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Abstract

In this thesis, we address major challenges in searching temporal doc-
ument collections. In such collections, documents are created and/or
edited over time. Examples of temporal document collections are
web archives, news archives, blogs, personal emails and enterprise
documents. Unfortunately, traditional IR approaches based on term-
matching only can give unsatisfactory results when searching tempo-
ral document collections. The reason for this is twofold: the contents
of documents are strongly time-dependent, i.e., documents are about
events happened at particular time periods, and a query representing
an information need can be time-dependent as well, i.e., a temporal
query. On the other hand, time-only-based methods fall short when it
comes to reasoning about events in social media. During the last few
years users create chronologically ordered documents about topics
that draw their attention in an ever increasing pace. However, with
the vast adoption of social media, new types of marketing campaigns
have been developed in order to promote content, i.e. brands, prod-
ucts, celebrities, etc.

The contributions in this thesis focus on a main IR topic: content anal-
ysis. In particular, we aim at improving the retrieval effectiveness by
analyzing the contents of temporal document collections and disam-
biguating between different types of popular content in social media.

In this thesis, we analyze the contents of documents in order to de-
termine the time of non-timestamped documents combining bursti-
ness information with textual similarity. In contrast to the previous
approaches which can only report time based on a pre-defined gran-
ularity (that reflects the segmentation of the reference corpus), this
approach proposed in this dissertation can also report non-fixed inter-
vals of application-defined length l. The approach is based on the in-
tuition that similar documents are more likely to discuss similar events
and hence being created closer in time, and that the burst intervals of
significant terms (for example selected based on tf-idf) in those docu-
ments having high degree of overlap. The document dating process
is performed by first finding the documents most similar to the docu-



ment to be dated. Second, a weight is assigned to each of the related
documents based on the overlap of burst intervals of common terms
between the relevant document and the document to be dated. Fi-
nally, each publication date along the timeline is assigned the sum of
the weights of documents published at that time, and the result inter-
val is chosen as the time interval of length l having maximum sum
of weights. Based on the experimental evaluation, this is the current
state-of-the art approach to learning-based document dating.
Memes
Through extensive evaluation, we show that our proposed time-aware
approaches outperform traditional retrieval methods and improve the
retrieval effectiveness in searching temporal document collections.
Subject area: Web Mining, Text Mining
Keywords: time series, classification, time evolution, social networks,
trends, web mining





Περίληψη

Καθώς ο αριθμός και το μέγεθος των μεγάλων χρονοθετημένων
συλλογών εγγράφων (π.χ. ακολουθίες ψηφιοποιημένων
εφημερίδων, περιοδικά, blogs) αυξάνεται, το πρόβλημα της
αποτελεσματικής και αναζήτησης αυτών των δεδομένων
γίνεται πιο σημαντικό. Στην παρούσα διδακτορική διατριβή
μελετάται το πρόβλημα της εκμετάλλευσης της εκρηκτικότητας
λεκτικών όρων (burstiness) με σκοπό την αποτελεσματικότερη
και πιο εύχρηστη αναζήτηση σε μεγάλα σύνολα δεδομένων
κειμένου. Η εκρηκτικότητα όρων έχει ερευνηθεί εκτενώς στη
βιβλιογραφία με την έννοια ενός μηχανισμού για την ανίχνευση
γεγονότων που απασχόλησαν τις συλλογές αυτές την περίοδο
συγγραφής τους. Περιγράφεται η σχετική με το πρόβλημα της
εκρηκτικότητας όρων βιβλιογραφία, παρουσιάζεται αναλυτικά
μια συγκεκριμένη προσέγγιση για τη μοντελοποίηση της
εκρηκτικότητας ενός όρου χρησιμοποιώντας τη θεωρία
διαφορών (discrepancy theory). Η μέθοδος ανακάλυψης
εκρηκτικότητας που παρουσιάζεται επιτρέπει να οικοδομηθεί
μια ελεύθερη παραμέτρων, γραμμικού χρόνου προσέγγιση
για τον προσδιορισμό χρονικών διαστημάτων της μέγιστης
εκρηκτικότητας για ένα συγκεκριμένο όρο.
Μελετήθηκε το πρόβλημα της χρονοσήμανσης εγγράφων
άγνωστης χρονικής στιγμής δημιουργίας δεδομένου ενός
συνόλου αναφοράς αποτελούμενου από χρονοσημασμένα
έγγραφα. Χρησιμοποιήθηκε ο αλγόριθμος της εργασίας [3]
έτσι ώστε να υπολογίζονται τα χρονικά διαστήματα εκρηκτικής
συμπεριφοράς των όρων ενός συνόλου αρχειακών δεδομένων
και συγκρίθηκε με τον αλγόριθμο που προτείνεται στην
εργασία [6] και επιλύει παρόμοιο πρόβλημα. Αποδείχτηκε
πως η τεχνική ανεύρεσης των μεγίστων κλικών σε ένα
γράφο, έτσι ώστε να υπολογίζονται τα διαστήματα που οι
περισσότεροι σημαντικοί όροι ενός εγγράφου εμφανίζουν
εκρηκτική συμπεριφορά, αποδίδει καλύτερα αποτελέσματα
από την πρόσφατη βιβλιογραφία και βελτιώνει τις τιμές pre-
cision και recall των αποτελεσμάτων εκτίμησης της χρονικής



στιγμής ενός εγγράφου. Έγινε ενδελεχής πειραματική μελέτη
του προτεινόμενου αλγορίθμου εκτίμησης της χρονικής
στιγμής της δημιουργίας ενός εγγράφου, δεδομένων μόνο των
περιεχομένων του. Πιο συγκεκριμένα, ο αλγόριθμος βασίστηκε
σε τεχνικές εξαγωγής πληροφορίας, όπως οι τεχνικές επιλογής
όρων tf*idf, temporal entropy και topic modeling.

Η χρήση ετικετών για την κατηγοριοποίηση περιεχομένου στον
Παγκόσμιο Ιστό (tagging) παρατηρείται ιδιαίτερα σε πλατφόρμες
με δημοσιευμένο από τους χρήστες περιεχόμενο. Η κύρια
εκμετάλλευσή τους από τα συστήματα σχετίζεται με υπηρεσίες
αναζήτησης και εξαγωγής πληροφορίας. Στις περισσότερες
πλατφόρμες κοινωνικής δικτύωσης οι χρήστες υποσημειώνουν
τις αναρτήσεις τους χρησιμοποιώντας όρους και το σύμβολο
της δίεσης ('#') ονομάζοντας τους συγκεκριμένους όρους
hashtags. Εκτός των περιπτώσεων που τα hashtags σχετίζονται
με πραγματικά γεγονότα (Events), παρατηρείται το φαινόμενο
μεγάλες ομάδες χρηστών να χρησιμοποιούν τα hashtags για να
προωθήσουν συζητήσεις, προϊόντα και ιδέες ή θέματα γνωστά
ως Memes. Στην εργασία αυτή ορίζεται η διαφορά μεταξύ
των Events και των Memes. Ένα κοινό χαρακτηριστικό και
των δύο εννοιών είναι ότι ωθούν τους χρήστες κοινωνικών
δικτύων και πλατφορμών δημοσίευσης περιεχομένου (είτε
μικρής είτε μεγάλης έκτασης) - κείμενο, εικόνες, βίντεο κτλ
- να δημιουργούν και να δημοσιεύουν περιεχόμενο σχετικό
με συγκεκριμένα γεγονότα, πρόσωπα, συμβάντα, σημαντικά ή
μη. Παρέχεται ένας τυπικός ορισμός του τι είναι ένα Meme
και τι είναι ένα Event στα κοινωνικά δίκτυα και προτείνεται και
αξιολογείται ένα σύνολο χαρακτηριστικών μη σχετικών με τη
γλώσσα συγγραφής του περιοχομένου για την κατηγοριοποίηση
των hashtags σε Events ή Memes. Αξιολογείται η προτεινόμενη
προσέγγιση όσον αφορά την ακρίβεια της κατηγοριοποίησης
χρησιμοποιώντας δύο μεγάλα πραγματικά σύνολα δεδομένων
από την κοινωνική πλατφόρμα Twitter με μηνύματα γραμμένα
τόσο στην αγγλική και όσο και στη γερμανική γλώσσα.
Τέλος παρουσιάζεται η χρησιμότητα και η αναγκαιότητα του
διαχωρισμού των Memes και των Events για την ανίχνευση



γεγονότων, εφαρμόζοντας τη μέθοδο αναζήτησης εκρηκτικών
όρων που παρουσιάζεται στο πρώτο κεφάλαιο της εργασίας.
Θεματική Περιοχή: Εξόρυξη Δεδομένων
Λέξεις-Κλειδιά: χρονοσειρές, κατηγοριοποίηση, χρονική
εξέλιξη, κοινωνικά δίκτυα, τάσεις





Συνοπτική Παρουσίαση της Διδακτορικής Διατριβής

Καθώς ο αριθμός και το μέγεθος των μεγάλων χρονοθετημένων
συλλογών εγγράφων (π.χ. ακολουθίες ψηφιοποιημένων
εφημερίδων, περιοδικά, blogs) αυξάνεται, το πρόβλημα της
αποτελεσματικής και αναζήτησης αυτών των δεδομένων
γίνεται πιο σημαντικό. Στην παρούσα διδακτορική διατριβή
μελετάται το πρόβλημα της εκμετάλλευσης της εκρηκτικότητας
λεκτικών όρων (burstiness) με σκοπό την αποτελεσματικότερη
και πιο εύχρηστη αναζήτηση σε μεγάλα σύνολα δεδομένων
κειμένου. Η εκρηκτικότητα όρων έχει ερευνηθεί εκτενώς στη
βιβλιογραφία με την έννοια ενός μηχανισμού για την ανίχνευση
γεγονότων που απασχόλησαν τις συλλογές αυτές την περίοδο
συγγραφής τους. Περιγράφεται η σχετική με το πρόβλημα της
εκρηκτικότητας όρων βιβλιογραφία, παρουσιάζεται αναλυτικά
μια συγκεκριμένη προσέγγιση για τη μοντελοποίηση της
εκρηκτικότητας ενός όρου χρησιμοποιώντας τη θεωρία
διαφορών (discrepancy theory). Η μέθοδος ανακάλυψης
εκρηκτικότητας που παρουσιάζεται επιτρέπει να οικοδομηθεί
μια ελεύθερη παραμέτρων, γραμμικού χρόνου προσέγγιση
για τον προσδιορισμό χρονικών διαστημάτων της μέγιστης
εκρηκτικότητας για ένα συγκεκριμένο όρο.

Η έννοια της εκρηκτικότητας έχει μελετηθεί σε αρκετές
και διαφορετικές περιοχές της εξόρυξης πληροφορίας.
Αρκετές εργασίες βασίζονται στη γνωστή πρωτότυπη
εργασία του J. Kleinberg "On the bursty and hierarchical struc-
ture of streams", στην οποία προτείνεται ένας αλγόριθμος
ανεύρεσης χρονικών διαστημάτων κατά τα οποία ένας όρος
εμφανίζει εκρηκτική συμπεριφορά. Πιο συγκεκριμένα, ο J.
Kleinberg εξάγει σημασιολογική δομή από ροές εγγράφων,
αναδεικνύοντας τη σημασία της διάστασης του χρόνου μέσω
της αξιοποίησης της πληροφορίας που παρέχει ο χρόνος
δημιουργίας κάθε εγγράφου. Έτσι, μοντελοποιεί μια ροή
κειμένου χρησιμοποιώντας ένα αυτόματο απείρων καταστάσεων
το οποίο με τη σειρά του βασίζεται στη Θεωρία των Κρυφών



Μαρκοβιανών Μοντέλων (Hidden Markov Models - HMMs).
Τα bursts - οι εκρήξεις, σε μια ατυχή μάλλον προσπάθεια
μετάφρασης του όρου - σηματοδοτούνται ως μεταβάσεις
μεταξύ καταστάσεων στο αυτόματο αυτό. Ο αλγόριθμος δε
χρησιμοποιεί τις απλές συχνότητες εμφάνισης των λέξεων
αλλά ένα πιθανοτικό αυτόματο του οποίου οι καταστάσεις
αντιστοιχούν στις συχνότητες εμφάνισης ενός όρου. Πιο
συγκεκριμένα, οι μεταβάσεις καταστάσεων αντιστοιχούν σε
σημεία του χρόνου κατά τα οποία η συχνότητα εμφάνισης
μιας λέξης αλλάζει σημαντικά. Ο συγγραφέας εξετάζει
τον αλγόριθμο στο αρχείο των προσωπικών ηλεκτρονικών
μηνυμάτων του. Μια άλλη εργασία ανεύρεσης bursts
παρουσιάζεται από τους Fung et al. [3] Στην εργασία αυτή,
οι εκρηκτικοί όροι συσταδοποιούνται και αναπαριστούν
γεγονότα που απασχολούν τα έγγραφα προς ανάλυση. Οι
συγγραφείς της εργασίας [4] κατηγοριοποιούν τους όρους
σε τέσσερις κατηγορίες εκρηκτικότητας ανάλογα με την
πορεία εκρηκτικότητάς τους. Στην εργασία [13] οι συγγραφείς
χρησιμοποιούν μια δομή βασισμένη σε wavelets και τη
χρησιμοποιούν στην παρακολούθηση ροών δεδομένων. Η
εκρηκτικότητα των όρων χρησιμοποιείται και στο πλαίσιο
άλλων εφαρμογών εκτός από την ανεύρεση σημαντικών
γεγονότων, όπως η συσταδοποίηση ροών δεδομένων [5] ή
στη μελέτη γράφων [8]. Οι He et al. [6] εφαρμόζουν το
μοντέλο του Kleinberg για να συσταδοποιήσουν θέματα που
απασχολούν τη συλλογή εγγράφων προς μελέτη. Οι Bansal
και Koudas [1][2] παρουσίασαν το Blogscope, ένα σύστημα
για την ανάλυση μεγάλου όγκου χρονικά ταξινομημένων
καταχωρήσεων κειμένου και το εφαρμόζουν σε ένα μεγάλο
σύνολο καταχωρήσεων ιστολογίων (blogposts). Προσπαθούν να
εκμεταλλευτούν τρία ειδικά χαρακτηριστικά των ιστολογίων:

1. Η πληροφορία που περιέχεται στα ιστολόγια συνδέεται με
μια το χρόνο δημιουργίας μια καταχώρησης.

2. Οι καταχωρήσεις στα ιστολόγια μπορούν εύκολα να
αντιστοιχηθούν στη γεωγραφική τοποθεσία στην οποία
βρίσκεται ο συγγραφέας.



3. Τέλος, κάποιες αναρτήσεις σε ιστολόγια ενδέχεται να
προκαλέσουν νέες σχετικές αναρτήσεις από τον ίδιο ή
άλλους συγγραφείς που με τη σειρά τους θα οδηγήσουν
στην έναρξη μιας συζήτησης.

Οι ερευνητές τονίζουν πως, παρόλο που η εργασία τους αφορά
τα ιστολόγια, το σύστημα μπορεί πολύ εύκολα να τροποποιηθεί
για να χειριστεί κάθε είδους, ταξινομημένες στον άξονα του
χρόνου, ροές κειμένου όπως ειδησεογραφικές ανακοινώσεις,
λίστες ηλεκτρονικού ταχυδρομείου, διαδικτυακά forums και
άλλα μέσα κοινωνικής δικτύωσης. Παρόλο που στις σχετικές
εργασίες για το Blogscope δεν δίνονται αρκετές λεπτομέριες
σχετικά με τις υϊοθετημένες μεθόδους, η συνολική τους
προσέγγιση σχετίζεται με την παρούσα εργασία, υπό την
έννοια ότι αντιστοιχούν εκρηκτικούς όρους σε συγκεκριμένες
καταχωρήσεις ιστολογίων. Η εργασία [9], που παρουσιάζεται
στην παρούσα διδακτορική διατριβή, είναι η πρώτη που
περιλαμβάνει την πληροφορία της εκρηκτικότητας στην
ευρετηριοποίηση και κατάταξη εγγράφων με άμεσο τρόπο,
δημιουργώντας έτσι μια πλήρη πλατφόρμα αναζήτησης
εγγράφων βασισμένη στην εκρηκτικότητα των όρων. Τα βασικά
πλεονεκτήματα της μεθόδου ανεύρεσης εκρηκτικών όρων και
των αντίστοιχων χρονικών περιόδων που παρουσιάζεται στην
εργασία [9] και μελετάται στην παρούσα διατριβή είναι ότι
εκτελείται σε γραμμικό χρόνο και είναι ελεύθερη παραμέτρων.
Τα δύο αυτά στοιχεία την καθιστούν ιδανική για πολύ μεγάλες
ακολουθίες εγγράφων, οι οποίες μπορούν να καλύπτουν
μεγάλες χρονικές περιόδους. Η πλατφόρμα αναζήτησης που
περιγράφεται στην εργασία μπορεί να λειτουργήσει με κάθε
μέθοδο ανεύρεσης εκρηκτικών όρων, με την προϋπόθεση ότι
η μέθοδος παράγει μη-επικαλυπτόμενα χρονικά διαστήματα
εκρηκτικότητας και τα αντίστοιχα βάρη για κάθε όρο.
Στα πλαίσια της παρούσας εργασίας γίνεται προσπάθεια
εκμετάλλευσης των εκρηκτικών όρων σε δεδομένα που
προέρχονται από ιστολόγια, δηλαδή λέξεις οι οποίες
παρουσιάζουν ραγδαία αύξηση στον αριθμό εμφανίσεών τους σε



μικρές περιόδους του χρόνου συγκριτικά με το συνολικό χρόνο
παρατήρησης. Η ακρίβεια των όρων, που εμφανίζονται ως
εκρηκτικοί, αξιολογείται με την αντιστοίχησή τους σε γεγονότα
της πραγματικής ζωής που ενδεχομένως έλαβαν χώρα κατά την
περίοδο του burst. Μια συγκεκριμένη ιστορία σχηματίζεται
από μια ομάδα πολλών συσχετιζόμενων όρων. Καθώς η
δημοτικότητα ενός συγκεκριμένου θέματος συρρικνώνεται, η
ομάδα αυτή παύει να υφίσταται. Η εύρεση συσχετίσεων μεταξύ
των όρων, για την αυτόματη ανίχνευση τέτοιων ομάδων είναι ο
έτερος στόχος της εργασίας. Η προσέγγιση που ακολουθείται
βασίζεται στην υπόθεση ότι συσχετιζόμενοι όροι εμφανίζουν
παρόμοια δραστηριότητα όσον αφορά την εκρηκτικότητα και
επομένως συγκρίνονται οι καμπύλες εκρηκτικότητας στην
περίοδο μελέτης. Η αξιολόγηση συνίσταται και πάλι στην
προσπάθεια εξόρυξης ενός θέματος από την πραγματική
ζωή που θα μπορούσε να είχε σχηματίσει μια τέτοια ομάδα
συσχετιζόμενων όρων.

