows. We present the problem formulation for the base state 

and its numerical implementation in Sec. 2, and Sec. 3, respectively. The essential features of the linear 

stability analysis in Sec. 4. The numerical solution of the resulting system is described in Sec. 5. In Sec. 6 

we present the results of our study and finally, conclusions are drawn in Sec. 7. 

 

2. PROBLEM FORMULATION 

We consider the steady two dimensional extrusion flow of a viscoelastic fluid driven by pressure 

gradient. In what follows the symbol “~” indicates a dimensional quantity. The fluid is considered to be 

incompressible with constant density, 𝜌̃, surface tension 𝜎̃, relaxation time 𝜆̃ and total zero shear dynamic 

viscosity 𝜇̃ = 𝜇̃𝑠 + 𝜇̃𝑝, where 𝜇̃𝑠 and 𝜇̃𝑝 are the viscosities of the solvent and the polymer, respectively. 

Figure 1 shows a schematic of the flow. The viscoelastic fluid initially flows inside the die of width 2H  

and length 1L . The velocity and pressure fields rearrange as the fluid exits the die until far from it, at 

distance 𝐿2 from the exit, a fully developed shear-free flow is obtained. 

We scale all lengths with the half of the die gap, 𝐻̃, and velocities with the mean velocity at the 

inflow boundary, 𝑉̃ , while both the pressure and stress components are scaled with a viscous scale,  𝜇̃𝑉̃ 𝐻̃⁄ . 

Thus, the dimensionless groups that arise are the Reynolds number, 𝑅𝑒 = 𝜌̃𝑉̃𝐻̃ 𝜇̃⁄ , which hereafter is set to 

zero under the creeping flow assumption, the Weissenberg number, 𝑊𝑖 = 𝜆̃𝑉̃/𝐻̃, the capillary number 

𝐶𝑎 = 𝜇̃𝑉̃/𝜎̃, the ratio of the Newtonian solvent viscosity over the total zero shear viscosity,  𝛽 = 𝜇̃𝑠 𝜇̃⁄  and 

the geometric ratios 𝑙1 = 𝐿̃1 𝐻̃⁄  and 𝑙2 = 𝐿̃2 𝐻̃⁄ . 

Figure 1 Schematic of the flow geometry and coordinate system 
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 The flow is governed by the momentum and mass conservation equations, which in 

dimensionless form are: 

 0P    , (2.1) 

 0v  , (2.2) 

where “ ” denotes the gradient operator for planar coordinates, v  and P  are the velocity vector and the 

pressure fields, respectively, and  is the extra stress tensor, which is split into a purely viscous part,  

and a polymeric contribution, , 

 2 p     (2.3) 

where   is the rate-of-strain tensor defined as  
1

2

Tv v    .  

To account for the viscoelasticity of the material we use the affine exponential Phan-Thien and 

Tanner model [43]: 

 
   2 1 0p p pWi    



     (2.4) 

where the symbol “ ” over the viscoelastic stress denotes the upper convective derivative defined as 

 TDX
X X v X v

Dt



        (2.5) 

where X  is any second order tensor and for the ePTT model the function ( )p  is: 

 
( ) exp Wi trace( )

1
p p 





 
   

 
 (2.6) 

The viscoelastic fluid properties are determined by a single model parameter, ε. This parameter imposes an 

upper limit to the elongational viscosity, which increases as this parameter decreases, while it introduces 

elongational and shear-thinning in the fluid model. The predictions for the elongational and shear viscosity 

of this model for various values of ε appear in Fig. 9 of [40]. Clearly, the PTT model reduces to the Oldroyd-

B model by setting ε equal to zero and to the UCM model by additionally setting β=0. 

 In order to solve accurately and efficiently various viscoelastic flows we employ the elastic-viscous 

split stress (EVSS-G) formulation. This method consists of splitting the polymeric part of the extra stress 

tensor into a purely elastic and a viscous part: 
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  2 1p      (2.7) 

and by introducing an independent (continuous) interpolation of the components of the velocity gradient 

tensor wherever the latter arises in the constitutive equation along with SUPG weighting. This scheme has 

been used with success in the past [20,39,40] permitting the calculations up to very high Weissenberg 

numbers. 

Thus, after reformulating the momentum and constitutive equations using the EVSS-G formulation 

under the creeping flow assumption we obtain 

 2 0P      (2.8) 

         2 1 2 1 1 0p pWi Wi D D   
 

       
 

(2.9) 

 where  
1

2

TD G G  and the upper convective derivative is given by 

 TDX
X X G X G

Dt



        (2.10) 

2.1.1 Boundary conditions 

 Along the free surface of the fluid (𝑦 = 1, 𝑙1 ≤ 𝑥 ≤ 𝑙2), the velocity field should satisfy a local 

force balance between capillary forces, stresses in the liquid and pressure in the surrounding fluid. Without 

loss of generality, the pressure of the surrounding gas phase, Pgas, is set equal to zero (datum pressure).  

   gas

2 cH

Ca
n PI n P     , (2.11) 

where n is the outward unit normal vector to the free surface and 2 cH  is twice its mean curvature defined 

as:  

  ,  2 sc s n IH nn        (2.12) 

Moreover, along the free surface we impose the no penetration condition, i.e. the normal component of the 

velocity vector is equal to zero:  

 0v n   (2.13) 

On the die wall (y=1, 0≤ x ≤l2) we impose the usual no-slip, no penetration conditions vy=0, vx=0. We also 

have to apply boundary conditions at the entrance of the die and at the outflow boundary. We consider that 

both boundaries are far enough from the die exit and thus we assume that the flow in each boundary is fully 
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developed. Therefore at the outflow boundary (x=l1+l2) we impose a uniform velocity profile, by setting 

0/xv x    for the x-component of the momentum equation and employing the open boundary condition 

[44] for the y-component. At the die entrance (x=0), besides the boundary conditions for the velocity we 

also have to apply boundary conditions for the polymeric part of the stresses and we follow the same 

approach with Karapetsas & Tsamopoulos [20,39,40]. The flow at the entrance is considered to be fully 

developed and thus we set the velocity in the y-direction equal to zero, vy=0 while vx, as well as, the 

polymeric part of the stresses are functions of y only. It can be readily shown, using the y-component of the 

momentum equation, that the pressure varies only in the x-direction. For the x-direction of the momentum 

equations using eq. (2.3) we get:  

 

, y

x

p x

dv dP

y dx dx
 

  
 

  
  (2.14) 

while the constitutive equation reduces to  

 p, p, 0xxyy   , (2.15) 

    , 1p p yx

xdv

dx
    , (2.16) 

 ,xx ,( ) 2p p y

x

p x

dv
Wi

dy
    , (2.17) 

These equations can be solved numerically by imposing, two boundary conditions on the two edges of the 

inflow boundary. At y=1 we impose vx=0 and at y=0 we impose 𝜕v𝑥 𝜕𝑦⁄ = 0. The pressure drop, 𝑑𝑃 𝑑𝑥⁄ , 

that appears in eq. (2.14) is determined by demanding that the dimensionless mean velocity is equal to 

unity, since the mean velocity at the inflow boundary, V , is used as characteristic velocity for scaling the 

governing equations. Therefore the additional equation that arises is  

 

1

0

1x xv v dy    (2.18) 

3. NUMERICAL IMPLEMENTATION 

 In order to solve numerically the above set of equations we have chosen the mixed finite element 

method to discretize the velocity, pressure and stress fields, combined with an elliptic grid generation 

scheme for the discretization of the deformed physical domain. The weak formulation of the governing 

equations is presented in detail in the appendix A.  
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3.1 Elliptic grid generation 

 

Figure 2 Typical mesh (M3 see Table I). For clarity we present only the region close to the die lip. Two 

refinement levels out of three refinement levels that have been implemented in M3 are presented above. 