Μελετήθηκε το πρόβλημα της χρονοσήμανσης εγγράφων
άγνωστης χρονικής στιγμής δημιουργίας δεδομένου ενός
συνόλου αναφοράς αποτελούμενου από χρονοσημασμένα
έγγραφα. Χρησιμοποιήθηκε ο αλγόριθμος της εργασίας [3]
έτσι ώστε να υπολογίζονται τα χρονικά διαστήματα εκρηκτικής
συμπεριφοράς των όρων ενός συνόλου αρχειακών δεδομένων
και συγκρίθηκε με τον αλγόριθμο που προτείνεται στην
εργασία [6] και επιλύει παρόμοιο πρόβλημα. Αποδείχτηκε
πως η τεχνική ανεύρεσης των μεγίστων κλικών σε ένα
γράφο, έτσι ώστε να υπολογίζονται τα διαστήματα που οι
περισσότεροι σημαντικοί όροι ενός εγγράφου εμφανίζουν
εκρηκτική συμπεριφορά, αποδίδει καλύτερα αποτελέσματα
από την πρόσφατη βιβλιογραφία και βελτιώνει τις τιμές pre-
cision και recall των αποτελεσμάτων εκτίμησης της χρονικής
στιγμής ενός εγγράφου. Έγινε ενδελεχής πειραματική μελέτη
του προτεινόμενου αλγορίθμου εκτίμησης της χρονικής
στιγμής της δημιουργίας ενός εγγράφου, δεδομένων μόνο των
περιεχομένων του. Πιο συγκεκριμένα, ο αλγόριθμος βασίστηκε
σε τεχνικές εξαγωγής πληροφορίας, όπως οι τεχνικές επιλογής



όρων tf*idf, temporal entropy και topic modeling. Εξετάστηκε η ιδέα
συνδυασμού των παραπάνω μεθόδων έτσι ώστε να προσεγγιστεί
ο διπλασιασμός των εγγράφων που χρονοσημαίνονται έγκυρα,
αφού οι δύο μέθοδοι επιτυγχάνουν να χρονοσημάνουν έγκυρα
διαφορετικά έγγραφα του συνόλου εισόδου. Όλοι οι αλγόριθμοι
εκτελέστηκαν πάνω στα δεδομένα που συλλέχθηκαν από
το λογισμικό που αναπτύχθηκε το εξάμηνο 1/2012-6/2012
καθώς και σε δεδομένα των ψηφιοποιημένων εφημερίδων
New York Times και San Francisco Call. Το λογισμικό που
αναπτύχθηκε για τη συλλογή των δεδομένων που ανήκουν στον
Παγκόσμιο Ιστό γράφτηκε στις γλώσσες Python, Java και C++. Τα
δεδομένα ευρετηριοποιήθηκαν και αποθηκεύτηκαν με τη χρήση
της βιβλιοθήκης Java Lucene και χρησιμοποιήθηκε η βάση
δεδομένων MySQL. Η προεπεξεργασία όλων των δεδομένων
έγινε σε λογισμικό που αναπτύχθηκε στις γλώσσες Python και
Java. Τα δεδομένα αφορούν σε:

• Δεδομένα Εφημερίδων. Για την πειραματική μας
αξιολόγηση χρησιμοποιούνται περισσότερα από 390000
άρθρα από την εφημερίδα San Francisco Call, μία
ημερήσια εφημερίδα του Σαν Φρανσίσκο, με ημερομηνίες
δημοσίευσης ανάλσα στα έτη 1900 και 1909.

• Δεδομένα Ιστολογίων. Συλλέχθηκαν δεδομένα από τα
δημοφιλή ιστολόγια engadget.com, slashdot.org, Allth-
ingsd.com, GigaOM.com, Mashable.com, Mashable.com/social-
media, New York Times, Pcmag.com, ReadWriteWeb.com,
TechCrunch.com και Fastcompany.com.

• Δεδομένα Ειδήσεων. Το συγκεκριμένο σύνολο δεδομένων
προέρχεται από τη δημοφιλή ιστοσελίδα ειδήσεων topix.com.
Περιλαμβάνει 65540 άρθρα για διάστημα 333 ημερών, από
τον Σεπτέμβριο του 2008 μέχρι τον Ιούλιο του 2009.

Για την πειραματική αξιολόγηση και τον ορισμό των τιμών
των παραμέτρων για τους αλγορίθμους ελήφθησαν υπόψιν οι
κατανομές και η συμπεριφορά των δεδομένων στην πάροδο



του χρόνου. Οι κατανομές των δεδομένων αποτελούν
σημαντική πληροφορία για την ανάλυση των αποτελεσμάτων,
καθώς κάποια σύνολα δεδομένων παρουσιάζουν εκρήξεις στο
επίπεδο των άρθρων που δημοσιεύονται κάποιες μέρες ενώ
άλλα παρουσιάζουν ομοιογενή κατανομή. Αυτή η διαφορά
είναι πολύ σημαντική, καθώς καθιστά επιτακτική την ανάγκη
κανονικοποίησης των ακολουθιών συχνοτήτων εμφανίσεων των
όρων, πριν την τροφοδότηση των αλγορίθμων ανακάλυψης
εκρήξεων

Η χρήση ετικετών για την κατηγοριοποίηση περιεχομένου στον
Παγκόσμιο Ιστό (tagging) παρατηρείται ιδιαίτερα σε πλατφόρμες
με δημοσιευμένο από τους χρήστες περιεχόμενο. Η κύρια
εκμετάλλευσή τους από τα συστήματα σχετίζεται με υπηρεσίες
αναζήτησης και εξαγωγής πληροφορίας. Στην κοινωνική
πλατφόρμα Twitter οι χρήστες υποσημειώνουν τις αναρτήσεις
τους χρησιμοποιώντας όρους και το σύμβολο της δίεσης
('#'). Οι ετικέτες αυτές ονομάζονται hashtags. Τα hashtags
στο Twitter εμπλουτίζουν το περιορισμένης έκτασης κείμενο
με χρήσιμη μετα-πληροφορία, δεδομένου ότι οι χρήστες
συμφωνούν άτυπα να χρησιμοποιούν συγκεκριμένα hashtags για
συγκεκριμένα γεγονότα (events), π.χ. #worldcup2014. Εκτός
των περιπτώσεων που τα hashtags σχετίζονται με πραγματικά
γεγονότα, παρατηρείται το φαινόμενο μεγάλες ομάδες χρηστών
να χρησιμοποιούν τα hashtags για να προωθήσουν συζητήσεις,
προϊόντα και ιδέες ή θέματα γνωστά ως memes.

Με βάση τις παραπάνω στοιχειώδεις έννοιες, στην εργασία αυτή
ορίζουμε τη διαφορά μεταξύ των Events και των Memes. Ένα
κοινό χαρακτηριστικό και των δύο εννοιών είναι ότι ωθούν τους
χρήστες κοινωνικών δικτύων και πλατφορμών δημοσίευσης
περιεχομένου (είτε μικρής είτε μεγάλης έκτασης) - κείμενο,
εικόνες, βίντεο κτλ - να δημιουργουν και να δημοσιεύουν
περιεχόμενο σχετικό με συγκεκριμένα γεγονότα, πρόσωπα,
συμβάντα, σημαντικά ή μη. Και οι δύο εκδηλώσεις και
μιμίδια σε ένα κοινωνικό δίκτυο κατευθύνει τους χρήστες να
δημιουργούν και να δημοσιεύουν περιεχόμενο στο κοινωνικό



ρεύμα. Ως εκ τούτου, περιεχόμενο σχετικό τόσο με Events όσο
και με Memes μπορεί να παρατηρηθεί σε μια ροή εγγράφων
s ενός κοινωνικού δικτύου, εμφανίζοντας απρόσμενα υψηλές
συχνότητες γύρω από συγκεκριμένες χρονικές στιγμές ή
περιόδους. Η διαφορά μεταξύ ενός πραγματικού και σημαντικού
συμβάντος (Event) και ενός Meme - δυστυχώς η ελληνική
μετάφραση μιμίδιο χαρακτηρίζεται ως ατυχής, ως εκ τούτου
στο εξής θα χρησιμοποιηθούν οι αγγλικοί όροι Meme και Event
- είναι ότι ένα Event μπορεί να επισημανθεί και σε μια ροή
ειδήσεων n της ίδιας χρονικής περιόδου με τη ροή εγγράφων
s, ενώ αντικείμενα (ή χρήστες) σχετικά/σχετικοί με ένα Meme
παρατηρούνται μόνο εντός της ροής s του κοινωνικού δικτύου.

Πιο συγκεκριμένα, ένα Event θα μπορούσε να προσδιοριστεί
παρατηρώντας τα μηνύματα και τις συζητήσεις σε μια
πλατφόρμα κοινωνικής δικτύωσηςσχετικά με τις βουλευτικές
εκλογές στη Γερμανία, έναν αγώνα ποδοσφαίρου μεταξύ των
ομάδων της Βαρκελώνης και της Μάντσεστερ Γιουνάιτεντ, ένα
σεισμό, ή σχετικά με την τελετή των Όσκαρ. Από την άλλη
πλευρά σχετικά με Memes θα μπορούσαν να είναι τα μηνύματα
που σχετίζονται με μια συγκεκριμένη ομάδα οπαδών μιας
διασημότητας/ειδώλου που μέσω μιας καμπάνιας στα κοινωνικά
δίκτυα ζητούν από το είδωλό τους να δώσει μια συναυλία
στην πόλη/χώρα τους, μια συζήτηση σχετικά με το γιατί οι
άνθρωποι δεν μπορούν να κοιμηθούν εκείνη τη βραδιά, κτλ. Σε
αμφότερες τις περιπτώσεις, τόσο τα Memes όσο και τα Events,
όπως και άλλα έγγραφα στα κοινωνικά δίκτυα, πολύ συχνά
υποσημειώνονται με hashtags. Για παράδειγμα, τα αντίστοιχα
hashtags για τα Events που περιγράφονται πιο πάνω θα μπορούσε
να είναι: #GermanyElections, #BarcaVsMancester, #earthquake,
#Oscars2014, ενώ για τα Memes που αναφέρονται στην
προηγούμενη παράγραφο, τα αντίστοιχα hashtags θα μπορούσαν
να είναι τα εξής: #WeWantJustinInIreland, #20ReasonsIAmCute»,
#loveit, #insomnia.

Αναζήτηση γεγονότων (Events): Οι πλατφόρμες κοινωνικής
δικτύωσης μπορούν να επωφεληθούν από τη διάκριση μεταξύ



των διαφόρων τύπων τάσεων ή των δημοφιλών θεμάτων. Με
ένα τέτοιο εργαλείο, οι πλατφόρμες θα μπορούν να καταλάβουν
καλύτερα γιατί κάποιο περιοχόμενο είναι ή γίνεται δημοφιλές
μια συγκεκριμένη χρονική στιγμή, με αποτέλεσμα να μπορούν
να εκμεταλλευτούν ή να προβλέψουν την απότομη αύξηση
της δημοτικότητας συγκεκριμένων θεμάτων, με σκοπό να είναι
σε θέση να προσφέρουν καλύτερες υπηρεσίες στους χρήστες
τους. Για παράδειγμα μπορούν να προσφέρουν διαφορετικού
τύπου σελίδες αποτελεσμάτων στα εργαλεία αναζήτησης που
παρέχουν ανάλογα με το αν οι όροι αναζήτησης σχετίζονται
με Memes ή Events ή διαφορετικές επιλογές διαφήμισης - με
το αντίστοιχο κοστολόγιο - στους συνεργάτες τους. Επιπλέον,
οι περισσότερες μέθοδοι ανακάλυψης γεγονότων σε ροές
κοινωνικών δικτύων βασίζονται σε μεθόδους ανακάλυψης και
εκμετάλλευσης της έννοιας της εκρηκτικότητας (burstiness) που
αναλύεται στην παρούσα εργασία και παρουσιάστηκε συνοπτικά
παραπάνω. Η υπόθεση που ακολουθούν οι περισσότερες
μέθοδοι ανακάλυψης γεγονότων σε ροές κοινωνικών δικτύων
είναι ότι εκρηκτική συμπεριφορά ενός όρου ή ενός διγράμματος
(bigram) υποδεικνύει πώς κάτι σημαντικό συνέβη σχετικά με το
συγκεκριμένο όρο, και ως εκ τούτου οι χρήστες της πλατφόρμας
επηρεάστηκαν και έγγραψαν για το συγκεκριμένο γεγονός
στο διαδίκτυο, προκαλώντας έτσι συζητήσεις και ανταλλαγή
απόψεων σχετικά με αυτό. Παρόλαυτα, η συγκεκριμένη
υπόθεση δεν απεικονίζει ολόκληρη την πραγματικότητα και δεν
ανταποκρίνεται πάντα στην αλήθεια, μιας και οι δυναμικές των
κοινωνικών δικτύων, συχνά οδηγούν στη δημιουργία θεμάτων
ενδιαφέροντος που σχετίζονται μόνο με χρήστες και θέματα
εντός του δικτύου και όχι πέρα από αυτό. Παραδείγματα τέτοιων
περιπτώσεων παρουσιάστηκαν παραπάνω. Ως εκ τούτου, οι
μέθοδοι που ανακαλύπτουν γεγονότα και βασίζονται στην
υπόθεση αυτή δεν λαμβάνουν υπόψιν τους ότι διαφορετικοί
τύποι δημοφιλούς περιεχομένου ακολουθούν και διαφορετικά
πρότυπα συμπεριφοράς, παρόλο που έχουν κάποιες ομοιότητες
σχετικά με την απότομη αύξηση της δημοτικότητάς τους.
Εκτός λοιπόν από τη χρονική συμπεριφορά, ένα δημοφιλές
θέμα (που αναπαρίσταται ως ένας ή περισσότεροι όροι) μπορεί



να χαρακτηρίζεται από μια πλειάδα παραγόντων, όπως την
κοινότητα που ενδιαφέρεται για το θέμα αυτό ή τον τύπο των
μηνυμάτων που είναι σχετικές με το θέμα και τα χαρακτηριστικά
τους, π.χ. ο αριθμός των συνδέσεων σε εξωτερικούς ιστοτόπους
(urls), ο αριθμός των συνημμένων φωτογραφιών, η παρουσία
των hashtags, κλπ. Στην παρούσα εργασία, διαχωρίζουμε μεταξύ
των διαφόρων ειδών των τάσεων και των δημοφιλών θεμάτων
και σχολιάζουμε τι χαρακτηρίζει τους διαφορετικούς αυτούς
τύπους, εστιάζοντας τη μελέτη μας στα Memes και τα Events.
Πιο συγκεκριμένα, η συνεισφορά της παρούσας εργασίας
στο ερευνητικό πρόβλημα που παρουσιάστηκε παραπάνω
συνοψίζεται ως εξής:

• Παρέχεται ένας τυπικός ορισμός του τι είναι ένα Meme και
τι είναι ένα Event στα κοινωνικά δίκτυα, αναγνωρίζοντας το
γεγονός ότι δεν συμπεριφέρονται όλα τα δημοφιλή θέματα
με τον ίδιο τρόπο.

• Προτείνεται και αξιολογείται ένα σύνολο χαρακτηριστικών
μη σχετικών με τη γλώσσα συγγραφής του περιοχομένου για
την κατηγοριοποίηση των hashtags σε Events ή Memes.

• Αξιολογείται η προτεινόμενη προσέγγιση όσον αφορά
την ακρίβεια της κατηγοριοποίησης χρησιμοποιώντας δύο
μεγάλα πραγματικά σύνολα δεδομένων από την κοινωνική
πλατφόρμα Twitter μηνύματα γραμμένα τόσο στην αγγλική
και όσο και στη γερμανική γλώσσα.

• Παρουσιάζεται η χρησιμότητα του διαχωρισμού Memes και
Events για την ανίχνευση γεγονότων, εφαρμόζοντας τη
μέθοδο αναζήτησης εκρηκτικών όρων που παρουσιάζεται
στο πρώτο κεφάλαιο της εργασίας.

• Παρέχεται μια εκτενής μελέτη της συμπεριφοράς που
χαρακτηρίζει Memes και Events και παρουσιάζεται
μια ταξινόμηση των προτεινόμενων χαρακτηριστικών
με βάση το Gain-Ratio για τους χρησιμοποιούμενους
κατηγοριοποιητές στο περιβάλλον μελέτης.
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Temporal Search in Document Streams

Chapter 1

Introduction

This PhD thesis addresses different challenges in searching tem-
poral document sequences, where documents are created and/or
edited over time, and the contents of documents are strongly time-
dependent. Examples of temporal document collections are web
archives, news archives, blogs, social networking platforms, and per-
sonal emails. The main focus of this dissertation is how to exploit tem-
poral information provided in documents and combine it with textual
information with the goal of improving the effectiveness of searching
temporal document collections.

This chapter describes the motivation and research questions ad-
dressed in the thesis. In addition, we explain our research context
and methods. Our contributions to this thesis are composed of dif-
ferent approaches to solving the addressed research questions. In
the end of this chapter, the organization of the rest of the thesis is
presented.