Flow parameters: Wi=2.0, Ca=10, ε=0.1, l1=10, l2=25 

 The physical domain (x,y) is mapped onto a computational domain (ξ,η). As computational domain 

we choose here the domain that would be occupied by the fluid, if it remained undeformed, i.e. with a flat 

interface. A uniform mesh is generated in the latter domain while, through the mapping, the corresponding 

mesh in the physical domain follows its deformations. This is accomplished by solving the following system 

of quasi-elliptic, partial differential equations 

    1 11 0S        (3.1) 

 0   (3.2) 

where the subscripts denote differentiation with respect to the indicated variable, 
2 2

2 2

y x

y x
S

 

 





 and ε1 is 

the parameter that controls the smoothness of the mapping relative to the degree of orthogonality of the 

mesh lines.  Here we found by trial and error that it should be set to 0.1. For further details the interested 

reader may refer to Karapetsas & Tsamopoulos [20,39,40] and Dimakopoulos and Tsamopoulos [45].  
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 A blow up of the mesh, which was used for these calculations, near the die lip is presented in Fig.2. 

We should note that special care was taken for the mesh near the plane of the die exit since the flow 

rearrangement mostly takes place in that area, as well as near the die wall and even more so around the die 

lip where steep pressure of stress gradients or boundary layers may arise. Therefore in order to resolve 

adequately the flow, a more refined mesh around these regions in needed. To this end, we have used a grid 

for the physical domain the mesh lines of which are clustered near those regions combined with a local 

refinement scheme using the h-method, which bisects the elements in both directions, while the 

communication of the refined domain with the rest is achieved by using some special elements. The details 

of the h-refinement method can be found in [46], whereas the node clustering was performed following 

simple algebraic relations, as in [40].  

In order to check the convergence of the numerical algorithm for the physical problem, we 

performed an extended mesh refinement study. Some useful data about the meshes that were used are 

presented in Table I. We should note that the number in the mesh symbol corresponds to the number 

refinement levels close to singularity, while the letter denotes that the initial mesh has different structure. 

For example, in mesh M0 the refinement is done only by clustering the mesh lines near the die lip, while 

meshes M1 to M5 originate with the M0, but are enhanced with 1 to 5 local refinement levels, respectively, 

in the region of radius 0.2H with center at the die lip, resulting in sizes of elements in M5 as small as 

1.7x10−4 near the die lip. 

Mesh 

No. of 1D 

elements 

in the (y,x) 

direction 

No. if 

refinement 

levels 

No. of 

triangular 

elements 

No. of 

unknown

s (base 

state) 

No. of 

unknowns 

(stability 

analysis) 

l1 l2 Δxmin Δymin 

min

min

x

y





 

M0 (40,250)  0 20000 265234 263118 10 25 7.4x10-3 7.5x10-3 0.99 

M1 (40,250)  1 21240 310100 307984 10 25 3.8x10-3 3.9x10-3 0.98 

M2 (40,250) 2 22803 373762 371598 10 25 1.8x10-3 1.8x10-3 1.00 

M3 (40,250) 3 31431 414818 412654 10 25 9.4x10-4 9.1x10-4 1.03 

M4 (40,250) 4 32439 428084 425920 10 25  4.7x10-4 4.5x10-4 1.03 

M5 (40,250) 5 33047 431526 429410 10 25  1.7x10-4 1.6x10-4 1.03 

B3 (45,250) 3 35505 467870 464362 10 25 9.6x10-4 8.3x10-4 1.16 

C3 (50,250) 3 39325 517620 513472 10 25 9.6x10-4 7.4x10-4 1.29 

D3 (40,300) 3 28561 378084 374910 10 25 7.9x10-4 9.4x10-4 0.84 

F3 (40,350) 3 37709 497530 494380 10 25 6.8x10-4 9.4x10-4 0.72 

S3 (40,230) 3 29840 393854 390954 10 23 9.6x10-4 9.3x10-4 1.03 

Y3 (40,210) 3 28259 372898 370148 10 20 9.6x10-4 9.3x10-4 1.03 

Table I Properties of typical finite element meshes used in the present work. 



11 
 

Moreover, in order to check the quality of the results compared with the mesh we create a series of meshes 

referred to the table as B3-F3. These meshes have 3 refinement levels close to the die exit, while the 

parameters of the algebraic packing remain constant as we noted above. As a result, the distribution of the 

nodes varies and this results in elements with different aspect ratio. Furthermore, we employed meshes S3 

and Y3 to check the dependence of our results with the location of the outflow boundary, while making 

sure that the minimum and maximum size as well as the aspect ratio of the elements does not change.  

4. LINEAR STABILITY ANALYSIS 

The above set of equations describes the steady extrusion flow of a viscoelastic material. In order to 

investigate whether this flow is actually stable we perform a linear stability analysis considering the stability 

of the steady flow subjected to infinitesimal two-dimensional perturbations. The flow variables are 

decomposed into a base state and its perturbation using the following ansatz: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

, , , , ,

, , , , ,

, , , , ,

, , , , ,

, , , , ,

b d

b d

b

b

b d

d

d

v t v v t

t t

G t G G t

t t

x

P

x

P

x

P

t t

     

     

     

     

     

     
     
     
      
     
     
     
     

  

 (4.1) 

Where    y , , , x , ,x t t       ,    y , , x ,b b bx        and    y , , , x , ,d d dx t t       . The first terms on 

the right hand side of this equation represent the steady state solution, indicated by the subscript “b”, while 

the second ones are the perturbation, indicated by the subscript “d”. We assume the following dependence 

on time for the latter  

 

 

 

 

 

 

 

 

 

 

 

, , ,

, , ,
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, , ,

, , ,

d

d
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d

d

d

v t v

t

G t G

t

x t

P P

x


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   
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

   
   


   
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




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, (4.2) 

where λ is the decay rate. Under our ansatz, if the calculated λ turns out to have negative real part, the 

disturbance grows with time and therefore the corresponding steady state is considered to be unstable. 

Substituting these expressions into the time-dependent form of the governing equations presented in the 

previous section and neglecting terms of order higher than the first in the perturbation parameter, δ, we 

obtain a set of linearized equations around the base state solution; the latter are presented in detail in the 

appendix B of this paper. 
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4.1 Arnoldi Method 

After we discretize the above set of equations we end up with a generalized eigenvalue problem of 

the form 

 Aw Mw  (4.3) 

Where A and M  are the Jacobian and the mass matrix, respectively, λ are the eigenvalues and 𝑤 are the 

corresponding eigenvectors. This eigenvalue problem is solved using Arnoldi’s method [47-51] which 

allows us to locate only the eigenvalues of interest; for determining critical conditions we need those 

eigenvalues with the smallest real part.  

For implementing the Arnoldi algorithm we use the public domain code ARPACK [48] which is 

capable by default to compute the eigenvalues with the largest magnitude.  Since we are interested only in 

the eigenvalues with the smallest real part and to avoid the singularity of the mass matrix, the following 

shift-and-invert transformation is employed:  

 
 

1 1
,   where   and w K AK sM

s
w  





   


 (4.4) 

The leading eigenvalues of the above system are those eigenvalues of the original problem that are closet 

to the complex shift value s, when v is maximum then λ-s is minimum. Therefore with a sequence of such 

complex shifts, adaptively generated with a procedure similar to the one described in Natarajan [51], it is 

possible to obtain the desired part of the eigenspectrum (i.e. the leading eigenvalues with the smallest real 

part). Typically a sequence of 10 different shifts is used, calculating 50 eigenvalues in each shift with a 

similar procedure that was described in [40]. The accuracy of the converged eigenpairs is independently 

checked by evaluating the residual | |Ax M x , and this quantity is always less that 10-10 for the reported 

results. 

 

5. NUMERICAL SOLUTION 

 

 The resulting set of algebraic equations for the base state problem is solved simultaneously for all 

variables using the Newton-Raphson scheme. The Jacobian Matrix that results after each Newton iteration 

is stored in compressed sparse row format and the linearized system is solved by LU-decomposition using 

PARDISO, a robust direct sparse matrix solver. The iterations of the Newton-Raphson method are 

terminated using tolerance for the absolute error of the Residual vector, which is set at 10-7. The eigenvalue 

calculations were done using the implicitly restarted Arnoldi algorithm as it is implemented in the ARPACK 

library [48]. The code was written in FORTRAN 90 and was run on a workstation with Dual processor 
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Xeon CPU at 2.5  GHz in the Laboratory Fluid Dynamics. Each calculation for a wide range of 

Weissenberg numbers typically required 1-2 days for the steady state (base flow) and 1-2 days for the linear 

stability analysis, depending on the mesh used.  

 

6. RESULTS & DISCUSSION  

6.1 Base state 

 

Figure 3 (Color online) Steady extrusion flow using the ePTT model for a slit die. Contour lines (a) vy, vx 

(b) P, τp,yy (c) τp,yx , τp,xx in upper and lower half respectively, for Wi = 1.5, Ca = 10, ε=0.05, β =0, (For 

clarity the region 5 20x   is shown). 

 

To set the stage for the discussion that follows, it is useful to examine first the base state, i.e. the solution 

of the steady extrusion of a viscoelastic fluid from a planar die. Figure 3 illustrates the flow field for Wi = 

1.5, Ca = 10,  =0.05, β=0. In addition to the shape of the extrudate, this figure presents the contour plots 

of the velocity, pressure and stress field. The total number of the contour plot varies from 40 equidistant 

color lines for the velocity components to 50 equidistant color lines for the stress and pressure field; the 

number of contour lines is kept the same in all subsequent contour plots presented in the paper unless stated 

otherwise. The cross stream velocity, vy, is zero almost everywhere except for a region around the die exit, 

where the velocity field is rearranging from the fully developed shear flow inside the die to the shear-free 
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flow outside it. The cross stream, vy, has its maximum value near the free surface and close to the die lip 

due to the swelling of the extrudate, while the stream wise velocity, vx as the fluid approaches and passes 

through the exit of the die, gradually turns from a parabolic into a plug flow profile. The normal stresses, 

which arise due to the elasticity of the material, cause much larger swelling in the viscoelastic extrudate 

than in the Newtonian case; the swelling is approximately equal to 51% (see Fig. 4a) as compared to 19% 

expected for a Newtonian liquid [52]. Contour lines of τp,yy (lower half of Fig. 3b) show that this stress 

component varies mostly around the triple contact point and its magnitude decreases rapidly away from it. 

Finally in Fig. 3c contour lines of and τp,yx (upper half) and τp,xx (lower half) are given. The axial normal 

stress varies mainly inside the die and takes its maximum value at the die lip, while outside the die it 

decreases rapidly, except for the surface of the extrudate, where it takes longer to become zero. 

(a) (b)  

Figure 4 Dependence of the free surface height at the outflow boundary (a) on the Ca number for various 

values of the Wi number. The remaining parameters are  =0.05, β=0 (b) on the Wi for various values of   

PTT parameter. The remaining parameters are β=0, Ca=10. Mesh M3 is used 

The swelling of the extrudate depends significantly on both the elasticity of the material as well as 

its surface tension. This dependence is presented in Fig. 4a where we plot the swell ratio as a function of 

the Ca for four different Wi numbers. In the limit of infinite surface tension (i.e. in the limit of Ca=0) the 

liquid exits the die without any signs of swelling; this corresponds to the well-known stick slip flow [39]. 

For finite values of the surface tension the swelling increases exponentially with Ca, but this effect saturates 

for larger values of Ca. We also find that the swelling of the extrudate is enhanced with increasing elasticity 

of the material as expected. Finally, as it is shown in Fig. 4b, increasing the value of the rheological 

parameter, ε, which introduces the effect of shear thinning leads to lower levels of swelling.  

 

 



15 
 

6.2 Linear stability analysis 

6.2.1 Validation 

We proceed by performing a linear stability analysis as described in section 4 to account for the effects 

of infinitesimal disturbances to the base flow. We compute the eigenvalues of our system and the stability 

of the flow is determined by the real part of the eigenvalues, λ. When all the eigenvalues have a positive 

real part, the corresponding eigenmodes will decay, whereas, if at least one eigenvalue has a negative real 

part, the corresponding eigenmode is linearly unstable. Karapetsas & Tsamopoulos [39,40] have examined 

thoroughly the convergence of the steady solution and the eigenvalue calculations with mesh refinement 

for the viscoelastic stick-slip flow. It was shown that for dense enough grids it is possible to resolve well 

the flow throughout the domain, and especially close to the singularity. Before proceeding with a parametric 

study of our linear stability calculations, we will perform a similar study to demonstrate that the new 

reported results of our stability analysis also converge with mesh refinement.  