1.1 Motivation

The ease of publishing content on social media sites brings to the Web
an ever increasing amount of content captured during various types
of events and/or before/after these events take place. Event con-
tent shared on social media sites such as blogs, Twitter, Facebook,
YouTube, and others varies widely, ranging from planned, known oc-
currences such as a concert or a parade, to unplanned incidents
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such as an earthquake, floods or death of a celebrity. By exploring
and proposing techniques to automatically identify and characterize
these events and the relevant user-contributed social media docu-
ments (e.g., blog posts, photographs, videos, messages, status up-
dates), we can enable rich search and presentation of all event con-
tent. In this dissertation we present approaches for leveraging the
wealth of social media documents available on the Web for search
purposes and content filtering and characterization.

In this work, we address major challenges in searching temporal doc-
ument collections. In such collections, documents are created and/or
edited over time. Examples of temporal document collections are
web archives, news archives, blogs, personal emails and enterprise
documents. Unfortunately, traditional IR approaches based on term-
matching only can give unsatisfactory results when searching tempo-
ral document collections. The reason for this is twofold: the contents
of documents and queries are strongly time-dependent, i.e., docu-
ments discuss events that took place at particular time periods, and
a query representing an information need can be time-dependent as
well, i.e., a temporal query.

One problem faced when searching temporal document collections is
the large number of documents possibly accumulated over time, which
could result in the large number of irrelevant documents in a set of re-
trieved documents. Therefore, a user might have to spend more time
in exploring retrieved documents in order to find documents satisfy-
ing his/her information need. A possible solution for this problem is to
take into account the time dimension, i.e. extending keyword search
with the creation or published date of documents.

1.1.1 Document Dating

During the recent years, the amount of user-contributed and digitized
content on the Internet has dramatically increased, and makes web
search even more challenging. Perhaps, the most useful tool the
Web has to offer in order to make use of the vast amount of infor-
mation is web search. Thus, the precision of search results is a very
important factor, directly affecting the user satisfaction, engagement
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and productivity. Although well-known search engines (e.g. Google,
Bing, etc) deliver very good results for pure keyword searches, they
still do not take full advantage of the temporal dimension that char-
acterizes most document collections. A motivating example would
be to extend keyword search with the creation or update time of the
web pages/documents. In this way, the search engine would retrieve
documents according to both text and temporal criteria, i.e., temporal
text-containment search [14]. In addition to searching the current web,
searching in old versions of web pages is sometimes useful. This can
be of interest in large-scale archives like the Internet Archive.

However, in order for temporal text-containment search to give good
enough and actually useful results, it is obvious that the timestamps
of crawled, stored and indexed documents have to be as accurate as
possible. In the case of local document archives, trustworthy meta-
data that includes time of creation and last update is available. How-
ever, in the case of web search and web warehousing, having an ac-
curate and trustworthy timestamp is a serious challenge. One way to
solve the problem, is to use the time of discovery as timestamp (i.e.,
the time a document/web page is first found by the web crawler). This
will give an accurate timestamp if the creation time of a document and
the time when it is retrieved by the crawler coincide in time. Unfortu-
nately there is no guarantee that this is always the case. Another mo-
tivational example for research in the area of estimating a document's
focus or creation time is that of old digitized documents or of partially
failing optical character recognition applications (OCR). Moreover, a
web page/document can be relocated and discovery time in this case
will be very inaccurate. In some cases metadata about documents on
the web can be retrieved but they can also in general not be trusted
and often are simply just wrong.

As can be seen, in the case of web search and web warehousing it will
in general be impossible to get trustworthy timestamps based on infor-
mation acquired during crawling time. Thus, our research challenge
is: for a given document with uncertain timestamp, can the contents
of the document itself be used to determine the timestamp with a suf-
ficient high confidence? To our knowledge, the only previous work on
this topic is the work by de Jong, Rode, and Hiemstra [3], which is
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based on a statistic language model. In this paper, we present ap-
proaches that extend the work by de Jong et al. and increases the
accuracy of determined timestamps. Our main contributions in this
paper are 1) a semantic-based preprocessing approach that improves
the quality of timestamping, 2) extensions of the language model and
incorporating more internal and external knowledge, and 3) an experi-
mental evaluation of our proposed techniques illustrating the improved
quality of our extensions.

Several related research efforts have focused on estimating a docu-
ment's focus or creation time, mostly by the information retrieval com-
munity. Purely statistical methods have been proposed [9]. Other ap-
proaches have tried to deal with the problem by utilizing information
from linguistic constructs with clear references to time periods or mo-
ments, by mentioning, for example, a specific date or year. Another
line of work cosiders the entire vocabulary used used in a document in
order to reason about when it was created [11]. Kanhabua and Nørvåg
in [26, 27] propose a document-dating method that extends the one
proposed by De Jong et al. Specifically, the authors propose the ap-
plication of semantic-based preprocessing of the reference collection,
and apply a term-weighting scheme based on their previous work on
temporal entropy [26]. The authors further enhance their approach by
considering search statistics from Google Zeitgeist.

A serious drawback and disadvantage of most proposed methods,
that is being addressed in this dissertation, is that most methods ini-
tially pre-segment the timeline of study into intervals of the same fixed
length (e.g. a week) and afterwards choose the interval that is most
likely to be the temporal origin of the query document, by comparing
its vocabulary with the model built for each of the candidate intervals.
The drawback of this approach is obvious: it limits the choices of pos-
sible time intervals.

As the amount of social media content grows, research will have to
identify robust ways to organize and filter that content. In this disser-
tation we aim to provide time-aware text processing techniques for
organizing social media documents associated with events and pop-
ular social media content. With event identification, characterization,
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and content selection and filtering techniques, we provide new oppor-
tunities for exploring and interacting with social media event data.

1.1.2 Memes and Events

As a motivational example, consider the part of the homepage of many
social media sites that is devoted to Trending Topics. Most modern
platforms like Twitter, Yahoo!, Facebook, etc. offer such a functional-
ity, where different types of algorithms are used to identify the most
popular topics in the platform during a current time window. Trend-
ing Topics lists may include popular items people search for in an e-
commerce site like Amazon.com, trending queries in a web search
engine like Google.com, popular topics of interest people write about
in a micro-blogging platform like Twitter.com or trending tags people
use to annotate their blog posts in a blogging site like Wordpress.com.
Most of the items that appear in this lists have been caused by real-
life events that triggered the interest of the users and they wrote or
posted about them in the social media. They main functionality of the
Trending Topics lists is that of facilitating search and discovery of new
content. However, not all trending items are related to real life events.
A significant percentage of popular content has become strategically
popular, especially within microblogging environments like Twitter and
Tumblr, where fan- and sports-related communities thrive and domi-
nate the usage of the media. Thus, social media platforms and search
engines would benefit from better understanding why a specific item
became popular, and offer a variety of landing pages for different
types of content. Specifically, Figure 1.1 illustrates the trending topics
on December 28, 2014 in Twitter and Yahoo! respectively. A user
clicking on a news-related trending topic would expect to land on a
page with a series of news articles, maybe chronologically ordered,
describing the timeline and the current state of that specific topic. On
the other hand, a user clicking 'iPhone 6 Plus', which is a consumer
product would expect to find offers, technical specs or reviews of the
item. Last, users interested in a celebirty named Nash, would expect
to find fanpages, photos and videos of the celebrity when clicking on
#HappyBirthdayNash trending topic.
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Figure 1.1: Trending Topics in Twitter.com and Yahoo.com on December 28, 2014

For our analysis of trending topics, we specifically focus on one social
media site, namely, Twitter, due to its transient, large-scale publicly
available content. In particular, we collected a vast amount of Twit-
ter messages from various locations posted during various periods of
time and focus on the analysis of the most popular hashtags. We show
that event-detection methods can not only be based on the detection
of terms and phrases that exhibit trending behavior on Twitter, char-
acterized by an unusual increase in message frequency during a par-
ticular time period in a Twitter message stream. While some of these
trends might refer to actual real-world events, others might include
non-event information, triggered by strategically planned advertising
campaigns or by user communities trying to promote themselves. To
organize and understand this content, we define a taxonomy of popu-
lar content types, which includes trending events and trending memes.
Unlike related efforts in this area, which focused on characterizing or
analyzing content from individual events on Twitter, or characterizing
aggregate trend characteristics for manually identified terms, the fea-
tures we use in this study in order to discriminate between the various
classes of content can be used for more than the two classes that are
defined in this dissertation.

Overall, we show that social media sites contain substantial, useful
information about different types of popular content that can be ex-
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ploited and utilized in order to provide more effective and useful ser-
vices to users of social media sites. With the features we propose in
this dissertation, we can effectively identify different types of popular
content and their associated social media documents across various
social media sites. Regardless of the classifier we use, the type of
event/meme, or the social media site, any single popular topic might
have hundreds or thousands of associated social media documents.
While some of these associated documents might contain interesting
and useful information (e.g., event time and location in case of events,
participants and opinions in case of memes), others might provide lit-
tle value (e.g., using heavy slang, incomprehensible language with-
out accompanying media) to people interested in learning about an
event or meme. Techniques for effective selection of quality event
content may then help improve applications such as event browsing
and search. Therefore, we propose a noise-filtering mechanism for
selecting a subset of the social media documents associated with the
significant real-world events.

1.2 Contributions and roadmap of this thesis

In summary, the contributions of this dissertation are as follows:

• An event detection method that is based on the notion of term
burstiness in document streams.

• An effective and efficient document timestamping algorithm that
makes use of the burstiness detection framework in order to esti-
mate a document's focus time based only on the textual content
of the document.

• An extensive study of memes and events in social media, yielding
in a complementary quantitative study, examining the differences
between the two different types of popular content along various
descriptive characteristics.

The remainder of this dissertation is organized as follows. In
Chapter 2 we review the literature in event discovery in document
streams, present a term burstiness modeling method and describe
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a burstiness-based event detection framework which we applied in
the context of blog posts. In Chapter 3 we deal with the document
dating problem and present a state of the art method as of the time
of the writing of this dissertation. Chapter 4 presents our approach
on meme-filtering in document streams and evaluates the proposed
method in the context of burstiness-based event detection. Chapter
5 presents a distributed stream monitoring framework and Chapter 6
concludes this dissertation.
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Chapter 2

Events in Document Streams

2.1 Introduction

Everybody reads blogs. Almost everybody maintains one. Wikipedia
defines a blog as a website, usually maintained by an individual, with
regular entries of commentary, descriptions of events, or other mate-
rial such as graphics or video. Over the last few years, blogs (web
logs) have gained massive popularity and have become one of the
most influential web social media in our times. Anyone with an inter-
net connection can create his own blog for free, using web platforms
developed for this specific reason (e.g. blogger.com, wordpress.com
etc.). According to blog search engine Technorati.com there are over
175,000 new blogs every day, 1.6 million new posts per day and over
113 million blogs (not including millions of non-English blogs) exist to-
day. The huge growth of blogging provides a wealth of information
waiting to be extracted. Blog analysis and searching in blogs intro-
duces new challenges for research in information retrieval because
blogs’ contents have a very specific characteristic not present in tra-
ditional web content: a timestamp exists in every blog post. Every
blog post in the Blogosphere has a well defined value in the tempo-
ral axis. Traditional blogs’ search engines don’t take into account the
temporal dimension and treat the blogs as plain web content; or just
pay attention to the category tags that usually accompany a post. By
taking into consideration the timestamp of each blog post we can try
to detect the period in which the popularity of a specific keyword in-
creases or decreases. Such functionality is important because it al-
lows us to gauge the users’ interests related to a specific topic over
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time. Our contribution: In this paper we develop a technique to ad-
dress the problem of identifying events in the Blogosphere. In our
technique we apply Kleinberg’s automaton ([2]) on extracted titles of
blog posts to discover bursty terms, we introduce a novel representa-
tion of a term’s burstiness evolution called State Series and we apply
a Euclidean-based distance in order to discover potential correlations
between terms without taking into account their context. Related work:
As the number and size of large time-stamped collections increases
this problem becomes more and more important [1], resulting in an
evolution clearly presented in [3].
The main benefits of our method are that it runs in linear-time and
is also completely parameter-free. This makes it ideal for very large
sequences of documents, spanning significant periods of time. That
being said, our search framework is compatible with any burst detec-
tion method that can report non-overlapping bursty intervals and their
respective scores, for any given term.

2.2 Our Approach

We search for events in the Blogosphere. We define an event in the
Blogosphere as a small subset of keywords able to describe one or
more real life events that occurred during the period of study. To dis-
cover them we try to identify correlated bursty terms, meaning bursty
terms whose burstiness exhibits a similar behavior in the temporal
axis. A burst is marked whenever the popularity of a specific keyword
dramatically and unexpectedly increases. Doing so, we omit taking
into account a keyword’s possible co-existence with another keyword
in the same title. Ignoring all those keyword pairs enables us to gain
significant computational time and to search for conceptually corre-
lated keywords although they may not appear in the same document
(e.g. separately used synonyms).
In order to identify bursty terms, meaning specific words whose ap-
pearances increase radically in short periods of time in comparison to
the long period we study, we use the technique proposed by Klein-
berg [2] as decribed in [4]. Afterwards we evaluate the accuracy of
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Figure 2.1: Frequency curve and SS of the keyword "indiana"

the bursty terms by trying to match them with real life events that took
place in the bursty period of time. A certain event is formed by a group
of correlated terms. As the popularity of a specific topic diminishes,
this group ceases to exist. We try to obtain keywords' correlations,
in order to automatically identify such groups. We address this prob-
lem, assuming that related keywords produce similar activity as far as
burstiness is concerned. A mechanism for burstiness representation
of a term t called State Series is introduced and is defined as follows:

SSt = (st1, st2, ..., stn)

where sti represents the burstiness state of term t at timestamp i, pro-
duced by the automaton. Figure 2.1 compares the frequency curve of
the term 'indiana' as it appeared in our dataset to the corresponding
SS, proving that the latter is a satisfactory representation. Further-
more we employ a Euclidean-based distance metric to calculate the
dissimilarity between the SSs of two different terms. Finally, we obtain
events by accumulating the 5 Nearest Neighbors for each keyword,
assuming that 5 terms can adequately describe an event. Last but not
least we evaluate these events by trying to pair this topic with a real
life event that took place in the period of study.
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2.3 Related Work

2.3.1 Event Detection

Event detection in social media and document streams has attracted
the interest of the relevant research communities over the last few
years, with the widespread expansion of user-generated content
plaforms. Specifically, event detection is the task of identifying event
related messages and documents from a document or article stream.
Users of social networking and microblogging platforms tend to pro-
vide plenty of information about what is happening in the world, rang-
ing from very personal messages like what happened in their work
some morning or a minor car accident to messages describing glob-
ally important topics like the U.S. elections or an earthquake. Thus,
exploiting the vast amount of available information in order to reason
about what is happening in the world seems as a natural consequence
for the information retrieval community. The main idea is that mes-
sages that are about real-world events have different structure and
content in general in comparison to the rest of the messages that are
about users' personal lives. The identified events could reflect a nat-
ural disaster such as a flood or an earthquake or a show of global
significance like the Oscar ceremony. As a result, a definition of what
an event really is can be very vague and the proposed approaches for
different types of event detection may pose significant differences.

Most of the proposed methods model event detection as a clustering
problem. The clustering may be performed on the documents' textual
features (an approach denoted as topic clustering) or on their spatio-
temporal aspects (an approach denoted as spatio-temporal cluster-
ing). Both approaches group messages into clusters. Some of these
clusters correspond to real events while others just contain similar
messages. The identification of event clusters is often performed
with the aid of scoring functions or supervised classifiers. Other ap-
proaches deal with the problem using novelty tests such as [Petrovic et
al. 2010] and others focus on sentiment peaks [Valkanas and Gunop-
ulos 2013] or on keyword bursts[Abdelhaq et al. 2013]. The common
part of almost all approaches is that a ”change detection” module is
necessary in order to detect an event. This change could be in terms
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of term frequency or of network structure such as an increasing num-
ber of new connections in the social graph, which indicates a burst as
well.

2.3.2 Term Burstiness

A considerable amount of work has been devoted to developing ef-
ficient burst-detection methods [RRR10, 11, 18, 19]. The concept of
burstiness has been studied in several domains. A significant portion
of this work has been inspired by Kleinberg’s seminal paper on the
bursty and hierarchical structure of streams [RRR13].

Kleiberg's algorithm is based on a Hidden Markov Model, with states
that correspond to frequency levels for individual terms. State tran-
sitions (bursts) correspond to points in time, around which the fre-
quency of a term changes significantly and unexpectedly. Given the
frequency sequence Yt of a term t, dynamic programming is used to
fit the most possible state sequence that is likely to have generated
the sequence Yt. The state assigned to each interval will serve as
its burstiness score. For the rest of this chapter, we refer to this algo-
rithm as KLEIN. Another burst-detection method is presented by Fung
et al.[RRR10]. In this work, bursty terms are clustered to represent
events discussed in the data. In [RRR11], the authors classify terms in
four burstiness categories, based on their frequency trajectory. Their
use of spectral analysis is similar to the one used by Vlachos et al. in
[RRR18], where the authors focus on periodic and bursty artifacts in
query logs. In [RRR19], the authors use a wavelet-based structure for
aggregate monitoring of data streams.

Pioneered by the Kleinberg's automaton model described above,
many techniques have been proposed for burst detection such as the
χ2-test based method proposed by Swan and Allan [?] and the moving
average method proposed by Vlachos et al. [47].Burstiness has also
been evaluated in the context of other applications, such as stream
clustering [RRR12], and even in the context of graphs [RRR14]. Fur-
ther, He et al. [RRR16] apply Kleinberg’s model to topic clustering.
Bansal and Koudas [RRR2, RRR3] have presented a system for the
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analysis of streaming blogs. Even though no details on the employed
methods are given, their work is relevant to ours, in that they ultimately
map bursty terms to specific blogposts. Yin et al. developed a burst-
detection module that continuously monitors a Twitter feed to identify
unexpected incidents. The proposed method raises an alert for im-
mediate attention when it detects an unexpected incident. To achieve
real-time efficiency, they adopt a parameter-free algorithm to identify
bursty words from Twitter text streams in their system. The basic idea
is to determine whether a word is bursty on the basis of its probabil-
ity distribution in a time window [?]. Zhao et al. propose to identify
event-related bursts via social media activity data. They study how to
correlate multiple types of activities to derive a global bursty pattern.
To model smoothness of one state sequence, they propose a novel
function which can capture the state context [?].