(a)  

Figure 5. Effect of the mesh characteristics on the calculated eigenspectrum for Wi=2.0, Ca=0.01,  =0.1, 

β=0, L1=10, L2=25. The most dangerous eigenvalue converges with (a) local refinement around the die lip 

and (b) global grid refinement. Here the aspect ratio of the meshes varies as the number of 1D elements 

increase either in x-direction or the y-direction, see Table I 

 

To this end, we have prepared Figure 5, where the results for the eigenspectrum of a viscoelastic 

fluid for Wi = 2, Ca = 0.01,  = 0.1 and   = 0 are presented for meshes with different characteristics the 

details of which are summarized in Table I. For clarity, only eigenvalues with positive imaginary part are 

shown, because eigenvalues appear as complex conjugates. Before proceeding with the discussion of this 

figure it would be useful first to summarize the characteristics of the spectrum of the same viscoelastic fluid 

for the case of the stick-slip flow. As it was shown by Karapetsas and Tsamopoulos [40] the spectrum 

consists of a continuous part located at the same position that is predicted for the Poiseuille flow of a PTT 

fluid, which is very well resolved, of some discrete eigenvalues that converge with mesh refinement (e.g. 
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the leading eigenmode) and of some that do not (spurious eigenvalues). The spectrum for the stick-slip flow 

(Ca=0) has been reproduced in Fig. 6 and compared against the case of the die swell for a very small value 

of the Ca number (Ca=0.01). As it is shown, the spectrum in the latter case shares many common 

characteristics with the one for stick-slip flow and there are some regions that the eigenvalues of the two 

spectra overlap. The modes that correspond to this part of the spectrum are related with the flow inside the 

tube and they are clearly not affected by the small variation of the surface tension. This part of the spectrum 

appears to converge with local mesh refinement around the die lip (see Fig. 5a), although the eigenvalues 

with high imaginary part seem to be somewhat affected by the size of the elements in the x-direction (see 

Fig. 5b). The latter is due to the fact that the element size affects the capability of the mesh in resolving 

disturbances of very small wavelengths; increasing the number of elements in the x-direction rearranges  

 

Figure 6 Comparison of the spectrum of the stick-slip flow (Ca=0) with extrusion flow (Ca=0.01) for 

Wi=2.0,  =0.05, β=0, using mesh M3. 

 

this branch of the spectrum so that it gets more vertical to the real axis of the spectrum. Furthermore in the 

case of extrudate swell, an additional continuous spectrum arises closer to the imaginary axis with respect 

to the existing continuous spectrum for the stick-slip problem. This is significantly affected by the 

distribution of 1D elements of the free surface. We should note that this spectrum is obviously related with 

the presence of a deformable liquid-air interface and the effect of a finite surface tension. In the case of the 

stick-slip flow the free surface cannot be deformed, due to the fact that the surface tension is considered to 

be infinite. For all the cases that we have examined in this paper, this part of the spectrum was found to be 

stable and did not affect the stability of our system. Interestingly, we find that the effect of a finite surface 
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tension also affects significantly the discrete eigenvalues of the system. Both the real and imaginary part of 

the most dangerous eigenvalue, which, as shown in Fig. 5, converge with mesh, appear to depend 

significantly on the value of the Ca number. We observe that for Wi=2 the leading eigenvalue for Ca=0.01 

has a negative real part, which means that for this specific Weissenberg number the flow is unstable whereas 

for Ca=0 the flow was found to be stable (Fig 6). We should note, however, that despite some differences 

in the wavelength of the disturbances of the most dangerous mode, which could have been anticipated by 

the difference in the imaginary part of the eigenvalue, the corresponding eigenvectors for these two cases 

are qualitatively similar with the instability starting at die lip and propagating 2-3 radii downstream (see 

ref. [40]). 

Apart from the mesh refinement study, we have also examined the effect of the location of the 

outflow boundary or even the type of boundary condition that is applied therein. In the case of the stick-

slip flow [40] it was shown that the conditions that are applied both at the inflow and outflow boundaries 

have a minimal effect on the eigenvalue calculations. In our case it is expected that the presence of a  

(a) (b)  

Figure 7. Effect of the position l2 of the outflow boundary for two different Capillary numbers. (a) Ca = 

0.01 and (b) Ca = 1.0. The remaining parameters are Wi =2.0,  =0.1, β=0. For the mesh M3 we have 

l2=25, for S3 l2=23 and for Y3 l2=20. 

 

deformable interface may complicate things, since it is known that the coexistence of a free surface and an 

outflow condition may give rise to a corner singularity Renardy [54-56]. Although, this singularity does not 

affect the steady state calculations, it could affect to some extent the eigenvalue calculations. As we can see 

in Fig. 7 for two different values of the Ca number (Ca=0.01 and Ca=1) placing the outflow boundary 5 

half-gap widths closer to the die exit, from l2=25 to l2=20, (see Table I), has very little effect on the discrete 

part of the spectrum. Note that for the steady calculations (base state) we have imposed as described above 

the OBC for the y-velocity component and dvx/dx=0 for the x-velocity. Being consistent for the stability 

calculations we also imposed OBC for the linearized y-momentum equation while we imposed dvx,d/dx=0 
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in the x-momentum. Looking carefully at the corresponding eigenvector of the most dangerous eigenvalue 

in the lower part of Fig. 8 we observe, however, that the application of this boundary condition may not be 

appropriate for the stability calculations, since the disturbance of the cross flow velocity appears to be 

severely affected by the corner singularity at the end of our domain, where a nonphysical recirculation 

arises. Even more important seem to be the repeated vortices that arise downstream from the die exit, but 

were not observed in the stability analysis of the stick-slip flow. Although, the application of the open 

boundary condition in both directions was possible in the case of the stick-slip flow [40] this option is not 

available in our case, since it is already known that the application of the full OBC condition is problematic 

when it comes to the simulation of the steady extrudate swell in the presence of surface tension effects [57]. 

 

Figure 8. Spatial form of vy component of the eigenvector that corresponds to the most unstable eigenvalue 

using the full domain (lower part) and using the truncated domain as explained in the text (upper part) for 

Wi=1.5, Ca=1,  =0.1 and β=0. Mesh of M3 was used. 

 

Upon extended examination of many reasonable alternatives, we found that to overcome the 

difficulties posed by the singularity that arises at this corner we can proceed as follows: Since there is no 

other viable option for the calculation of the steady state we use the set of boundary conditions mentioned 

above to get the base state solution. In order to perform the stability calculations, on the other hand, we 

truncate the domain of the base state at 1 2x l l dl   , where dl is the length of two elements adjacent to 

the outflow boundary; a typical value for dl is 0.35H, which may seem large, but its size is determined by 

the mesh clustering close to the die lip, see eqs. (3.3), (3.4), (3.5). However, due to the plug flow near the 

outflow boundary, the coarser mesh is an acceptable mesh there. The linear stability analysis is performed 

about the base state of the truncated domain and for the eigenvalue calculations we now impose the OBC 

in both directions at 1 2x l l dl   . As it is shown in the upper part of Fig. 8, the application of this 

boundary condition leads to velocity disturbances that remain totally unaffected at the edge of our domain, 

and the non physical vortices in the disturbed flow has disappeared. The effect of the different types of 

boundary conditions on the eigenspectrum is presented in Fig. 9. As expected, the elimination of  
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Figure 9. Effect of the type of outflow boundary condition used for the eigenvalue calculations for Wi=2, 

Ca=1,  =0.1, β=0. As outflow boundary we impose 𝜕𝑣𝑥/𝜕𝑥 = 0  (black dots) or OBC in momentum 

balance (orange stars). Mesh M3 was used. 

 

some degrees of freedom from our system due to the truncation of the domain leads to insignificant 

variations. More specifically, we find that the eigenvalues that are related with the bulk flow inside the die 

are only slightly affected. The effect is a bit more significant on the continuous part of the spectrum which 

is related to the free surface. However, as it was noted above, this part of the spectrum does not affect the 

stability of the system, since the real part of the eigenvalues remains positive in all calculations that we 

have performed. More importantly, we find that the application of the OBC for both momentum 

components does not affect significantly the value of the most dangerous eigenvalue, which remains the 

stability determining one. The leading mode is the discrete mode denoted with A in Fig. 9. When 0/xv x    

is applied, only three additional eigenvalues appear (denoted with B and C in Fig. 9), in comparison to those 

appearing when the OBC boundary consitions are applied. These modes are highly affected by the specific 

conditions imposed at the outflow boundary of the domain. For this reason, these eigenvalues are not related 

with the eigenmodes of the physical system, they are considered spurious, and we do not take them into 

account in the analysis that follows in subsection 6.2.2. 
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6.2.2 Effect of material properties on critical conditions for instability 

(a)  

(b)   

Figure 10 Effect of viscoelasticity for on the eigenvalues calculated with mesh M3 for (a) Ca=0.01 and (b) 

Ca=1.0 and  =0.1, l1=10, l2=25. 

 

Now that we have verified the convergence with mesh refinement and determined the proper inflow and 

outflow conditions, we may proceed with the parametric study to examine the effect of various rheological 

properties of the material on the stability of the steady viscoelastic extrudate swell. The dependence of the 

eigenvalue spectrum on the Weissenberg number is shown in Fig.10 for  =0.1 and β= 0. We can see that 

as the Weissenberg number increases the cluster of the eigenvalues moves towards the imaginary axis 

while, for some value of Wi, the leading eigenvalue crosses it, indicating a transition to instability similarly 

to the findings of Karapetsas & Tsamopoulos [40] for the stick slip flow. We also note that the fact that this 

complex eigenvalue and its conjugate cross simultaneously the imaginary axis beyond a critical value of 
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the Wi number indicates the presence of a Hopf bifurcation [53] and the flow that results is periodic in time, 

similarly to the case of stick-slip flow, i.e. for Ca=0, [40].  

A detailed calculation, presented in Fig. 11 where we plot the spectrums close on the Wi number for two 

values of the Ca number, shows that the crossing occurs at Wic = 1.64 for Ca=0.01 and at Wic = 1.43 for 

Ca=1. According to Karapetsas & Tsamopoulos [40] in the case of stick-slip flow the transition to instability 

takes place at Wic = 2.5 indicating that the presence of a deformable interface actually destabilizes the flow.  

(a) (b)  

Figure 11 Dependence of the real part of the leading eigenvalue for (a) Ca = 0.01 and (b) Ca=1.0 and for 

  =0.1 and β=0. It is determined that the critical Wic equals 1.64, for Ca=0.01 and 1.43 for Ca=1.0. Mesh 

M3 is used. 

Fig. 12 depicts the perturbations of the pressure field along the liquid-air interface where these 

oscillations are shown more clearly for two different values of the capillary number, Ca. For the lowest 

value of Ca (see Fig. 12a for Ca = 0.01) the interface is less deformable, approaching the stick-slip limit, 

and the pressure perturbations propagate 4 half die-gaps downstream the die lip. On the other hand 

increasing Ca (see Fig. 12b for Ca = 1) we find that the wavelength of the most unstable mode decreases 

significantly and in this case the perturbations fade away at a smaller distance from the die lip, i.e. two half 

die-gaps. The decrease of surface tension in the latter case allows larger deformation of the interface leading 

to significantly more swelling of the extrudate (see Fig. 3) and at the same time permits interfacial 

disturbances of shorter wavelength to become unstable as it is shown in Fig. 12c and 12d, where we plot 

the height disturbances of the liquid-air interface for Ca=0.01 and Ca=1, respectively.  
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(a) (b)  

(c) (d)  

Figure 12 Profile of the free surface height and pressure field disturbances along the free surface for two 

values of the capillary number: Ca=0.01 (a-c) and Ca=1 (b-d) for Wi=1.5, ε=0.1 and β=0. Mesh M3 is used. 

The spatial variation of leading mode for Wi=1.5, Ca=1,  =0.1 and β=0 is illustrated in Fig. 13. 

We can see that, similarly to the predictions of Karapetsas & Tsamopoulos [40], the perturbations of the 

velocity and stress field are initiated at the die exit and are primarily concentrated outside the die, close to 

the surface of the extrudate and propagate approximately 3-4 half die-gaps downstream; this mode of 

instability will be named hereafter as the EXT1 mode. No variation is observed in the entrance or well 

before the exit of the die in agreement with experiments reporting that sharkskin is a die-exit phenomenon 

[7, 27, 58] and that the entrance conditions do not influence the sharkskin instability [29]. The perturbations 

of all variables exhibit a spatial periodic structure with alternating signs along the liquid-air interface while 

the oscillation appears to be most intense for the axial normal polymeric stress component. 

The effect of the Ca on the leading eigenvalue is also depicted in fig 14 where we plot the critical 

Wic as a function of Ca for various values of  . First, we should mention that the imaginary part of the 

eigenvalue at critical Wic corresponds to the temporal frequency of the oscillations; since there is a constant 
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flow rate, the latter is also related to the wavelength of the perturbation. As it is shown in fig 14b, the 

temporal frequency of the instability increases monotonically with Ca, and this leads to disturbances with 

smaller wavelength typical of the sharkskin instability. On the contrary, fig 14a shows that the capillary 

number has a non-monotonic effect on the critical Wic. In general, higher values of Ca will make the free 

surface more susceptible to disturbances of even shorter wavelength and therefore the flow less stable.  

 

Figure 13 Spatial form of the eigenvector for a planar die. (a) v’y, v’x  (b) P’, τ’p,yy  (c) τ’p,yx , τ’p,xx  on the 

upper and lower half respectively for Wi=1.5, Ca=1.0, ε=0.1, β=0, l1=10, l2=25 (for clarity we present the 

region). 8 14x   The corresponding eigenvalue is λ=-0.370+i24.887. Mesh M3 is used.  

Indeed, as it is shown in fig 14a, the critical Weissenberg number decreases with increasing Ca, for 

(approximately) Ca > 0.5. However, for low values of Ca, (Ca<0.5), increasing Ca, increases the critical 

Wic, i.e. the flow is stabilized. This unexpected dependence on Ca can be explained as follows: It is known 

that extensional stresses destabilize the flow [40]. On the other hand, extrudate swelling tends to relax the 

normal axial stress and, hence, it is reasonable to expect that swelling stabilizes the flow. Fig. 4a shows that 

about 80% of the swelling takes place for Ca <0.5, so the increase of swelling in that region leads to the 
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increase of Wic. At larger Ca, the increase of Ca affects the swelling less, to the point that it is not sufficient 

to stabilize the flow, while Ca keeps increasing. Moreover, decreasing the rheological parameter  , the 

swelling of the material increases (see fig 4b), as a result criticality is expanded to higher values of Wi. 