In [VLDB2012] Lappas et al. studied spatiotemporal term burstiness
and how it relates to real-life events. More specifically, thousands
of documents published daily in online news sites, blogs and mi-
croblogs record real-life events. By collecting these documents the
authors created a spatiotemporal collection that consists of document
streams from different locations, e.g. countries, cities, etc. As men-
tioned above, during an event’s time, characteristic terms that relate
to the corresponding event exhibit atypically high frequencies in the
document collection. Moreover, these terms are unexpectedly pop-
ular in the affected locations too. Spatiotemporal burstiness can be
utilized in a variety of settings, like document search, document se-
lection or trends and events identification. More specifically, given a
query q = t1, t2,…, tn a search engine can retrieve documents related
to events with strong spatiotemporal footprint on the document collec-
tion, namely events that affected a lot of users in a variety of locations
for extended and bounded time periods. The identification of spa-
tiotemporal patterns can assist algorithms regarding trend detection
in document streams, in that using bursty terms we can reason about
when and where items related to the bursty terms were popular. More
specifically, given a term t and a document collection from different lo-
cations, Lappas et al. formalized spatiotemporal burstiness patterns
and presented efficient algorithmic methods in order to identify and
evaluate them. In particular, they studied combinatorial patterns and
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regional patterns. Combinatorial burstiness patterns encode that un-
usually high frequencies were simultaneously observed for term t in all
streams in the document collection, during the same temporal interval
I. Regional burstiness patterns consider the geographical proximity
among document streams and encode that unusually high frequen-
cies were observed for term t in some specific geographical region R
during a temporal interval I.
In this dissertation we present an algorithm to independently ex-
tract the sets of bursty time intervals for each independent document
stream and use it to search for events in the blogosphere.

2.4 Finding the bursty intervals

In [L17] the authors present a linear-time algorithm for solving the All
Maximal Segments Problem. The algorithm accepts as input a se-
quence of real numbers and reports the set of all maximal segments.
For the rest of this dissertation, we refer to this algorithm as GetMax.
The details and pseudocode of the algorithm can be found in [L17]
and in short description below. GetMax filters out maximal segments
with a negative score. This is ideal for the purposes of burstiness
evaluation, since negative-scoring intervals represent regions where
the observed frequency of a term was less than the expected. Finally,
in addition to being linear, the approach is completely parameter-free.
Next, we present an extension of MAX-1 and discuss its advantages.

In [L13], Kleinberg discusses anisochronies, the non-uniform relation-
ships between the time spanned by a story’s events and the amount
of time devoted to these events in the actual telling of the story. Con-
sidering the coverage of events in news streams (e.g. newspapers,
blogs), we identify two primary levels of bursty behavior for the terms
describing an event: the first level represents the extended time period
when the event was generally discussed in the news. Depending on
the nature and significance of the event, this period can be extended
to include weeks or even months. The second burstiness level per-
tains to smaller intervals within this extended period, when the event
was particularly popular and extensively covered in the news. In the
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context of a newspaper, such intervals may represent the first time an
event made the headlines, or a new development in an older event
that brings it back to the front page.
Conceptually, the intervals reported by GetMax capture the first level
of burstiness activity for a given term. By reapplying the algorithm on
each of the reported maximal intervals independently, we can easily
identify the second- level burstiness intervals. Multiple iterations of
GetMax could be used to obtain a hierarchical structure of the bursty
intervals. For the rest of this dissertation, all experimental results refer
to a single iteration, since we found that it is enough to capture the
burstiness patterns of events.
The GetMax algorithm was introduced in [31]. Given a discrete time
series of frequency measurement for a given term, GetMax returns the
set of non-overlapping bursty intervals. A brief description of the al-
gorithm is given below.
The GetMax algorithm computes a set of bursty intervals, after reading
the time series consisting of the frequency values for a term from left
to right. A burst on the timeline is marked whenever the popularity
of a specific term dramatically and unexpectedly increases. To iden-
tify the bursty intervals we use the getmax algorithm which is briefly
described below. Segments that are candidates for maximality, and
thus candidate bursty intervals, are kept in a list L. For each candi-
date lj ∈ L, we record the sum lj.L of all scores up to the leftmost
score of lj (exclusive) and the sum lj.R up to the rightmost score of
lj (inclusive). Non-positive scores require no special handling. If a
positive score is read, a new sequence lk containing only this score is
created and processed as follows:

1. Search the list L, from right to left, for the maximum value of lj
satisfying lj.L < lk.L.

2. If there is no such lj, then append lk to the list L.
3. If there is such a lj, and lj.R ≥ lk.R, then append lk to the list L.
4. Otherwise (i.e., there is such a lj, but lj.R < lk.R), extend lk

up to the leftmost score in lj (inclusive). Remove candidates
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lj, lj+1, ..., lk−1 from L (none of them is maximal) and reconsider
the newly extended segment lk (now numbered lj) from step 1.

After the entire input has been processed, the candidates left in the
list L are the maximal segments representing the bursty intervals on
the timeline [41][31].

2.5 Experimental Evaluation

Our experimental evaluation shows that blog posts’ titles prove suffi-
cient to mine the underlying bursts. Not using the whole body of each
blog post reduces the total computational time required. Therefore,
we extend this approach to search for events through the burstiness
pattern of keywords appearing in blog posts’ titles. Data description:
We experimented on posts from millions of blogs around the web’s
free blog hosts (e.g. blogger.com, wordpress.com, livejournal.com
etc.) After some pre-processing of our initial dataset we ended up
with 11, 198, 076 titles containing 38, 814 different keywords with various
appearances during the period May 1 – May 30, 2008.

We used an n-state automaton, incrementing n and monitoring the
percentage of the terms with altered 5-NNs in comparison to the re-
sults of the n-1-state automaton. As shown in Figure2.2, the greater
state value that could be reached was 13. The ratio of the exponen-
tial rate of the automaton’s each subsequent state to the rate of the
previous state was picked to be 1.3, after several experimental trials.
This value provides us with increased diversity in the state series. The
automaton identified 21.53% of the terms as bursty.

Semantic evaluation: A visualized example of identifying bursty key-
word correlations using the SS similiarity is depicted in Figure 2.3,
where the SSs for the 3-NNs of the term Indiana are shown. The
terms indiana, jones, crystal and skull appear in the results as bursty
ones. While trying to evaluate the accuracy of this result, we found out
that on May 22nd 2008 the movie “Indiana Jones and the Kingdom of
the Crystal Skull” was released. Additional results shown in Table 2.1
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Figure 2.2: Changing the number of states

Figure 2.3: A comparison of the SS of related keywords

Table 2.1: Semantic evaluation results
Term 5-NNs Bursty Intervals
pharaoh {physique,feminine,akhenaten,liver,transplant} Mar 2 - Mar 3
liver {transplant,marijuana,wig,feminine,physique} Mar 2 - Mar 3
myanmar {burma,burmese,appreciation,chait,brutality } Mar 5 - Mar 14
cialis {tadalafil,trent,prescription,pharmacy,impotence} Mar 5 - Mar 6, Mar 19 - Mar 20
indiana {jones,crystal,kingdom,skull,islander } Mar 6 - Mar 7

add to the safe assumption that events can be mined through the ex-
traction of state series.
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As seen in Figure 2.3, in this case the proposed method came out
to be resistant to effects of other bursts of a term, that seem to be
irrelevant to the event being described by the 5-NNs; indiana exhibits
two bursts during May, one lasting from 6th to 7th day and one from
22nd to 27th day, but the former one does not affect the high similarity
between indiana and the other three terms.
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Chapter 3

A Burstiness-aware Approach for
Document Dating

3.1 Introduction

Temporal text mining is at the core of a large number of mainstream
applications. The input to such applications consists of a collection of
documents, with each document being associated with the timestamp
of its creation. This temporal dimension can then be used for, among
others, event detection [3], document search [31], rule mining [36],
topic and trend tracking [35], classification [42], clustering [4] and text
summarization [48].

The assumption made by all such applications is that the timestamp of
each document is both available and accurate. In practice, however,
this assumption can be false. A characteristic instance emerges in the
context of large repositories of old digitized documents. Such reposi-
tories are becoming increasingly large and abundant, due to initiatives
such as The National Digital Newspaper Program [1] by the Library of
Congres, and other similar ventures for the digitization of periodicals
by large corporations such as Microsoft and Google. In these cases,
the timestamp may be corrupted during the digitization process, or
may simply be unavailable due to the decay of the original.

Another example of timestamp ambiguity comes with the domain of
online articles. Even if an article is discovered immediately after it has
been uploaded, there may be an arbitrarily large discrepancy between
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the date it was uploaded and the date it was originally written. This
is a typical phenomenon that occurs when older digitized documents
are made available online.

When searching temporal document collections, it is difficult to
achieve high effectiveness using only a keyword query because the
contents of both documents and queries are strongly time-dependent.
Possible solutions to increase the retrieval effectiveness are, for in-
stance, extending keyword search with the publication time of doc-
uments, or automatically re-ranking retrieved documents using time.
Incorporating the time dimension into search will increase the retrieval
effectiveness if a document is assigned to its time of creation or publi-
cation date. However, for many documents, like the ones mentioned
in the previous paragraph, it is difficult to find an accurate and trustwor-
thy timestamp. In a web warehouse or a web archive, there is no guar-
antee that the creation time and the time of retrieval by a web crawler
are related. The purpose of determining time for non-timestamped
documents is to estimate the time of publication of a document or the
time of the topic the document discusses. The process of determining
the time of documents is called document dating or document times-
tamping.

There has been significant work addressing the problem of estimat-
ing the timestamp of a document given a collection of timestamped
documents. Document Dating through content has been addressed
significantly however it is known to be a difficult problem. Unless a
text has a specific mention of a date in its contents, it is almost im-
possible to identify the creation time of documents that do not discuss
specific events. This could be accomplished for very large granular-
ity, where the writing style and word frequencies change, but in useful
time intervals that is not the case. Even for documents that discuss
timely events, the reported interval can be quite large. For instance
if there is a text that talks about the Obama presidency, without any
other temporal information, it can be dated to a granularity of the eight
years of his terms, however reporting a more limited timeframe is very
difficult

In this chapter we describe a content-based, purely statistical method
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for approximating the true timestamp of a given document. Our ap-
proach reports timeframes of arbitrary length for a query document.
We address the problem by considering two main factors, (i) the lex-
ical similarity between the query document and the documents in the
reference corpus D, and (ii) the burstiness of the terms in the query
document.
The first factor captures the intuition that lexically similar documents
are more likely to discuss the same topics and events, and are thus
more likely to be associated with adjacent timestamps. The second
factor builds upon work on term burstiness [31] presented in Chapter
2, in which we described an algorithm for identifying the timeframes
of bursty activity for a given term in the context of a sequence of doc-
uments. At a high level, a timeframe is considered bursty if the term
exhibits atypically high frequencies for its duration. Bursts in terms
frequency capture in essence the trends in vocabulary usage during
each corresponding timeframe and can thus prove useful in document
dating.
The second factor aims to take advantage of the fact that when an
event takes place in real life (e.g. a major earthquake, sports fi-
nals), the event's characteristic terms (e.g. ``earthquake'', ``shoot-
ing'', ``overtime'') appear more frequently in the media. In the context
of document dating, our intuition is that a timeframe that is bursty for
many of the terms in the query document is more likely to overlap
with the document's true (but unknown) timestamp. Looking again at
Fig. 3.1, it is clear that the query document should be placed in June
2013, since the terms it contains would exhibit a bursty behavior dur-
ing that period.
The proposed algorithm is more flexible and more effective than pre-
vious approaches. Our method is the first one to utilize temporal infor-
mation through a burstiness-aware approach, without depending on
specific language rules, datasets, or meta-information.
Our contributions: The contributions of this chapter can be summa-
rized as follows:

• We propose a novel, purely statistical algorithm for estimating the
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Figure 3.1: An example for a document dating application. In this case, a document dating
algorithm would assign to the query document a timestamp sometime around June 2013.
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timestamp of a document based on its content and burstiness.
• Our approach reports non-fixed periods of time, in contrast to

previous approaches, that report one timeframe among the pre-
segmented timespan of the reference corpus.

• We provide an extensive experimental evaluation, by using three
different datasets spanning different time periods.

The organization of the rest of this chapter is as follows. In Section
3.2, we give an overview of the related work on the document dating
problem. In Section 3.3, we outline preliminaries that will be used as
the basis of our approach and formally define the problem. Section 3.4
presents our approach in detail. In Sections 3.5 to 3.7, we describe
our experiments, evaluate the proposed technique and compare with
the state of the art. Finally, in Section 3.8, we give conclusions.

3.2 Related Work

The problem of document dating has proven to be a really tough one
for the information retrieval community, as even the most recent meth-
ods and best published results do not achieve more than 50% preci-
sion for estimating 1-year long intervals in corpora that span 10 years,
using purely statistical methods [9]. The underlying reason for this, is
that not all documents contain temporal information, which makes a
significant percentage of the corpus useless for testing and training
purposes.
Previous literature on determining the time of a document can be cate-
gorized into 2 clusters: learning-based and non-learning-based meth-
ods. The difference between the two clusters is that the former de-
termines the time of a document by learning from a set of training
documents, while the latter does not require a corpus collection.
Non-learning methods are presented in [N77, 81, 93]. They require
an explicit time-tagged document and try to address the problem of
document dating by identifying linguistic constructs with a clear tem-
poral interpretation (e.g. the mention of the date or time). In addition
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to being sparse, such tokens can also be ambiguous, referring to irrel-
evant timeframes. In order to determine the time of a document, each
time-tagged word is resolved into a concrete date and a relevancy of
the date is computed using the frequency of which the date appears
in the document. The most relevant date is used as a reference date
for the document, however, if all dates are similar relevant, the publi-
cation date will be used instead. In the end, the event-time period
of the document is generated by assembling all nearly dates to the
reference date where their relevancy must be greater than a thresh-
old. Nunes et al. [N93] propose an alternative approach to dating
a non-timestamped document using its neighbors, such as 1) docu-
ments containing links to the non-timestamped document (incoming
links), 2) documents pointed to the non-timestamped document (out-
going links) and 3) the media assets (e.g., images) asso- ciated with
the non-timestamped document. They compute the average of last-
modified dates extracted from neighbor documents and use it as the
time for the non-timestamped document.

Learning-based methods are presented in [N29, 116, 115]. In [N116,
115], they use a statistical method called hypothesis testing on a group
of terms having an overlapped time period in order to determine if they
are statistically related. If the computed values from testing are above
a threshold, those features are coalesced into a single topic, and the
time of the topic is es- timated from a common time period associated
to each term. Another method presented by de Jong et al. in [11] is
based on a temporal language model where the time of the document
is assigned with a certain probability and characterizes a specific line
of works. These works consider the entire vocabulary of a document in
order to identify its timestamp. While this is a clear improvement over
approaches that rely only on linguistic constructs, these methods are
limited by their static consideration of the candidate timeframes.

Initially, these methods pre-segment the timeline into intervals of the
same fixed length (e.g. a week). A language model is then used to
select the interval that is most likely to be the temporal origin of the
query document, by comparing its vocabulary with the model built for
each of the candidate intervals.
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Kanhabua and Nørvåg in [26, 27] propose a document-dating method
that extends the one proposed by De Jong et al. Specifically, the
authors propose the application of semantic-based preprocessing of
the reference collection, and apply a term-weighting scheme based
on their previous work on temporal entropy [26]. The authors further
enhance their approach by considering search statistics from Google
Zeitgeist.

Chambers [9] proposed a discriminative model, using a Maximum En-
tropy classifier, as well as defining rules for processing temporal lin-
guistic features, as year mentions in documents. While this model
outperformed the methods proposed by De Jong and Kanhabua, it
has the limitation that it only works well for year predictions, because
temporal linguistic features that refer to months or days are ambigu-
ous. Moreover, in this study there were no running time experiments,
an issue that we address in the current paper.

All of the above approaches are limited by the fact that they require
a pre-segmentation of the timeline into fixed intervals. Our approach
has not such requirements and can handle intervals of arbitrary length.
In addition it can report results various time-intervals without retrain-
ing.

In [15] Garcia-Fernandez describes an approach for determine time
with particular emphasis on older document. The methods proposed
in the paper are based on determining time of named entities in the text
based on Wikipedia (for example birth date of people) and knowledge
of neologisms or archaisms. These features are integrated in a clas-
sification approach presented in the paper. While these techniques
might be interesting for larger granularity detection liked decades and
centuries, they are not useful for smaller granularities, and also they
are language-dependent.

Comparing the non-learning to learning-based methods, both of them
return two different aspects of time. The first line of work focuses on
the time of events that appear in the document content, while the latter
one focuses on the most likely document creation time interval. In this
chapter, we focus only on purely statistical and content-based meth-
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ods because information about links is not available in all domains,
and content-based analysis seems to be more practical for a general
search application.
The concept of burstiness is a central component of our approach. In
this chapter, we use the method that we introduced in Chapter 2. for
term burstiness and document search. Our choice is motivated by the
parameter-free nature, as well as its linear-time complexity. Nonethe-
less, our document-dating framework is compatible with any method
that can identify bursty intervals given a sequence of frequency mea-
surements.