Moreover, for higher values of Ca, Wic decreases significantly with Ca; for Ca=10 we find that the flow 

becomes unstable for Wic = 1.16, 0.89 and 0.68 for  =0.05, 0.08 and 0.10, respectively. The calculated 

values for the critical Weissenberg number appear to be in the same range with the critical values reported 

in experimental works found in the literature [24, 28, 31, 32] (see Table II). We should note, however, that 

the estimated Ca number in these experiments appears to be much larger than the values used for our 

computations; the surface tension has not been reported in the experimental works and the estimation was 

made assuming that the surface tension of the polymer is equal to 30 dyn/cm. Numerical difficulties render 

convergence of computations at higher values of the Ca number quite hard. Another factor that may also 

affect the critical Wi number is the presence of slip which in some experiments was found to be present, 

but has been ignored in our simulations.  

(a) (b)  

Figure 14 (a) The critical Weissenberg number, Wic  for various values of the capillary number and (b) The 

imaginary part of the leading eigenvalue computed at Wic as a function of the Ca number for β=0. Mesh 

M3 is used. 

 

As an additional check, we evaluate the wall shear stress at critical conditions and compare it 

against experimental measurements of Moynihan et al. [31] and Lim and Schowalter [32] for a slit die and 

for polymeric solutions with relaxation times λ=0.06 s and λ=0.63 s, respectively. The wall shear stress has 

been evaluated at the entrance of the domain for Ca=10 at critical conditions for a range of values of the 

rheological parameter, ε. Given the relaxation time of the specific polymer solution we evaluate the critical 

flow rate from Wic and use the evaluated critical mean velocity to re-dimensionalize our theoretical 
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predictions. Interestingly, we find that for the case of Moynihan et al. [31] the critical wall shear stress 

varies from 0.14-0.20 MPa which is fairly close to the reported value of 0.149 MPa. In the case of Lim and 

Schowalter [32] our prediction gives 0.15-0.21 MPa while the reported value is 0.14 MPa. Note that the 

range in the theoretical calculations corresponds to values of ε which range from 0.05-0.1.Next, we turn 

our attention to the effect of the extensional parameter  .The effects of shear and elongational thinning 

become increasingly important as we approach the triple contact point where the stresses become very high. 

We should mention, however that this parameter introduces to the PTT model the effect of shear thinning 

as well as an extensional viscosity which is varying with extensional hardening followed by extensional 

thinning for smaller values of   or extensional thinning only for larger values. As it was shown in Fig. 14, 

for high values of the parameter ε the critical Wic of the disturbances decreases and the non-monotonic 

dependence with Ca becomes less intense. This could be attributed to the effect of strain-thinning which 

becomes increasingly important with increase of   and the fact that it has a destabilizing effect on the flow 

as it was shown earlier by Karapetsas & Tsamopoulos [40]. The destabilizing role of strain thinning is also 

supported by the experimental observations of Venet and Vergnes [29] indicating that polymers exhibiting 

long chain branching and more strain hardening are less sensitive to sharkskin.  

 die Ca Wic Polymer 

Experiments     

Kalika & Denn [24] Capillary 3175 1.5 LLDPE 

Moynihan et al. [31] Slit 1860 1.19 LLDPE 

Lim & Schowalter [32] Slit 2100 0.72 LLDPE 

Theory     

Karapetsas & Tsamopoulos [39] Capillary 0 2.0 PTT fluid 

Karapetsas & Tsamopoulos [39] Slit 0 2.5 PTT fluid 

Present Work Slit 0.01-10 1.64-0.68 PTT fluid 

Pomar et al. [28] Capillary 1106 1.73 LLDPE 

Table II experimental and theoretical work in extrusion process of viscoelastic fluid.  

The effect of the extensional parameter,  , on the critical Weissenberg number, Wic is examined 

in Fig. 15. Similarly to the predictions of Karapetsas and Tsamopoulos [40] we find that Wic depends non-

monotonically on . As it was noted by there, the non-monotonic dependence is due to the fact that this 

parameter introduces simultaneously the effects of strain-thinning and shear-thinning, which exhibit a 

destabilizing and stabilizing effect on the flow, respectively. We note, however, that the presence of a 

deformable interface results in the increase of the value of   for which Wic becomes minimum. In the case 

of stick-slip flow (Ca=0) the minimum arises for  ∼ 0.06 whereas for a finite value of Ca=0.01 the 

minimum arises for  ∼ 0.12. The imaginary part of the leading eigenvalue, evaluated at Wic, as a function 
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of the extensional parameter   is presented in Fig. 15b. As it is shown, there is a monotonic dependence 

indicating that increasing the effect of strain thinning leads to higher temporal frequency of the instability, 

which also results in disturbances with smaller wavelengths. 

(a) (b)  

Figure15 Dependence of the (a) critical Weissenberg number and (b) the imaginary part of the most 

dangerous eigenvalue on the rheological parameter  . The remaining parameters are Ca=0.01. Mesh M3 

is used. 

 

Next, we examine the effect of the solvent by presenting in Table III the dependence of Wic on 

the solvent viscosity ratio, β, for Ca=1 and  =0.1. We find that the critical Weissenberg number for 

which the EXT1 mode becomes unstable, denoted as Wic, increases considerably with increasing β, 

indicating that the addition of a Newtonian solvent has a strongly stabilizing effect, in agreement with 

the findings of [40]. In Table III we also monitor the critical Weissenberg number for which the second 

most dangerous mode becomes unstable; this mode will be named hereafter as the EXT2 mode and the 

corresponding critical Weissenberg number is denoted with WiEXT2. We note that for β=0.01, the highest 

value of the solvent viscosity ratio that we have used, since we are mainly interested in polymer melts, 

we find that the EXT1 is no longer the most unstable mode, because EXT2 becomes unstable for a 

smaller value of the Wi number. The characteristics of the EXT2 mode will be discussed in detail below. 

β 1st mode (EXT1) 2nd mode (EXT2) 

 WiEXT1 Imaginary part WiEXT2 Imaginary part 

0 1.64 25.363 5.45 0.898 

0.005 5.12 13.199 6.73 0.853 

0.01 8.45 9.851 7.85 0.824 

Table III Critical Wi numbers for the two most dangerous modes for various values of the solvent viscosity 

ratio, β, and for Ca=0.01 and  =0.1. Mesh M3 is used.  
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6.2.3 Examination of the second most unstable mode (EXT2) 

 

 

Figure16. Spatial form of the eigenvector for a planar die. Isolines (a) v’y, v’x  (b) P’, τ’p, yy  (c) τ’p ,yx, τ’p,xx  

on the upper and lower half respectively for Wi=5.5, Ca=10,  =0.05, β=0, l1=10, l2=25 (for clarity we 

present the region 0 20x  ). The corresponding eigenvalue is λ=-0.016+i0.908 

The spatial variation of the most unstable eigenvector, corresponding to the EXT2 mode, near critical 

conditions for Wi=5.5, Ca=10,  =0.1 and β=0 is illustrated in Fig. 16. This mode of instability was also 

found in the case of the stick-slip flow and similarly to the predictions of Karapetsas & Tsamopoulos [40], 

we find that the perturbations exhibit a spatially periodic structure while the velocity and stress field are 

primarily concentrated inside the die, localized close to the die exit. The perturbations are initiated in the 

vicinity of the die lip and the amplitude of the oscillations decreases upstream from it. We also note that a 

boundary layer in v’z and τ’zz is formed near the wall with the velocity boundary layer thickness being larger 

than the one for the stress. We should note that the presence of an oscillatory flow and the boundary layer 

in the stress and velocity field near the die exit could perhaps be perceived by an experimentalist as loss of 

adhesion which leads to a stick-slip motion of the polymeric liquid. To make sure that the eigenvector of 

this mode is not affected in any way by the position of the inlet boundary we performed simulations either 

by increasing the length of the inlet domain or by imposing the open inflow boundary condition suggested 

by Dimakopoulos et al. [60] and found that the position or type of the inlet boundary boundary condition 

perturbations does not play any significant role. Since this mode of instability appears inside the die it is 
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Figure17 Critical values of Wi for the second leading mode. The capillaty force has a very mild impact on 

the 2nd leading mode. Flow parameters Wi=5.5,  =0.05, β=0. Mesh M0 is used.   

 

 reasonable to expect that interfacial effects will not affect significantlly the critical conditions for this mode 

to become unstable. Indeed plotting the dependence of WiEXT2 on Ca in Fig. 17 we find that WiEXT2 does not 

vary significantly. Finally, the effect of the extensional parameter ε on the value of the Weissenberg number 

that EXT2 becomes unstable, WiEXT2, is examined in Fig. 18. Similarly to the predictions for the EXT1 

mode (see Fig. 17) we find that WiEXT2 depends non-monotonically on ε whereas the imaginary part of the 

eigenvalue increases monotonically with ε indicating that increasing the effect of strain-thinning also leads 

to higher temporal frequency of the EXT2 mode. 

(a) (b)  

Figure 18 Dependence of the (a) critical Weissenberg number and (b) the imaginary part of the second most 

dangerous eigenvalue on the rheological parameter  . The remaining parameters are β=0, Ca=10, l1=10 

and l2=25.  Mesh M3 is used. 
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6.3 Energy Analysis 

In order to identify the physical mechanism that leads to instability we perform an energy analysis, 

which has been used with success in the past for the analysis of various viscoelastic flows [61-65]. The 

energy method considers the interaction of the base flow and the disturbance flow by evaluating the 

mechanical energy balance for the perturbed system. Hence it is used to determine the stabilizing and 

destabilizing effect of the coupling of the velocities and stresses from the base flow and perturbation flow. 

The method is described in detail in the Appendix of Karapetsas and Tsamopoulos [40]. 

The disturbance energy equation is obtained by taking the inner product of the linearized perturbation 

of the momentum equation with the perturbation velocity and integrating the resulting equation over the 

volume of the flow field and one period in time. (i.e.  /0 2 imagt    )   
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Note that for the evaluation of all terms shown in the equation (8.1) and in the equations below we take just 

the real part of the perturbations, v  , P , G ,  , while the subscript “b” denotes the base state variables After 

some manipulation the energy budget becomes: 
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The physical interpretation of the various terms of equation (8.2) is given in Table IV.  For further details 

on the applied method the interested reader may refer to Karapetsas and Tsamopoulos [40]. 
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Table IV Physical interpretation of terms arising in the energy budget (eq. 8.2) 

 

The correct mode of instability can be tracked by using dVD/dt as the quantity which indicates the stability 

or instability of the flow [40, 61]. Therefore, when the solvent viscosity is small or even zero as in our 

study, we can use the energy balance given by Eq. (8.2) to determine the critical couplings that cause the 

onset of the viscoelastic instability by examining the magnitude of each one of the terms on the right hand 

side near the critical Wi number. The driving force for the instability will be determined by finding which 

terms grow when dVD/dt grows and especially which terms grow most rapidly with Wi. 

(a)  (b)  

Figure 19 Energy analysis diagrams for the leading mode (EXT1) for (a) Ca=0.01 and (b) Ca=1. The 

remaining parameters are  =0.1, β=0. Mesh M3 is used.  
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For the EXT1 mode the analysis was performed for ε=0.1 and β=0 and Ca=0.01 or Ca=1 while for the 

EXT2 mode the physical parameters are ε=0.05 and β=0 and Ca=10 and for Weissenberg numbers around 

the critical conditions in both cases. The various terms of the energy equation for both eigenmodes are 

presented in Fig. 19 and Fig 20, without normalization of the eigenvectors. In Fig 19 we find that the only 

positive terms are φjump, φpv2, φps2 while the rest of the terms are negative for all values of Wi. As Wi 

increases, passing the critical values, of 1.64 and 1.43 for Ca=0.01 and Ca=1 respectively (mesh M3 was 

used), the terms φjump increase significantly and seem to have a strong destabilizing effect on the flow. We 

should mention that the φjump is related with the jump of the physical properties across the free surface. On 

the other hand, φps2 and φpv2 appear to be smaller and increase less rapidly with Wi having a mild 

destabilizing effect as compared to φjump, φpv2 represents the rate of energy production due to the coupling 

of velocity gradient perturbations and base state stresses, while φps2 represents the coupling of the stress 

perturbation with the base state velocity gradient. Considering that in extrusion flow the streamlines of the 

base flow near the singularity are curved and the base and disturbance axial normal stress and the 

disturbance velocity gradient vary the most and in particular near the free surface, it should not be surprising 

that these three terms are the ones driving the instability in this flow. Comparing the energy analysis with 

the case of stick-slip flow [40], it is worthwhile to mention that the instability in the two problems follows 

the same mechanism due to the fact that φjump, φps2 and φpv2 are the non-zero terms that grow with increase 

of the Wi number. However, it should be noted that in the case of a deformable interface (finite value of 

Ca) φjump is significantly larger than the other terms and have a large contribution to the mechanical energy 

of the system destabilizing the flow. This is hardly surprising, because the presence of a finite surface 
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tension allows the free surface to be deformed leading to a curved interface and in turn to significantly 

larger pressure jump compared to the case of the stick-slip flow with a flat slip surface. 

On the other hand the second leading eigenvalue (EXT2 mode) appears to follow another instability 

mechanism as shown in Fig 28. In the discussion of Fig 18 we mentioned that the instability in generated 

close to the lip inside the tube and propagates backward with respect to the fluid flow and naturally capillary 

forces have a weak impact on this mode. In Fig 20 as the Weissenberg number passes the critical value 

5.42, dVD/dt increases significantly and the only terms that acquire a positive value are the φpv2, φel, whereas 

the φjump and φps1 have a mild destabilizing effect. We should note, however, that φjump despite being positive 

appears to decrease near the critical value of the Wi number and therefore it cannot be considered that it 

contributes to the destabilization of the flow. Clearly the main destabilizing factors are φpv2 which represents 

the coupling of the velocity gradient perturbation with the base state stresses and φel, which represents the 

growth rate of the purely elastic stresses. Grillet et al. [62] have found that instability in planar Poiseuille 

or Couette flow of a PTT fluid is related to the φpv2 term. Although the EXT2 mode is different than the one 

that was reported to be most unstable in the Poiseuille flow of an ePTT fluid by Grillet et al. [62] due to the 

fact that the EXT2 mode is localised at the die exit we believe that the mechanism of the instability shares 

many common characteristics with the mechanism responsible for the destabilization of the viscoelastic 

Poiseuille flow. 