3.3 Problem Definition

3.3.1 Preliminaries

The problem we address in this paper is defined in the context of a
collection of documents D, spanning a timeline of Y = t1, t2, ..., tn of n
distinct timestamps. We define a function t(d) to return the timestamp
of a given document d ∈ D. Given a query document q /∈ D, for which
the timestamp t(q) is unknown, our goal is to find the best possible
interval of size ℓ, I = ti, ..., tℓ+i, 1 ≤ i, j ≤ n within T , so that t(q)
most likley falls within I. Throughout the paper, we refer to D as the
reference corpus
Among other things, our approach considers the burstiness of the
terms in the query document q. Given a term x ∈ q, we use B(x,D)
to represent the set of non-overlapping bursty intervals for x, as com-
puted over the given corpus D. Each bursty interval is defined within
the timeline T spanned by D. In addition, we define s(b) to return the
burstiness score of a given bursty interval b ∈ B(x,D). Since we are
only considering a single corpus, we henceforth refer to B(x,D) simply
as B(x).
In order to evaluate the effectiveness of our method, we compare its
precision against state of the art methods. Given the variety of our
datasets as well as their uniform distribution of the time periods exam-
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ined, we believe that the ability to place a document within a desired
timeframe, in other words the precision we achieve, to be the most
accurate valuation.

3.3.2 Problem Definition

The examples described in section 3.1 motivate the need for an al-
gorithm that is able to estimate the timestamp of a given document
based on its content. At a high-level, the problem can be defined as
follows:

Problem 1 [Document Dating]: Let D be a collection of documents
spanning a timeline of T = t1, t2, ..., tn of n discrete timestamps (e.g.
days). Each document d ∈ D is associated with exactly one times-
tamp from T . Let q /∈ D be a query document for which the timestamp
is unknown. Then, we want to find we want to find the smallest possi-
ble timeframe within T during which the document was written.

The definition of the problem assumes that the query document was
written within the timeline spanned by the corpus D. No constraints
are placed on the size or nature of D. We observe that the presence
of such a reference-corpus is necessary, otherwise it would be impos-
sible to arbitrarily assign a timestamp to q.

3.4 Our approach

In this section, we introduce our algorithm for the Document Dating
problem. As mentioned in the introduction of this chapter, our ap-
proach considers (i) the lexical similarity of the query document with
the documents in the reference collection D (ii) the burstiness of the
significant terms of the query document q, e.g., top-k terms ranked by
tf-idf.

The use of lexical similarity captures the intuition that similar docu-
ments are more likely to discuss similar topics and events, and are
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thus more likely to originate in the same timeframe. In practice, how-
ever, similar documents may appear on different timestamps across
the timeline. We address this, by introducing term burstiness. When
an event or topic is recorded in a textual corpus, its characteristic
terms exhibit atypically high frequencies. We refer to these time-
frames as bursty intervals. Our algorithm is orthogonal to the actual
mechanism used for computing non-overlapping bursty intervals. By
identifying the bursty intervals of different terms, we can identify the
timeframe of relevant events, as well as relevant documents that dis-
cuss them.

A conceptual view of our approach is given by the example in Fig-
ure 3.2. Figure 3.3 illustrates the architecture of our approach. In this
section we describe our steps in detail.

Figure 3.2: An example of how BurstySimDater identifies the appropriate timestamp for a
given query document. In this case, the three documents d2, d3, d4 will be selected by our
algorithm, since they are both close to each other and overlap with multiple bursty intervals
of the considered terms.

We are given a query document q, discussing a disastrous fire in the
Jackson theater in Chicago. The figure shows the 7 most lexically sim-
ilar documents to q: d1, d2, d3, d4, d5, d6 and d7 . Each of these docu-
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Figure 3.3: The architecture of our approach

ments has a subset of the following four terms in common with q: Fire,
Chicago, Jackson, Disaster. The figure shows the bursty intervals for
each of these terms. In this example, there are three visible sets of
neighboring documents: {d1}, {d3, d4, d5} and {d5, d6, d7}. The doc-
uments in the second set overlap with multiple bursty intervals from
the four characteristic terms, and are thus more likely to discuss the
the actual event. Therefore, our approach will report the interval that
starts with the first document on the (d2) and ends with the last one
(d4) as the most likely timeframe for the query document.

We refer to our algorithm as BurstySimDater. The pseudocode is
given in Algorithm 3.1.

The input to the algorithm consists of the query document q, the ref-
erence corpus D, the set of precomputed bursty intervals B and the
upper bound on the reported timeframe ℓ. The output is an interval of
length at most ℓ, within the timeline T spanned by D.

First, the algorithm retrieves the top-k most similar documents to q
from D. In our own evaluation, we experimented, among others, with
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Algorithm 3.1 BurstySimDater
Input: reference corpus D, bursty intervals B, query document q, max timeframe length ℓ
Output: timeframe of q

1: S ← top-k most similar documents to q from D
2: WS ← ∅
3: for d ∈ S do
4: wd ← 0
5: Y ← d ∩ q
6: for x ∈ Y do
7: wd ← wd + |{I ∈ B(x) : t(d) ∈ I}|
8: wd ← wd/|Y|
9: WS ← WS ∪ {wd}

10: AS ← (d ∈ S,WS)
11: I ← GetMax(AS, ℓ)
12: Return I

the tf-idf measure and the Jaccard similarity. We use the latter in the
experimental section of this paper, since it led to the best results. We
refer to the retrieved set of the k most similar documents as S.

In steps 2-9, we assign a weight wd to each document in d ∈ S, based
on its overlap with the burstiness patterns of its terms. Initially, wd is
set to zero. Let Y be the overlap of d's vocabulary with the vocabulary
of the query document q. For each term x ∈ Y, let B(x) be the pre-
computed set of bursty intervals for x. We then increment wd by the
number of the intervals from B(x) that actually contain t(d). After the
iteration over all terms in Y is complete, we normalize wd by dividing
it by |Y|. Conceptually, the weight wd of a document d is the average
number of bursty intervals that it overlaps with, computed over all the
terms that it has in common with the query q. The computed weights
are kept in the setWS .

We want to identify the interval when the most terms from the top-k
similar documents are simultaneously bursty. This period is the in-
tersection of intervals with the maximum sum of weights. To do this,
in steps 10-11, we create an array AS of size T , where cell i equals
to the sum of weights wd for all documents d ∈ S that were written at
ti. Next, we find the interval I of length ℓ with the maximum sum. By
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tuning ℓ, we tune the level of desired accuracy. In order to compute
the sets of bursty intervals we use the GetMax algorithm [32]. Given a
discrete time series of frequency measurements, GetMax returns a set
of non-overlapping bursty intervals with respect to the frequencies.

A burst on the timeline is marked whenever the popularity of a specific
term dramatically and unexpectedly increases. In order to compute
the sets of bursty intervals we use the GetMax algorithm, introduced
in [31]. Given a discrete time series of frequency measurements for
a given term, GetMax returns a set of non-overlapping bursty intervals
with respect to the number of frequency measurements.

3.4.1 Complexity of the Algorithm

The running time of our algorithm depends critically on the time re-
quired to compute the top-k most similar documents to the query (line
1 in the pseudo-code), and the time required to find the maximum sum
intervals (line 11). The bursty intervals of a word can be computed in
linear time ([31],[41]), hence the complexity of this process is O(tw),
where t is the number of days in the timeline and w is the number
of words, in order to find all the bursty intervals of each word. This
step however is only performed once as we train our model. For each
query document, we have to find the top-k most similar documents. In
order to do that, we need to iterate over all documents in the corpus D
and compute a similarity function. However in our case, the number
of words of a document has an upper bound and thus this can be con-
sidered a constant factor c in the overall complexity of our algorithm.
Therefore, this step requires c ∗ |D| steps, but remains O(|D|). For
each of the similar documents, we have to assign a score based on
how many of its words were bursty during the time of writing, which
takes O(1) if we have stored a binary array of size t for each term in
the corpus. The final step is to find the interval of size ℓ with the max-
imum sum of scores. Since we know the size, this can be done in
linear time.

Given that the number of distinct terms in each document has an up-
per bound, which can be considered constant, the complexity of our
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algorithm for each query is O(|D|). In order to find the the intersec-
tion of intervals with the maximum sum of weights, we can create an
interval graph GI and compute the maximum weight clique (MWC).
Our algorithm identifies for each day in the timespan the top-k similar
documents to our query document, computes their weights and adds
them. (Fig. 3.4(a)) For each day, we create an interval with length
ℓ/2 before and ℓ/2 after the timestamp of that day. (Fig. 3.4(b)) We
then create an interval graph from these intervals, where each node is
weighted by the sum of the scores of that day. An edge is added be-
tween two nodes, if there is an intersection between the corresponding
intervals. If we were to compute the maximum weight clique (MWC)
of graph GI , it would produce a subset of similar documents that are
all close to each other and also maximize the sum of their respective
weights. The reported interval would be the one that extends from the
smallest (earliest) to the largest (latest) timestamp within the clique.
MWC in this graph can be found in linear time, since the interval nodes
are sorted [18]. The intersection of intervals with the maximum sum
of weights I is the same with the corresponding interval of the MWC
in GI .

This can be proved if we create an equivalent unit interval graph GS
from GI. A node is created for each day and has the same weight
as before, however we add an edge between two nodes if (the times-
tamps of) their corresponding documents have a distance dist ≤ ℓ on
the timeline (Fig. 3.4(c)). The two graphs GI , GS are equivalent and
have the same MWC because in the former, two nodes (days) would
be connected of they were at most ℓ/2 + ℓ/2 = ℓ apart, which is the
case in GS as well.

Therefore, both graphs can be seen as an ordered set of nodes ni, i ∈
[1, T ], each of which has at most 2*ℓ edges, since each node can be
connected with nodes of maximum distance ℓ before and after it (Fig.
3.4(c)).

In order to identify the maximum weight clique we can follow a simple
reasoning: If MWC contains the first node n1, then the clique consists
of nodes n1, n2, n3..., nℓ. There is no point in having less than ℓ nodes
in the clique since all scores are positive or zero, and we cannot have
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more nodes, since node n1 is not connected with node nℓ+1. If the first
node is not in the MWC, then in order for the second node to be in, the
MWC would be composed by nodes n2, n3..., nℓ+1. Similarly, if nodes
n1, n2, n3..., ni−1 are not in MWC, then node ni could only be included if
the MWC consisted of nodes ni to nℓ+i. In other words, we only have
to check for T − ℓ + 1 possible maximum cliques. This is obviously
equivalent with having an array with scores and finding the maximum
interval of length ℓ (Fig. 3.4(d)).

3.5 Experimental Setup

For our experimental evaluation we used three real-world news
datasets, each of them being a chronologically ordered sequence of
documents. Table 3.1 describes each dataset in detail. Datasets 1, 2
are parts of the New York Times1 dataset, datasets 3, 4 are articles
from The San Francisco Call newspaper and datasets 5, 6, 7 are arti-
cles from the website Topix.com, which host news articles from 181
countries. After POS tagging and Word Filtering for all competing
methods, we kept only nouns, verbs and adjectives. Specifically:

• The New York Times dataset: This dataset contains 1.8 million
timestamped articles spanning a timeline of 20 years (7300 days)
between Jan 1, 1987 and Jun 19, 2007, written and published by
the New York Times. Multiple pieces of information are available,
however we only used the timestamp and the content of each
article. More specifically we used:
1. NYT10: A sequence of 665,741 timestamped news docu-

ments spanning from Jan 01, 1987 to Dec 31, 1996, contain-
ing 1,036,204 distinct terms. Following [10] and to compare
directly, we report results using this 10-year period.

2. NYT1987: A sequence of 73,279 timestamped news docu-
ments spanning from Jan 01, 1987 to Dec 31, 1987, contain-
ing 277,000 distinct terms. We chose to present the results of
this year in random because it was the first one in the dataset.

1http://catalog.ldc.upenn.edu/LDC2008T19
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The results from different years were very similar and are not
presented due to lack of space.

• The San Francisco Call dataset: This dataset consists of
297,701 chronologically ordered articles from The San Francisco
Call, a daily newspaper with publication dates between 1903-
1909. Several attributes for each article are available, however
we only use the timestamp and the content fields. The dataset
consists of two separate segments:
1. SF-Call1: A sequence of 144,289 timestamped news docu-

ments spanning from Jan 01, 1903 to Dec 31, 1904, contain-
ing 115,000 distinct terms

2. SF-Call2: A sequence of 153,412 timestamped news docu-
ments spanning from Jan 01, 1908 to Dec 31, 1909, contain-
ing 102,000 distinct terms.

• The Topix dataset: This dataset consists of 65,540 timestamped
articles spanning a timeline of 365 days. The articles were
colected from the website Topix.com, which host news articles
from 181 countries around the world. Multiple pieces of informa-
tion are available for each article, including the timestamp, the ti-
tle, the content, and also the country of origin. This dataset spans
a timeline from Jan 1, 2008 to Dec 31, 2008. More specifically we
used:
1. TopixAll: A sequence of 65,540 timestamped news docu-

ments spanning from Jan 1, 2008 to Dec 31, 2008, with
527,000 distinct terms.

2. TopixCanada and TopixSAfrica: These two datasets con-
sist of the subset of articles from the Topix dataset that origi-
nated from Canada and South Africa respectively. We chose
Canada and South Africa since they are associated with more
articles (3, 326 and 2, 389) than any other country in the dataset.
They contain 67,616 and 63,254 distinct terms respectively.

Our motivation for focusing specific countries is to investigate the
benefit of including spatial information in the document dating pro-
cess.
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After carefully examining the relevant literature on the document dat-
ing problem, we chose the algorithm proposed by Chambers [10]
and a modification of the highly cited approach by Kanhabua and
Nørvåg [28] as the competing methods for our experiments.

• MaxEnt: The algorithm proposed by by Chambers in [10] trains a
discriminative version of a Maximum Entropy classifier. We used
the MaxEnt classifiers from the freely available Stanford toolkit,
leaving all settings to their default values (quadratic prior), as was
done in the original paper.

• NLLR: The algorithm proposed by de Jong et al. [12] and ex-
tended by Kanhabua and Nørvåg [28] initially splits the timeline
to segments of fixed (and equal) length (e.g. weeks). It then
uses temporal language modeling to compare the vocabulary be-
tween each query document and the available segments, in order
to choose the segment that is most likely to include the query
document's true timestamp. Kanhabua and Nørvåg proposed
some semantic-based preprocessing steps, among of which only
Part-Of-Speech (POS) tagging and Word Filtering proved to be
meaningful in our datasets. However the proposed use of exter-
nal statistics, like Google Zeitgeist, is not feasible for old datasets.
The precision values reported here are lower than in [28], due to
the justified elimination of certain preprocessing steps as well as
the usage of a different and larger document collection.

Following the notational convention in [10], by NLLR we refer to the
De Jong et al. model [12]. The NVA abbreviation refers to the
semantic-based preprocessing enhancement proposed by Kanhabua
and Nørvåg, that includes POS tagging and Word Filtering. After the
POS tagging, we kept only certain classes of words, namely Nouns,
Verbs and Adjectives. This preprocessing process can be combined
with all three methods, namely BurstySimDater, NLLR and MaxEnt. In
the following, all precision results include the NVA preprocessing, un-
less stated otherwise.
In BurstySimDater experiments we used k = 10 most similar docu-
ments. Changing this parameter did not result in a big difference in
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Table 3.1: Description of the datasets
# Dataset Start Date End Date # docs
1 NYT10 01/01/1987 12/31/1996 665,741
2 NYT1987 01/01/1987 12/31/1987 73,279
3 SF-Call1 01/01/1903 12/31/1904 144,289
4 SF-Call2 01/01/1908 12/31/1909 153,412
5 TopixAll 01/01/2008 12/31/2008 65,540
6 TopixCanada 01/01/2008 12/31/2008 3,326
7 TopixSAfrica 01/01/2008 12/31/2008 2,389

precision. In MaxEnt and NLLR we used all unigrams features. As is
proposed in the respective papers [10, 28] and was validated in our
experiments, performance of MaxEnt and NLLR is best when all fea-
tures are used. All results in this section were computed with these
parameters.
We evaluated all approaches on each of the available datasets via
a 10-fold cross validation, omitting the known timestamp of a query
document. In each of the 10 folds, 10% of the dataset are used as
queries, while the remaining 90% serves as the reference corpus.
Precision is computed as the percentage of the query documents for
which the actual timestamp was included in the timeframe reported by
each of the algorithms. The reported results in the various comparison
experiments are generated using the exact same training and testing
sets for all approaches.

3.6 Scalability Experiments

In this experiment we applied the three methods on various random
samples of increasing size from NYT10, which is the largest docu-
ment collection. We experimented with various timeframe lengths
ℓ = 1, 6, 12 months. Figures ??, ?? and ?? depict the total running
time for each method as a function of the sample size. X-axis illus-
trates the total size of the dataset, 90% of which serves as training-
and 10% as testing-set.
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The total running time for NLLR includes partitioning of the dataset,
indexing of the documents and building the language models for
each partition. The total running time for MaxEnt includes the train-
ing of the Maximum Entropy Classifier. The total running time for
BurstySimDater includes indexing of the documents and computa-
tion of the bursty intervals for all terms in the corpus. Moreover, all
running time values include the computation of the reported intervals
for all testing documents.
As depicted in Figures ??, ?? and ?? BurstySimDater achieves the
best precision for all dataset sample sizes and all timeframe lengths ℓ.
More importantly, in terms of total running time BurstySimDater scales
much better than MaxEnt and is directly comparable to NLLR. Due to
the computational complexity of MaxEnt some of the experiments did
not terminate in a reasonable amount of time.
Figure 3.8 illustrates the difference in total running times of the three
methods for a multiple query experiment. More specifically, for each
document three intervals of respective lengths ℓ = 1, 6, 12 months
were desired. The reason for the depicted running time difference is
that BurstySimDater algorithm does not need to repeat the indexing
of documents and the computation of the bursty intervals in order to
evaluate the three different queries, whereas NLLR and MaxEnt need to
re-partition the timeline into segments of length ℓ = 1, 6 and 12 months.
This is another benefit for not pre-partitioning the timeline into fixed-
length segments.

3.7 Precision Experiments

In this experiment we evaluate and compare the precision values
achieved by BurstySimDater, MaxEnt and NLLR in all datasets and
settings. In order to measure the precision values as a function of
(the length of the target timeframe) ℓ, we experimented on NYT10,
which is our largest dataset. Both MaxEnt and NLLR algorithms require
a pre-segmented timeline in intervals of length ℓ. Our BurstySimDater
algorithm has no such requirement. Instead, ℓ is provided as an up-
per bound of the reported timeframe. We tune ℓ so that the results of
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Table 3.2: Precision (%) for NYT10 dataset
Timeframe Length NLLR MaxEnt BurstySimDater

1 month 18 - 23.4
3 months 24 - 32
6 months 25 36 40

1 year 38.4 48.6 49.8

Table 3.3: Precision for 1 month in 1 or 2 year(s)
Dataset NLLR MaxEnt BurstySimDater

NYT1987 29 24 32
SF-Call1 35 38.5 38.6
SF-Call2 29 36 34

TopixCanada 44.5 61.8 63
TopixSAfrica 75 81 84

the competing approaches are directly comparable. We evaluate the
approaches for ℓ ∈ [4, 12, 24, 48] weeks.

Table 3.2 contains all achieved precision values for all methods. As
described above, the experiments for MaxEnt algorithm did not ter-
minate in reasonable time for target timeframes of length ℓ = 4 and
12 weeks. BurstySimDater not only outperforms the state of the art
methods in all timeframe lengths, but also this difference in precision
increases as the number of candidate time intervals becomes larger
(Figures ??, ?? and ?? for target timeframe lengths ℓ = 1, 6 and 12
month(s) respectively).

Table 3.3 depicts all precision values for ℓ = 1 month for all 1 or 2 year
datasets. This experiment also demonstrates the challenging nature
of the problem: while some of the documents discuss specific events,
others simply discuss topics that are not relevant to current events
and can thus be associated with any timestamp.

BurstySimDater algorithm outperforms NLLR in all datasets for all val-
ues of ℓ, while achieving similar values to MaxEnt, which in turn has
the scalability problems analyzed in Section 3.6. Another interesting
observation comes from the results on the TopixCanada and Top-
ixSAfrica datasets. For this corpora, the achieved precision values
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were significantly higher for all methods, reaching up to 63% and 84%
respectively. This verifies our intuition that spatial information can be
utilized to improve the results of our document-dating algorithm.

3.8 Conclusion

This chapter reviews the literature on the document timestamping
problem and proposes a new approach for document dating that over-
comes the drawbacks of previous methods: it doesn't depend on tem-
poral linguistic constructs and it can report timeframes of arbitrary
length. The proposed method outperforms the previous state-of-the-
art in precision and computational efficiency in most of the cases,
while being the most versatile of all, since it performs well for many re-
porting intervals and throughout a variety of datasets. This is achieved
by taking into consideration the burstiness of the terms and lexical sim-
ilarity of testing documents with the timestamped training corpus. An
extensive experimental evaluation on real datasets demonstrated the
efficacy of the algorithm and its advantage over the state of the art.
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Figure 3.5: Comparison of total running time for the three methods vs. sample size for the
NYT10 dataset for target timeframe length = 1-month.

Figure 3.6: Comparison of total running time for the three methods vs. sample size for the
NYT10 dataset for target timeframe length = 6-months.
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Figure 3.7: Comparison of total running time for the three methods vs. sample size for the
NYT10 dataset target timeframe length = 12-months.

Figure 3.8: A multiple query experiment on a 60% sample of the NYT10 dataset yields the
depicted total running time for the three approaches.
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Figure 3.9: Comparison of precision values for the three methods vs. sample size for the
NYT10 dataset for target timeframe length = 1-month.

Figure 3.10: Comparison of precision values for the three methods vs. sample size for the
NYT10 dataset for target timeframe length = 6-months.
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Figure 3.11: Comparison of precision values for the three methods vs. sample size for the
NYT10 dataset for target timeframe length = 12-months.

Figure 3.12: Comparison of the precision values between keeping all classes of words and
keeping only Nouns, Verbs and Adjectives (NVA). Target timeframe length = 1 month, Year:
1987
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Figure 3.13: Comparison of the precision values between keeping all classes of words and
keeping only Nouns, Verbs and Adjectives (NVA). Target timeframe length = 1 month, Year:
2004
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Chapter 4

Language Agnostic Meme-Filtering in
Document Streams

4.1 The Use of Hashtags in Social Networks

hashtag: a keyword that is marked with the hash # character.

Initially, hashtags were used only within Internet chat rooms. How-
ever, there seems to be a consensus on the origin of hashtags in so-
cial networks and most people attribute the proposal to use hashtags
in order to annotate (mostly user-generated) content to Chris Messina,
through a tweet dating back to August 23, 2007 (Figure 4.1). Since
then, users of Twitter.com social network (described in more detail in
4.2) have been using hashtags extensively as a way to categorize and
annotate tweets and describe in a compact manner what the tweet (or
the status update) is about, and thus, facilitate search and dissemina-
tion purposes. Twitter users have been using hashtags in an ever
increasing frequency during many important events.

However, the first time a hashtag was extensively used and adopted
by the public was during a fire in the city of San Diego on October
23, 2007, when a Twitter user named Nate Ritter used the social
networking platform to report on the fire and included the hashtag
#sandiegofire (Figure 4.2) [13].

Over the years, hashtags have been adopted by users of other so-
cial networking platforms as well (e.g. Facebook, Instagram, Pinter-
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Figure 4.1: Chris Messina tweet on August 23, 2007, first hashtag ever: #barcamp

Figure 4.2: Nate Ritter tweet on October 23, 2007, first widely adopted hashtag:
#sandiegofire

est, Flickr, Google+, etc. [49]) and have evolved to something more
than just a way to annotate posts or add a narrative to status updates.
Social media marketing companies and individuals have been using
hashtags to create campaigns by finding new, innovative ways to use
them in order to drive conversation, harness the public support, and
garner attention to their brands.
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4.2 Twitter streaming data

Twitter.com, being the platform where most events have a real-time
representation of their evolution, offers a streaming Application Pro-
gram Interface (API) and users are able to subscribe to the service in
order to receive data. The default Twitter sampling service offers the
subscribers the ability to download a random 1% sample of all pub-
lic tweets. Valkanas et al. compared the default 1% Twitter sample
to the Gardenhose sample, which returns 10% of all public data, and
evaluated their performance in a variety of applications [?].
In order to perform the memes and events analysis we developed
crawlers for Twitter data, which can be configured to collect tweets
published within a specific location (defined as a geographical bound-
ing box), written by specific users or containing the desired keywords.
Our crawlers interact with the Twitter API and store all available infor-
mation for each downloaded piece of data, e.g. GPS location, number
of followers/following users, contained urls, hashtags etc. As of the
time of the writing of this dissertation, Twitter has 271 million monthly
active users (MAUs) and more than 500 million tweets are posted per
day. Even the 1% sample of all public tweets provides a vast amount
of data to analyze and extract knowledge from.

4.3 Memes and Events

On-line social networks analysis recently attracted attention from var-
ious scientific fields like Social Psychology [40], Political Science [16],
Media and Communication [6], Marketing [8], Health Care [20], and,
naturally, Computer Science [30]. In many cases, research on social
data is interdisciplinary. This constantly raising interest is certainly
expected, since social network data are easy to access and reflect
multiple aspects of human behaviour and community dynamics. Prob-
ably the most well studied social network, is the Twitter micro-blogging
platform.
From a data-science perspective, new mining tasks have recently ap-
peared in micro-blog environments presenting interesting research
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Figure 4.3: A Tweet that uses an Event hashtag to annotate content

challenges as well as commercial value. Sentiment Analysis [30],
Event Recognition [46], Trend Identification [37], Community Recog-
nition [39], Influence Propagation [17] are just a few characteristic
examples.

Tagging thrives in Internet platforms with user-submitted content
where tags are voluntarily assigned for information retrieval purposes:
Users can do tag-based searches or browse objects of a particular
tag. Tags are currently utilized in many different types of content such
as, images (Flickr), videos (YouTube) and music (Last.fm). Twitter is
a tag-rich service. Users annotate their posts by inserting keywords
marked with the hash (#) character. These keywords are known as
hashtags (see Figure 4.4).

Hashtags in Twitter are considered very important keywords since
they add valuable meta-knowledge to a particular piece of text that
is by nature limited to 140 characters. In order to track certain
events and to annotate them properly users indirectly agree to hashtag
Tweets with a predefined keyword (e.g. #eqnz - the hashtag citizens
of New Zealand used to annotate content related to earthquakes - see
Figure 4.3). Many micro-blog analysis tasks, like the ones mentioned
in the previous paragraph, are exploiting tagging behaviour in multi-
ple ways. Hence, hashtag quality plays an important role not only to
information organization within Twitter but also to the efficiency of the
state-of-the art tools for social network analysis.

Unfortunately in social media, users use hashtags not only to anno-
tate specific events and topics but also to promote certain ideas or dis-
cussions known as internet memes. Many times Memes arise when a
group of Celebrity fans try to promote a discussion topic related to their
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Figure 4.4: A Tweet that utilizes hashtags to annotate content

Figure 4.5: Hashtags used to promote celebrities.

Figure 4.6: A hashtag used to promote a discussion.
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Figure 4.7: A Tweet promoting a Meme

pop idol (Figure 4.7). Other types of Memes include internet hoaxes or
marketing material. Memes are not inherently detrimental. However,
since their data volume is many times significant, they can obstruct
other tasks like trend or event detection. In these cases Memes are
considered noise.

Social networking platforms can benefit from discriminating between
different types of trending topics. For example by providing differ-
ent landing pages or different advertising options for memes and
events. Moreover, most event discovery approaches for social media
are based on burst-detection mechanisms, assuming that a bursty be-
havior of a term or an n-gram may indicate that something important
or extra-ordinary is happening in the world, and thus it is triggering
popular discussions in social media. However, this is not always the
case, as social media dynamics often lead to the creation of topics-of-
interest that are internal to the network. As a result, most methods that
attempt to discover events in social networking platforms do not take
into account the fact that different types of trending topics - that is, top-
ics whose popularity dramatically and unexpectedly increases - have
different patterns of behavior in the network. The behavior of a topic
can be characterized by a variety of factors, such as the community
that is interested in the topic or the type of messages that are relevant
to the topic and their characteristics, e.g. the number of hyperlinks to
external sites, the number of attached pictures, the presence of hash-
tags, etc. In this chapter, we attempt to disambiguate between the
different kinds of trends and reason about what characterizes them.
Figure 4.8 illustrates an example of how both a meme and an event
can reach the top Trending Topics list of platforms like Twitter.

D. Kotsakos 88



Temporal Search in Document Streams

Figure 4.8: A real example of a meme and an event that appeared in the trending topics list
for Greece on Twitter

Our contributions can be summarized in the following points:
• We provide a definition of meme and event and discriminate be-

tween them in social networks, recognizing the fact that not all
trends behave in the same way.

• We propose a set of language-agnostic features to aid the classi-
fication of hashtags into Event or Meme. A variety of attributes is
proposed and evaluated.

• We provide an extensive study of the behavior that characterizes
memes and events and present an Gain-Ratio-based ranking of
the proposed features in our setting.

The rest of this chapter, is structured as follows: In Section 4.4 we re-
view the related work, in Sections 4.5 and 4.6 we define the problem
and provide definitions of Memes and Events in the context of this
chapter and in Section 4.7 we describe our approach. Section 4.8
contains our experimental evaluation, Section 4.9 describes a proof-
of-concept meme-filtering method in terms of event detection and Sec-
tion 4.10 concludes the chapter.
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4.4 Related Work

In this section, we present recent and representative work that is re-
lated to the research challenges dealt in this chapter. More specif-
ically, we discuss a) research efforts that study Meme phenomena,
b) papers tackling the problem of trend and event detection, and c)
studies on hashtag analysis.

4.4.1 Memes

Bauckhage [5] defines internet Memes as evolving content that rapidly
gains popularity or notoriety on the Internet. Moreover, the author
states that Memes are spread voluntarily rather than in a compulsory
manner, which fact, although true, does not describe the full picture.
Very often, Memes are produced by advertising or community cam-
paigns, so they are expected to have different behavior to organically
and not strategically created memes. For example, fans of groups
or celebrities organize petitions in order to ask their idol to visit their
country or say something about them. In this cases, the goal is to
make a Meme so popular that it appears in the Trending Topics list of
the platform, affecting the true meaning of the list. The related bibliog-
raphy lacks methods of recognizing these campaigns. In this sense,
we offer an initial approach towards this direction. Leskovec et al.
define memes as ``short, distinctive phrases that travel relatively in-
tact through on-line text'' [33]. They prove that information propagates
from news sites to blogs. In their experiments there is an average lag
of 2.5 hours between peaks of attention in news sites and blogs. How-
ever, with the spread of social networks and microblogging platforms,
like Twitter and Tumblr, this claim has to be re-examined. Kamath et
al. study the spatio-temporal properties of online memes, by specif-
ically limiting their research to the propagation of hashtags across
Twitter, arguing that hashtags may associate statuses with particular
events or with memes and conversations [25].
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4.4.2 Trends and Events

In [50] the authors employ time series clustering in order to uncover
temporal patterns in the popularity of content in social media and fo-
cus on the propagation of hashtags on Twitter. The authors (as in
[33]) claim that mainstream media accounts (CNN, BBC, etc) produce
content and push it to the other contributors, including twitter “first
consume-then produce” accounts and professional bloggers. How-
ever, in [38] Petrovic et al. study the time aspect in Newswire and
Twitter data and argue that Twitter covers most events that are men-
tioned by major news providers like CNN, BBC etc. Moreover it covers
even smaller events that are not mentioned elsewhere. In their study
they show that Twitter reports first sports events and unpredictable
disaster-related events. In this sense, in the real time world, the highly
credited news accounts are not always the ones that produce the im-
portant content first and the definition of what important content is still
open. Regarding this problem, Petrovic et al. [38] use classes of con-
tent, i.e. sports, politics, business, tv, etc.. In [50] the authors use a
time series shape similarity approach to find common temporal pat-
terns and form clusters. They show that media agency news show a
very rapid rise followed by a relatively slow decay. In [45] the authors
try to predict the popularity of a hashtag in a given time frame using
linear regression.

4.4.3 Hashtag Analysis

Many approaches in social network mining research have been de-
voted to the analysis of the role of tags and hashtags in social net-
working platforms. The hash symbol (`#') has been used to indicate
the special meaning of a word or the union of multiple words and tag
user-generated content in social networks like Twitter, Instagram or
Facebook. Apart from tagging, social network users use hashtags
for various other reasons, including search, annotations or starting vi-
ral conversations, often called memes. As opposed to traditional web
search, queries in Twitter search that contain the hash symbol a signif-
icant portion of the total queries issued to the system [44]. Moreover,
many Twitter queries reference words used in hashtags, but without
the preceding `#' in the query. Since the amount of possible hashtags
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a user can use to either tag content or search for results is essentially
unlimited, both these tasks would benefit if users were aware of tags
used by other users for the same or similar purposes [43]. Kamath et
al. study the spatio-temporal dynamics of hashtags, proving that the
spatial distance among locations affects the propagation of hashtags,
although the latter are a global phenomenon [24]. Interestingly how-
ever, related work has not focused on the problem of distinguishing
between memes and events.

4.5 Preliminaries

A proper formulation of the problem under study requires the definition
of some basic concepts that in this setting can be rather abstract and
ubiquitous. In the following, we define some basic concepts that we
utilize in order to define the problem and propose a solution.

• On-line Social Network (OSN): A web application in which users
can: i) post content (text, video, images, etc), ii) connect and
iii) interact with each other (follow, like, share, etc). This defini-
tion applies to well known social networks (e.g. Facebook, Twit-
ter, LinkedIn, etc.) as well as content sharing communities (e.g.
YouTube, Flickr, etc).

• An account or profile (p): An agent that can participate (i.e. per-
form posts) in a social network after following a registration proce-
dure. Accounts can be operated by individuals, groups of people
or computational agents (bots). Accounts usually maintain a pro-
file in the OSN.

• Content object (c): A textual or media object that is published
or shared via the social network (e.g. text, image, video). In con-
temporary social networks, content c can be multi-modal including
more than one form of content.

• Social stream (s): An infinite stream of content ci, ci+1, . . ., where
content ci could be created by users of a single or of multiple social
networks.
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• News stream (n): An infinite stream of news items ni, ni+1, . . .,
where news item ni can be generated from one or multiple on-
line news sources (e.g. electronic editions of newspapers, mag-
azines, etc).

• Tag or Hashtag h: A keyword that accounts use when creating
content in order to semantically annotate it.

• Relevant document: A document di is relevant to a topic tj, if
it contains the term describing tj in the raw text or in its meta-
information fields (e.g. the attached hashtags in the case of Twit-
ter, the categories in the case of blog posts, etc). We define the
document-relevance function as rd(di, tj) = 1 if di is relevant to tj,
and rd(di, tj) = 0 if not.

• Relevant author: An author ui is relevant to a topic tk if a(di) =
uj, i ∈ [1, n] and rd(di, tk) = 1. We define the author-relevance
function as ra(di, tk) = 1 if ai is relevant to tk, and ra(ai, tk) = 0 if
not.

• Event: In this work, an Event is represented by a topic ti ∈ T and
is a characteristic term that is present in the document stream,
triggered by real-life circumstances or incidents that happened
on, shortly before or shortly after the day of its appearance in
the stream. Events examples include elections, football games,
earthquakes, celebrations, etc.

• Meme: A Meme is represented by a topic ti ∈ T and is a char-
acteristic term that is present in the document stream, but has
nothing to do with any real-life incident on or around the day of its
appearance in the stream. Memes examples include keywords
like 'WeWantJustinInAthens', '20ReasonsIAmCute', 'lovingit', etc.