 

Figure 20 Energy analysis diagrams for the second leading mode (EXT2) for Ca=10. The remaining 

parameters are  =0.05, β=0. Mesh M0 is used. 
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7. CONCLUSIONS 

The purpose of this work was to study the stability of the viscoelastic extrusion flow for a planar 

geometry. To this end, we performed a linear stability analysis around the steady state solution of the 

extrusion flow for a viscoelastic fluid using the affine exponential PTT model. For the numerical 

calculations we have used the mixed finite element method combined with the EVSS-G method for the 

calculation of the elastic stresses together with the SUPG method for the weighting of the constitutive 

equation.  

The linear stability analysis around the steady extrusion of a viscoelastic fluid showed that the flow 

becomes unstable as the Weissenberg number increases more than a critical value, Wic. At this critical value 

we have a Hopf bifurcation [53] to a time periodic solution, the frequency of which increases as capillary 

forces decrease. Moreover we found that this critical value of Wic increases as the shear-thinning of the 

polymer is increasing, in agreement with the experimental observations. The flow disturbances are localized 

in a small area around the die exit, close to the free surface and exhibit a spatial periodicity which result in 

a high frequency wavy surface, typical of the sharkskin instability. The presence of a deformable interface 

actually destabilizes the flow. We investigate in detail the effect of interfacial tension and the presence of 

a deformable interface. It is found that the presence of a finite surface tension destabilizes the flow as 

compared to the case of the stick-slip flow [40]. Solvent viscosity tends to stabilize the flow while for a 

small but non-zero value of β another mode becomes the most unstable (EXT2), in which the disturbance 

of velocity and stress field are primarily concentrated inside the die and localized close to the die exit. To 

reveal the mechanisms responsible for the instability we performed an energy budget analysis for the most 

critical modes. It was shown that for the EXT1 mode the mechanism of instability is due to the coupling of 

velocity gradient perturbations and base state stresses, and the jump in physical properties across the liquid-

air interface. On the other hand, for the EXT2 mode another mechanism has been recognized. In this case 

the destabilization is due to the coupling of the velocity gradient perturbation with the base state stresses; 

the mechanism shares many common characteristics to the one found in the case Poiseuille flow of an ePTT 

fluid. 

In the literature it has been suggested that the mechanism for the instabilities should include either 

a non-monotonic slip law or a non-monotonic constitutive law. In agreement with Karapetsas and 

Tsamopoulos [40] this work proposes that such a non-monotonic slip law or a non-monotonic constitutive 

law is not essential for the appearance of extrusion instabilities. Instead we show that extrusion instabilities 

could be due to purely elastic instabilities which can be triggered by the coupling of strong stress gradients 
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at the die lip and the intense extensional flow, primarily at the surface of the extrudate that ensues. Our 

findings support the mechanism for the sharkskin instability initially proposed by Cogswell [41]. 
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APPENDIX A: MIXED FINITE ELEMENT METHOD 

 

We approximate the velocity and the position vector with 6-node Lagrangian basis functions, φi , and the 

pressure, the elastic stresses as well as the velocity gradients with 3-node Lagrangian basis functions, ψi. 

We employ the finite element/Galerkin method, which after applying the divergence theorem results in the 

following weak forms of the momentum and mass balances:   

  2  J 0i i i id n PIP Qd     
 

              
(3.6) 

  0i v Jd


    
(3.7) 

where dΩ and dΓ are the differential volume and surface area in the computational domain, respectively, 

while J and Q denote the corresponding Jacobians of the transformation from physical to computational 

domain. The weak form of the mesh generation equations is derived similarly by applying the divergence 

theorem: 

   1 11 0i JdS   


       
(3.8) 

 0i Jd 


     
(3.9) 

The continuous approximation of the components of the velocity gradient tensor is determined by:  

   0i JG dv


    (3.10) 

Finally the hyperbolic character of the constitutive equation necessitates discretizing it using the SUPG 

method proposed by Brooks and Hughes [66]:  

         2 1 2 1 1 0i

p pWi W Ji D dD    
 



         
   (3.11) 

The weighting function χi is formed from the finite element basis function for the elastic stress components 

according to: 

 
| |

chi i iv
v

h
     (3.12) 

where | |v  is the magnitude of the mean velocity and hch is a characteristic length in each element. The 

mean velocity | |v  in an element is defined as  
3

1

| | 1/ 3 | |n
n

v v


  , | |nv  denoting the magnitude of the 
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velocity at the vertices of the corresponding triangular element. As a characteristic length hch, we used the 

square root of the area of each triangular element.  

 

APPENDIX B: THE LINEARIZED EQUATIONS  

 

Substituting the expressions (4.1) and (4.2) into the time-dependent form of the weak formulation of the 

governing equations (Eqs. (3.6)-(3.11)) and neglecting terms of order higher than the first in the 

perturbation parameter δ, the following set of linearized equations is obtained from the corresponding 

momentum and mass balances and the PTT model,  respectively, 

 

     

       

     

2

2 2

0

i

i i

i i

b b b p p d d b

b db bb

b dd bd

d d b

bd

J d

J d

P

P

n P I n P I n I QPQ d

 

   

    







    
 

     


    

      

           
 



 







 (A.1) 

    
b

  0i

b dd
v J v J d



        
(A.2) 
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 
        

  
        
    





 (A.3) 

       0b d

e e

i i

d bd b
v J d JG dG v          (A.4) 

The expression for the base state and perturbation of the polymeric stress is readily obtained from 

   , 1 ,    ,di ip i

T

iG G i b       (A.5) 

Moreover, the linearized weak formulation for the mesh generation equation is 
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           
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 (A.6) 

              0b d

i i

d b b

i

b d b

e

J J d        
 
            (A.7) 

Where, in the above formulation the subscripts b and p denote the base state value and the perturbation, 

respectively, of the corresponding variable.  
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Boundary conditions 

The above system of equations is subjected to the following boundary conditions: 

 No slip, no penetration at the wall (y = 1 and 0≤x≤l1):  

 , 0y dv  , x, 0dv   (A.8) 

 Plane of symmetry (y=0): 

 , 0y dv  , , 0y dv  x,d / 0dv dy   (A.9) 

 

 We assume that each perturbation of velocity and stress components vanish at inflow boundary 

(x=0): 

 ,d 0yv  , x,d 0v  , 0d   (A.10) 

 At the outflow boundary x=l1+l2, in order to minimize the numerical error, we apply the open 

boundary condition, as we have explained in section 6.2 

 Along the free surface we linearize the normal stress balance (eq. (3.3)) and end up with the 

following expression: 

 
,d ,2 2

( ) ( )
c c b

d b b d b db d

H H
n P I n P I

Ca
n

Ca
n          , (A.11) 

which is introduced in eq. (4.3) replacing the corresponding terms in the surface integral. Moreover, we 

linearize the time-dependent form of the kinematic equation and end up with the following equation 

 x,d x, ,d , 0b

b y y b

b b d b d

d dx y y y x x
v v v

y x
v

t t     

               
                

         

 

       
, (A.12) 

which is applied as a boundary equation for the mesh generation equations.  

 