4.6 Problem Definition

Based on the above elementary concepts we define the difference
between Events and Memes. Both Events and Memes in a Social
Network drive users to create and publish content (text, images, etc)
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in the social stream. Hence, Memes and Events can be observed
in s by identifying an excessive appearance of content related to this
Meme or Event. The difference between an Event and a Meme is that
an Event can be traced back in the news stream n of the same period
(as in s) whereas a Meme only appears in s.
An event could be identified by observing messages and discussions
in the social stream regarding the recent Election in Germany, a soc-
cer match between the teams Barcelona and Manchester United, an
earthquake, or the Oscars ceremony. On the other hand Memes could
be messages related to a celebrity fan group requesting their idol to to
give a concert in their location, a discussion about why people cannot
sleep at that time, etc.
In both cases, Memes and Events, as with any other con-
tent, are annotated with hashtags. For example, hashtags for
the events described above could be: '#GermanyElections',
'#BarcaVsMancester', '#earthquake', '#Oscars2014', whereas
for the internet memes mentioned in the previous paragraph, exam-
ple hashtags could be the following: '#WeWantJustinInIreland',
'#20ReasonsIAmCute', '#loveit', '#insomnia'. As we can ob-
serve, there are not any structural characteristics that can aid in sep-
arating an Event-hashtag from a Meme-hashtag. The discrimination
solely depends on the context. In this work, we try to automatically
build a model that distinguishes between the two.
Problem 2 [Meme or Event Problem]: Given a limited part of the
social stream sT ⊂ s (training set), build a model that can assign a
label (event, meme to a hashtag h) given a specific set of information
(statistics) for this hashtag

The set of information mentioned in Problem 2, as we discuss later
on, should be able to be calculated incrementally since this feature
is crucial for data streaming environments. This information can be
represented as a feature vector h⃗x consisting of a set of features. The
requested model is actually a function f (h⃗x) → {event, label}, where
h⃗x = {g1(sT , hx), . . . , gn(sT , hx)} and gi (i = 1, . . . , n) are the functions
that incrementally can calculate the features i for the hashtag h. Note
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that with h we represent the keyword expressing the hashtag whereas
h⃗ is the feature representation and n is the number of features. As
we discuss later on, we formulate this problem as data classification
problem by identifying training machine learning classifiers to learn
the features that separate the two classes.

Given a set of n = |S| documents S = {d1, d2, ..., dn}, written by a
set of users U = {u1, u2, ...} we extract a set of m = |T | specific
topics of interest T = {t1, t2, ..., tm}, represented by single terms.
In general, n ≫ m. For each document di in S there is a relation
a(di) = uj that denotes the author of di. For each pair of user uj and
uk in U , f (uj, uk) = 1 if uj follows uk and f (uj, uk) = 0 if not. In the
case of social networking platforms that only support bi-directional
connections, f (uj, uk) = f (uk, uj) = 1 if uj and uj are friends and
f (uj, uk) = f (uk, uj) = 0 if not.

Assuming that the topics T belong to a set of l = |C| predefined
classes C = {c1, c2, ..., cl}, we aim to extract a set of features from
the document collection S and the users collection U and train a clas-
sifier, so that it can distinguish between the classes in C with relatively
high accuracy.
In this chapter, we focus on hashtags analysis in social networks, thus
in the following Memes and Events will refer to hashtags and not in-
dividual words without the '#' attached to them.

4.7 Our Approach

We propose set of features that given a set of predefined classes (e.g.
meme, event, general, etc.) and a manually labeled training set, can
be used by a classifier with the goal of classifying the testing examples
to the classes mentioned above. Specifically, the classification task
can include the classification of hashtags, topics or keywords. In this
work, we focused on the task of hashtag classification, although our
work can be applied in the classification of each of the above men-
tioned types. Figure 4.9 illustrates the architecture of our approach.
In this section we describe our steps in detail.
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Figure 4.9: The architecture of our approach

4.7.1 Feature Set

The features that we computed and used in the classification exper-
iments are described below, along with our intuition for computing
them. We computed 15 different features, resulting in 15-dimensional
vectors representing the topics (in this case hashtags) in the set T .
Some of the features are specific to the Twitter social network (e.g.
retweets or favorites), however they can be applied on all social net-
works that support sharing or promoting content (e.g. Share or Like
in Facebook). For each hashtag ti, we take its hashtagLength in
characters into account. Communities aiming to promote a meme
or an phrase representing an advertising campaign often try to col-
lapse a whole phrase into a single word in order to save characters
for their messages. In this sense, often memes are longer than event-
representing hashtags, because people in the social network try to
embed in them as much information as possible. For example, not
many English words are as long as #WeWantOneDirectionInLondon,
which happened to appear as a trend for London sometime in March,
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2013. For each hashtag ti we computed the following features:

4.7.1.1 Document features

The following features are computed over the set of all documents that
were relevant to hashtag ti. We tried to capture the significance of rich
content accompanying tweets, e.g. links, pictures, or videos. Within
Twitter network, the hash sign ('#') has a special meaning, aiming to
facilitate search for tweets related to a specific topic, e.g. #WorldCup.
Previous work regarded all hashtag-based trends as memes, and al-
though intuitively '#' is expected to appear more frequently in meme-
related tweets than in event-reporting tweets, we aim to investigate
further whether '#' is a strong indicator of a trend, topic or tweet being
related to a network-generated meme or a real-life event. With the
above intuition we compute the following features for each hashtag:

• tokensPerTweet : The average count of distinct tokens per rele-
vant tweet

• hashTagsPerTweet : The average count of distinct hashtags per
relevant tweet

• urlsPerTweet : The average count of included hyperlinks to exter-
nal sites per relevant tweet

• mediasPerTweet : The average count of attached media objects
per relevant tweet. Media objects can be photos, videos, songs.
As of December, 2014 Twitter supports only photos and videos.

• favoritesPerTweet : The average count of favorites per relevant
tweet. Twitter offers the functionality of favoriting a tweet. This
action serves as a means to either expressing approval or book-
marking a tweet for future reference. In the Twitter language, fa-
vorite or fav is the equivalent to Like in Facebook.

• retweetsPerTweet : The average count of retweets per relevant
tweet. Twitter offers the functionality of re-posting a tweet, in order
to express agreement with it. Retweet serves as a means for
dissemination of popular content.
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4.7.1.2 Interaction features

With the social features we try to capture the importance of conver-
sations about a topic in the social network. Twitter offers the ability to
reply directly to a specific tweet or to mention other users (not neces-
sarily friends or followers) inside a tweet, by adding the '@' sign before
the name of the user to be mentioned. In our analysis the former is
represented by tweetsWithReplies, which reflects the percentage of
relevant tweets to hashtag ti that were replies to other tweets, while
the latter is represented by mentionsPerTweet, which is the avg. num-
ber of mentions to other users over all tweets relevant to hashtag ti.

4.7.1.3 Community features

Memes are expected to come from clusters of users, whereas events
are expected to interest a broader user base. These have to be de-
fined and implemented.

• statusesPerUser : The statusesPerUser feature represents the
avg. number of total posted status updates from the set of unique
users that posted a tweet relevant to hashtag ti. This features
aims to catch the historical activity of the users community that
was active with respect to the hashtag under consideration for
the period it appeared in the top-20 list.

• uniqueUsersCount : This feature captures the size of the commu-
nity that was interested in the corresponding hashtag.

• userFollowersPerUser, userFriendsPerUser, listedCountPe-
rUser : These three features capture the popularity and the social
activity of the users that appeared to be interested in the corre-
sponding hashtag. They represent the avg. number of Followers,
Following and Lists the users appeared in.

• avgVerifiedUsers: In order to have a measure of the credibility
of the users interested in each hashtag, we utilize the Verified
feature of the Twitter platform, and we compute the avg. number
of users that are verified by Twitter.
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4.8 Experiments

In this section we describe our dataset, our annotation process and
our experimental evaluation.

4.8.1 Dataset Description

We crawled Twitter using the Twitter Streaming API for two different
periods and two different bounding boxes. Specifically, we collected
tweets from the bounding box of the United Kingdom for the period
between February 16, 2014 and April 6, 2014 and tweets from the
bounding box of Germany for the period between April 1, 2014 and
October 10, 2014. The two datasets contain 27 and 6 million tweets
respectively. We split the datasets into days and computed features
for the top-20 most popular hashtags for each day. Table 4.2 has more
details about the datasets we crawled and used. Figs/memes ?? and
?? illustrate the distribution of the hashtags across the dataset. It is
apparent that most hashtags are used only once, which indicates (i)
that the users use them for annotating their content and thus facilitate
search, and (ii) that the users are not aware about which hashtags
are used by other people in the network at the moment of the cre-
ation of the content. In fact, Figure ?? shows that most hashtags
in United Kingdom appear less than 80 times in the period of study,
which spans 50 days. Figure ?? diplays the wordcloud of the top-
100 most popular hashtags in our dataset. It is apparent that even
the set with the top-100 most popular hashtags contains both Memes
(e.g. #georgesnapchatme, #100happydays, etc.) and Events (e.g.
#brits2014, #bbcqt tagging tweets about the BRIT Awards 2014 and
the 'BBC Question Time' television program respectively, etc.).
Before annotating the extracted hashtags, we performed some pre-
processing steps. Specifically:

• We lowercased all hashtags, in order to collapse to one entity
hashtags representing the same thing but written in different ways,
e.g. #WeWantJustinInIreland and #wewantjustininireland

• We filtered out location names, e.g. #London, #Dublin, #Berlin,
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Table 4.1: Occurrence Counts for very popular hashtags
hashtag Dataset Count
#nowplaying Germany 96, 261

#ger Germany 64, 430

#berlin Germany 51, 561

#nowplaying United Kingdom 43, 478

#london United Kingdom 35, 837

Table 4.2: Dataset Statistics
Description UK Germany
Unique Tweets 27,868,183 6,826,709
Tweets with at least one hashtag 4,432,052 950,739
Unique Users 721,644 237,344
Unique Hashtags 1,102,320 491,043
Hashtags appearing only once 806,160 (73.1%) 246,311 (66.6%)
Average occurrences per hashtag 6.1 7.47

#Frankfurt etc. In the case of significant events, e.g. an earth-
quake, the event would show up in other popular hashtags too.
In all other cases location hashtags are vague with respect to
whether they represent a meme or an event. Table 4.1 lists the
occurrence counts for the most popular hashtags in our datasets.
In comparison, as shown in Table 4.2, the average number of oc-
currences per hashtag was 6.1 in United Kingdom and 7.47 in Ger-
many.

• We filtered out hashtags obtained from messages posted by auto-
mated systems like Spotify, Facebook, Instagram or bot accounts,
e.g. #nowplaying, #ukweather, #trdnl, etc.

• We filtered out day and month names, e.g. #friday, #sunday,
#january etc.
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Figure 4.10: The wordcloud of top-100 most popular tags in United Kingdom

4.8.2 Annotation Process

After the initial preprocessing we asked independent people to man-
ually tag all remaining preprocessed hashtags into one of the two
classes, meme and event, while there wasn't any option not to tag
an example. The annotators were not exposed to the feature vectors
that corresponded to the hashtag examples, in order to avoid bias to-
wards any of the classes. The number of the independent annotators
was 5 for the United Kingdom dataset and 3 for the Germany dataset.
Afterwards, we used majority voting in order to specify the class of
each hashtag. In the United Kingdom dataset we ended up having
1100 tagged examples and vectors, among of which 558 where tagged
as events and 542 as memes. In the Germany dataset we ended up
having 800 tagged examples and vectors, among of which 358 where
tagged as events and 442 as memes. The agreement among the two
sets of annotators for the United Kingdom and Germany datasets is
illustrated in Tables 4.3 and 4.4 respectively.
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Figure 4.11: The wordcloud of top-100 most popular tags in Germany

0 500 1000 1500 2000 2500
0.75

0.8

0.85

0.9

0.95

1

Number of occurrences

A
cc

um
ul

at
iv

e 
pe

rc
en

ta
ge

 o
f h

as
ht

ag
s

0 10 20 30 40 50 60 70 80

0.75

0.8

0.85

0.9

0.95

1

Number of occurrences

A
cc

um
ul

at
iv

e 
pe

rc
en

ta
ge

 o
f h

as
ht

ag
s

Figure 4.12: Cumulative distribution function of unique hashtags over number of occurrences
(total and zoomed-in)

In order to quantitatively measure the annotators' agreement in the
labeling process we used the Fleiss’ kappa statistic. Fleiss’ kappa is
an extension of the well known Cohen's kappa, which is a measure of
the agreement between two raters, where agreement due to chance
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Table 4.3: Annotator Agreement for the United Kingdom dataset
Majority Meme Event
3 to 2 29.5% 44%
4 to 1 65.4% 51.6%
5 to 0 5.1% 4.4%

Table 4.4: Annotator Agreement for the Germany dataset
Majority Meme Event
2 to 1 36.5% 68.5%
3 to 0 63.5% 31.5%

is factored out. In our case, for both datasets the number of raters
was more than two, so Fleiss' extension was used. For the Germany
dataset the annotators agreed with κ = 0.301, whereas for the United
Kingdom dataset the corresponding value was κ = 0.202.

Whereas in the case of the Germany dataset the kappa value con-
stitutes for a fair agreement among the annotators, when the num-
ber of the annotators increases, as is the case with the United King-
dom dataset, kappa decreases. This can be attributed to the following
fact: Since Twitter users in United Kingdom are more active, there is
a larger diversity of the top hashtags, which makes it more difficult for
the annotators to reason on whether a hashtag represents an actual
event or a social network generated meme. On the other hand, in
Germany, the distinction of the two classes is clearer, since Twitter
users in this area tend to post updates about a more narrow variety of
topics, including mainly football- and celebrity-related tweets. Thus,
most hashtags that belong to the former category are characterized
by the annotators as events, since a real football match is held, shortly
before or shortly after the time of the posting. Hashtags that belong
to the latter category are annotated as memes, since most of the time
nothing important has happened concerning the respective celebrity.
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Discussion. In Germany most events are related to soccer. On the
other hand, most memes are about celebrity and television. Memes
thrive during the weekends. In both datasets, the most popular hash-
tags included tags obtained from automated messages for weather,
running and music playing + locations (berlin, frankfurt, london).
These hashtags were exluded from the annotation and testing pro-
cess, since they don't contain important information about significant
events or memes. Moreover, in the Germany dataset, we observed
significantly less diversity in the usage of hashtags, which can be seen
in Figure 4.13.
In our own evaluation, we computed the Jaccard similarity of the top-
20 hashtags between consecutive days for a whole month in the two
datasets and compared the resulting values. The Jaccard similarity
between two sets is computed as the quotient of the overlap and the
union of their respective vocabularies. Formally, given the set of top
hashtags thi corresponding to day i and the set of hashtags thi+1 cor-
responding to day i + 1:

Jaccard(thi, thi+1) =
|thi ∩ thi+1|
|th1 ∪ thi+1|

(4.1)

As Fig. 4.13 illustrates, the Jaccard coefficient of the top-20 hashtags
in Germany is quite hiqh when comparing the sets day over day during
a whole month, which indicates that the most frequently used hash-
tags are more or less the same every weekday with the exception of
football and Champions League days. As a result, the average Jac-
card Coefficient has a value of 0.48. In comparison, in United Kingdom,
the top hashtags change quite significantly as time goes by, resulting
to an average Jaccard Coefficient of 0.21.

4.8.3 Classifiers

We experimented with four traditional general purpose classifiers of-
fered by the Weka tool [19]. Specifically, we chose the Naive Bayes,
Random Forest, Support Vector Machines (SVM) and k-Nearest
Neighbor classifiers (k-NN) [2]. Naive Bayes assumes that the fea-
tures are conditionally independent, which is not true for all the fea-

D. Kotsakos 104



Temporal Search in Document Streams

Figure 4.13: Jaccard Coefficient of top-20 hashtags as they appeared in United Kingdom and
Germany during March, 2014 and May, 2014 respectively

tures we used [23]. However, it has been shown that it is effective in
practice without the unrealistic independence assumption. The Ran-
dom Forest classifier is effective in giving estimates of what variables
are important in the classification, thus providing a ranking of the fea-
tures in terms of importance [7]. The Support Vector Machine imple-
mentation we chose was the Sequential Minimal Optimization (SMO)
algorithm [34], which trains a support vector machine with polynomial
or RBF kernels.

The Random Forest classifier was able to reach an accuracy of 89.2%,
with an average precision and recall of 89.2%. The confusion matri-
ces of all classifiers for the United Kingdom and Germany datasets
are illustrated in Tables 4.5 and 4.6 respectively. Figure 4.14 illus-
trates how the four classifiers we used compare against each other in
terms of accuracy as a function of the size of the training set. Ran-
dom Forest classifier has been more accurate than the other classi-
fiers for all values of the size of the training set. Figures 4.15 and 4.16
illustrate the achieved accuracy values of the four classifiers when
using a 10-fold cross-validation scheme for the United Kingdom and
the Germany datasets respectively. In bot datasets, Random Forest
outperforms Naive Bayes, k-NN and SVM, reaching an accuracy of
89%.
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Table 4.5: Confusion Matrix of the four classifiers for the United Kingdom dataset (M=Meme,
E=Event)

Prediction
Naive Bayes Random Forest SVM k-NN

True M E M E M E M E
M 0.64 0.36 0.91 0.09 0.73 0.27 0.87 0.13
E 0.08 0.92 0.11 0.89 0.13 0.87 0.14 0.86

Table 4.6: Confusion Matrix of the four classifiers for the Germany dataset (M=Meme,
E=Event)

Prediction
Naive Bayes Random Forest SVM k-NN

True M E M E M E M E
M 0.77 0.23 0.90 0.10 0.79 0.21 0.85 0.15
E 0.11 0.89 0.13 0.87 0.13 0.87 0.13 0.87
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Figure 4.14: Accuracy of Naive Bayes, Random Forest, SVM and k-NN classifiers as a func-
tion of training set size
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Naive Bayes Random Forest SVM k−NN

Classifier Accuracy with 10−fold Cross Validation (UK Dataset)
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Figure 4.15: Accuracy of Naive Bayes, Random Forest, SVM and k-NN classifiers with 10-
fold cross-validation for the United Kingdom dataset

4.8.4 Feature Selection

In order to argue about which features are the most important for the
classification of hashtags we ranked them in decreasing Gain Ratio
with respect to the two classes. Table 4.7 lists the features accord-
ing to this ranking. We then repeated the classification process with
the four classifiers, starting with the first feature in Table 4.7 and incre-
mentally adding the remaining features one by one, in order to inspect
the benefits in classification accuracy. Figure 4.17 depicts the results
of this experiment. Here again, the Random Forest classifier outper-
forms all others for all feature subsets. Interestingly, when we used
only the community features, the Random Forest classifier was able to
reach an accuracy of 70.8%, while when we used only the document
features the classifier reached an accuracy of 86%.
In order to further investigate relationships between individual fea-
tures that serve as indicators and the hashtag classes we study the
Figs/memes 9-14. By looking carefully at Figure 4.21 we can identify
a tendency indicating that users who follow few others but have many
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Classifier Accuracy with 10−fold Cross Validation (Germany Dataset)
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Figure 4.16: Accuracy of Naive Bayes, Random Forest, SVM and k-NN classifiers with 10-
fold cross-validation for the Germany dataset

followers themselves, tend to mostly write about events, while Figure
4.18 shows that Events are being discussed by more unique and less
active users than Memes. On the other hand, in the same Figure,
it is apparent that the average number of the unique relevant users
to hashtags classified as Memes is not large, while these users tend
to be very active in the network, having posted far more tweets than
users writing about Events. Similar conclusions can be derived from
the second part of Figure 4.18, where users posting content about
Events tend to be included in considerably more lists than users pro-
moting or contributing to Memes.
Figs/memes 4.19 and 4.20 reveal a number of expected, yet interest-
ing observations:

• Tweets that contribute to propagation or promotion of Memes
have significantly more videos, photos or hashtags attached to
them than tweets discussing real-life Events. Memes often are
parts of campaigns or internet petitions and users try to enrich
the content they generate so it ranks higher in search results, ei-
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ther for a specific hashtag or for a relevant topic. Having more
hashtags in the tweet increases the chances of it becoming viral
or including a hashtag other users search for.

• Tweets that are relevant to Memes draw more conversations in
the social network than tweets that report a real-life Event. This is
to be expected, since, as described above, the number of unique
users who are interested in memes is relatively small and thus
communities with similar meme-oriented interests are more easily
formed. Such communities consist of people interested in celebri-
ties, jokes, etc.

• Tweets discussing Events have on average slightly more tokens.
This is normal, since these kind of tweets have a less arbitrary
structure as they often include quotes or headlines in order to re-
produce news reports, thus more words are needed to express
something news-worthy.

Interestingly enough, Figure 4.23 reveals a rather odd observation.
While tweets about breaking and significant events were expected
to contain a relatively high number of URLs linking to external sites
with the source of the information, this appears not to be true. In
the Figure, there is a clear separation of the spaces covered by
Memes-examples and Events-examples, showing that Memes are
represented by tweets with fewer tokens - as described above - and
more URLs, whereas Events-related tweets contain on average and
on aggregate much fewer URLs and more tokens.

4.9 Hashtag-Based Event Detection: A Proof of Concept
Use Case of Meme-Filtering

In order to show the utility of the proposed methodology we applied a
hashtag-based event detection approach to our data. As mentioned
in the introduction, due to the limited text length of tweets, hashtag
analysis is a common approach for micro-blogs mining. For exam-
ple, most event detection methods in social media rely on time-series
analysis of hashtags, inspecting terms that appear bursty for specific
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Table 4.7: Decreasing Gain Ratio Feature Ranking for United Kingdom and Germany
datasets

United Kingdom Germany
Feature Gain Ratio Feature Gain Ratio

tweetsPerUser 0.1617 mentionsPerTweet 0.1764
tweetsWithReplies 0.1432 tweetsPerUser 0.1566

userStatusesPerUser 0.1181 avgVerifiedUsers 0.1547
tweetsWithUrl 0.0958 tweetsWithReplies 0.1451
urlsPerTweet 0.091 hashTagsPerTweet 0.1422

tokensPerTweet 0.0822 tweetsWithUrl 0.1416
mentionsPerTweet 0.0822 urlsPerTweet 0.1416

userFriendsPerUser 0.0802 listedUsersPerUser 0.1383
mediasPerTweet 0.0778 uniqueUsersCount 0.1294

uniqueUsersCount 0.0574 mediasPerTweet 0.1244
hashtagLength 0.0572 tokensPerTweet 0.1127

hashTagsPerTweet 0.0527 userFriendsPerUser 0.0959
avgVerifiedUsers 0.0461 userFollowersPerUser 0.0883

userFollowersPerUser 0.0355 userStatusesPerUser 0.0728

D. Kotsakos 110



Temporal Search in Document Streams

Classifier Accuracy for Feature Subsets
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Figure 4.17: Accuracy of the four classifiers with different feature subsets, incrementally
adding the next feature w.r.t to Gain Ratio

0 10000 20000 30000 40000 50000 60000 70000

0
10

00
20

00
30

00
40

00
50

00
60

00
70

00

Statuses Per User

U
ni

qu
e 

U
se

rs
 C

ou
nt

Events 
Memes

0 10000 20000 30000 40000 50000 60000 70000

0
50

10
0

15
0

20
0

Statuses per User

Li
st

ed
 U

se
rs

 p
er

 U
se

r

Events 
Memes

Figure 4.18: Relationship of the unique relevant users and the lists the users belong to with
the avg. number of Twitter statuses per relevant user

time-periods or generally popular terms. The assumption is that the
bursty keywords/hashtags will be related to emerging events.

In this section, we argue that these event detection methods can lead
to mixed results, since memes are also popular and bursty. In fact,
memes appear to have a very well defined popularity period, just like
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Figure 4.21: Relationship of the avg. number of friends with avg. number of followers of
relevant users
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Figure 4.22: Relationship of avg. number of hashtags per relevant tweet with the avg. number
of tokens per relevant tweet
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Figure 4.23: Relationship of the avg. number of urls with the avg. number of tokens per
relevant tweet
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Figure 4.24: Relationship of the avg. number of unique relevant users with the avg. number
of tweets per relevant user
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events, so time-series approaches will fail distinguishing one from the
other. We applied a burstiness algorithm for event detection in order
to study the insufficiency of this type of approach. At a high level,
a time-frame is considered bursty if the term exhibits atypically high
frequencies for its duration. Bursts in terms of frequency capture the
trends in vocabulary usage during each corresponding time-frame and
can thus prove useful in event detection. When an event takes place
in real life (e.g. an earthquake, sports finals), the event's characteristic
terms (e.g. earthquake, shooting, overtime) appear more frequently in
social media. Unfortunately, memes demonstrate a similar behaviour.

4.9.1 Burstiness Results

In our experiment we split the Germany dataset in two sets, one in-
cluding months April, June, July and August which served as the
training set and one including only September which was our test-
ing set. Table 4.8 lists some bursty intervals computation examples
along with a short description for the corresponding hashtags. The
last column shows the classification result when using meme filtering
with the Random Forest classifier, trained over labeled data from the
first four months of the dataset. It is apparent that while the bursty
intervals computed by GetMax algorithm precisely match the actual
dates of excessive popularity of the corresponding hashtags, it is not
enough to reason about significant real life events that affected the
Twitter community. Hence GetMax identifies memes and events.

A closer look at Fig. 4.25 reveals an even further similarity between
the different types of popular hashtags in terms of behavior in time. On
Friday, September 19 four hashtags exhibit similarly bursty behavior,
being simultaneously and unexpectedly popular. Two of them, namely
#iPhone6 and #iphone6Plus, correspond to the event of the release
of the new iPhones, #eaia2014 is the hashtag used to annotate dis-
cussions and reports from the European Association for International
Education held in Prague, while the #ff is a viral Twitter meme with the
aim of suggesting people for other users to follow. While the reader
would argue that the distinction between an event and a meme in this
case is rather trivial, since #ff is a periodically popular hashtag, this
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Table 4.8: Bursty Intervals for popular hashtags in Germany during September, 2014
hashtag Bursty Intervals Description Meme Filtering
#ff Sep 5, 12, 19, 25 ``Follow Friday''

Twitter meme
meme

#eaie2014 Sep 16 - Sep 19 Conference held in
Prague during Sep
16 - Sep 19

event

#jaykingslandto60k Sep 11 - Sep 12 Bot account post-
ing thousands of
tweets

meme

#nominateavrillavigne Sep 11, 15 Celebrity fan cam-
paign

meme

#h96hsv Sep 14 Socce r ma tch :
Hannover 96 vs.
Hamburger SV

event

#iphone6 Sep 9, Sep 19 Announcement
and release of
iPhone 6

event

#iphone6plus Sep 9-10, 19 Announcement
and release of
iPhone 6 Plus

event

is not the case with hashtags like #nominateavrillavigne that have
similarly bursty behavior, but only not periodic.

4.10 Conclusion

In this chapter we defined the problem of distinguishing a popular topic
of interest in a social network between network-generated topics of
discussion, denoted as Memes and real-life events that triggered the
interest of the social network users, denoted as Events. We provided
a detailed study of the features that affect the classification, apply-
ing our experiments on the Twitter network using two different real-life
datasets with 27.8 and 6.8 million tweets each and 1.1 million 491,043
unique hashtags respectively. We evaluated multiple classification
methods, among of which the Random Forest classifier performed al-
ways best, having been able to reach an accuracy of 89% in its pre-
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Figure 4.25: Frequency curves of popular hashtags of various kinds as they appeared in
Germany during September, 2014

diction on whether a topic is a meme or an event. Our study reveals
interesting characteristics of the two classes of hashtags, some ex-
pected and some not. To demonstrate the utility of our approach we
enhance a hash-tag based event detection with meme-filtering and
comment on the improved results.
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Chapter 5

Monitoring in Assistive Environments

5.1 Structural Health Monitoring

5.2 Introduction

Paraphrasing and citing Wikipedia.org, a smart device is a mobile
electronic device with connection, communication and sensing capa-
bilities, that can operate to some extent autonomously. Over the last
few years, the vast majority of the launched mainstream smartphones
or tablets is equipped with a variety of sensors, including most com-
monly an accelerometer, a light sensor, a gyroscope, GPS, a proximity
sensor and a magnetometer. Furthermore, while their price has been
dropping and their popularity increasing, smart devices have several
advantages that can be exploited in order to be used in various non-
traditional time-sensitive participatory sensing platforms, performing
real-time data collection aggregation and processing. These systems
have the ability of being highly scalable and reliable, thus providing a
base for designing and implementing participatory sensing systems in
assistive environments with various applications like health, structure
or environmental monitoring.

Some of the major advantages of smart devices are listed below. Even
typical, not state-of-the-art smart devices possess high computational
power. Relevant literature contains a variety of works that propose
distributed systems, many of which are using wireless sensor net-
works (WSN) [?]. In most of the proposed settings, micro-controllers
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are attached to wireless sensors. In comparison to the devices used in
the traditional WSN applications, it is apparent that modern smart de-
vices can offer much more computational power. In the typical case,
a smartphone or a tablet is equipped with a dual-core CPU clocked at
1.7 GHz. This fact enables each smart device to apply CPU intensive
computations using the collected data. In the past, similar tasks used
to run on the domain expert's base station. Moreover, the available
storage and main memory capabilities are large enough to store com-
plex data structures and all the collected data in place, even for long
running experiment periods.

Moreover, high battery capacity and bandwidth are available, in con-
trast to WSN settings. Smart devices are always wirelessly connected
to a local area network with no per-usage charge. Furthermore, it can
be assumed that they have enough battery power to operate for one
whole working day, as they can easily be charged, before, after or
even during a real-time monitoring experiment. Typical monitoring ap-
plications that are based on WSN perform experiments that last for a
relatively short monitoring period. Using smart devices, the monitor-
ing period can be much longer, spanning time periods in the order of
hours.

However, the biggest advantage of the wide presence of smart de-
vices is that the needed infrastructure is already at hands of people
who do not use the computational power regularly. This fact presents
a chance of utilizing all this distributed computational infrastructure
with the goal of building participatory sensing systems with various
applications for enviromental support, like health or structure monitor-
ing. Smart devices, as is the case with wireless sensors, can easily
be placed at any desired location, thus building a pervasive sensing
environment. Moreover, the cost and the size of highly accurate sen-
sors is expected to continue decreasing, so it is safe to expect smart
devices to accomodate ever better and more sensors. Even if a real-
time monitoring application requires some sort of special sensors that
are not available in embedded form in smart devices, it is very easy
and cost effective to purchase such sensors and attach them to the
existing infrastructure and extend the data collection and processing
modules of the system.
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Our contributions: In this paper we are presenting a generic dis-
tributed framework, consisting only of mobile smart devices and op-
erating only in the network. We describe the data gathering mod-
ule as long as a scalable and fault-tolerant communication protocol
that performs best-effort time synchronization of the nodes and can
be used in a variety of applications that:

1. collect sensor data from a variety of distributed locations,
2. apply some computation on them and
3. aggregate the computation results in a master node, if this is

needed.
The master node can either report the results or apply further compu-
tations on the collected and aggregated data.
An example: We present a first approach in an example application
of distributed structural health monitoring (SHM). The data gathering
and structural monitoring methods that we have used are shortly de-
scribed, as well as the advantages of using our framework for non-
typical, yet important tasks. The protocol is used to apply a decentral-
ized version of the popular peak-picking SHM method. As desribed
above, our system can easily be extended and accomodate the most
sophisticated operational modal analysis techniques or used for any
participatory sensing application with the characteristics mentioned
above.

5.3 Related Work

Over the last few years, there have been a lot of research efforts de-
voted to the utilization of smart sensor technology and distributed de-
ployment with the goal of building assistive monitoring systems. In
[?] the authors present a diary system that assists the user with auto-
matically generated suggestions for activities. The system is based
on a smartphone application that uses the embedded sensing ca-
pabilities of the smart device to detect and infer the user's context.
The proposed diary offers several benefits over the traditional way
of note keeping, while enabling people with special needs to perform
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non-trivial tasks. In another recent work, Lapointe et al. propose a
prompting software for smart home systems to enable people with
Altzheimer's disease to remain safely in their home [?]. Smart homes
can be equipped with fixed smart sensors, but in the absense of the
latter, mobile smart devices can effectively substitute them.
In the relevant literature, there have been many WSN protocols and
ad-hoc WSNs for the purpose of structural health monitoring. A rep-
resentative work in the field is the work of Kim et al. [?], where the
authors present a WSN application of SHM tested on the Golden Gate
Bridge. Studies comparing MICA motes with reference accelerome-
ters for purposes of building risk monitoring have shown that the build-
ing risk monitoring task using smart sensors is feasible, so the quality
of a future SHM system with smart devices, would depend only on the
performance of the embedded accelerometers [?].

5.4 Communication Protocol

In this section we describe a generic, scalable, fault-tolerant commu-
nication protocol, that performs best-effort time synchronization of the
nodes and can be used in non-traditional time-sensitive participatory
sensing systems that perform real-time data collection, aggregation
and processing. Our framework employs essentially a peer-to-peer
architecture, where no base station is needed to collect, process and
analyze the gathered data. In a brief outline, we employ a 2-tier hi-
erarchical structure, where one node is dynamically selected as the
master node of the system and is responsible for collecting and ag-
gregating the results computed by its peers. Important to note is that
the role of master node is just an attribute that can be held by all nodes
of the system, meaning that there are no special hardware or soft-
ware requirements for the master node. More specifically, all nodes
hold the same information in order to recover in case of failure of the
master. In the following we describe our scalable and fault tolerant
message-driven protocol which provides a mechanism for best-effort
time synchronization of the nodes and decentralized application of any
data collection and aggeregation algorithm.
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When a node k wants to join the system, it multicasts a JOIN mes-
sage to the first 254 local IP addresses, in order to identify the current
master of the network. The node c that currently serves as the master
responds to let node k join the network and stores its IP address. If
node k does not receive a response from node c within a configured
period of Tc seconds, it can safely assume that there is no current
master node in the system, thus node k is the first one to join. Con-
sequently, node k becomes the current master node of the system.

In order to perform best-effort time synchronization of the nodes, our
framework implements a method similar to the synchronization tech-
nique proposed by Katsikogiannis et al. in [?]. Either automatically
(every Tsync seconds) or manually (with user's input), the master node
c sends a SYNC(tc) message to all its peers, where tc represents the
timestamp of the master's clock at the time when the SYNC message
was sent. Once node k receives the SYNC(tc) message at time tk ac-
cording to its clock, it computes the difference ∆ck = tk− tc and stores
the result. There is an inevitable time syncronization error ∆te, due
to network and software latencies. This ∆te can be minimized if the
above procedure is repeated until the computed difference converges
and does not change significantly.

When the initialization procedure finishes, new node k and master
node c exchange information describing the state of all peers in the
network. The state of each peer currently includes its IP address,
but in the future can be extended to accomodate other useful data
required by any specific monitoring application.

Periodically, every Tp seconds, all nodes broadcast a heartbeat mes-
sage in the network in order to state that they are still running and
contributing to the monitoring experiment. If a node k does not get
a heartbeat from node j for some period of Tfail seconds, node j is
considered fallen. If the current master node c is detected as fallen,
the node with the lowest local IP address becomes the new master.
As a result, no further communication is needed for the new master
node to be elected.

At some time, either automatically or manually, the master node c,
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Figure 5.1: Sequence diagram of the proposed generic framework

sends an on-demand SEND-RESULTS(ts,te,p) message to its peers
in order to collect the results that correspond to the time period be-
tween ts and te. By p we denote any desired parameters the spe-
cific distributed algorithms would require. When a node k receives a
SEND-RESULTS(ts,te,p) message, without stopping the procedure of
gathering data, it applies the desired algorithm on the collected time-
series in period (ts, te) and reports the computed results. The proce-
dure described above is depicted in Figure 5.1.

Another common requirement of distributed real-time monitoring ap-
plications is that sensors need to acquire data at an appropriate sam-
pling rate for a sufficient period of time at various locations. Variance
among the sampling rates of different smart devices in the network
can be addressed either with downsampling, by ignoring sensor data
according to the peer with the lowest sampling rate or with upsampling
by polynomial interpolation.

5.5 An example: Structural Health Monitoring

All structures, including civil and mobile ones, are characterized
by their modal frequencies, that represent the steady state micro-
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vibrations on the surface of structures. One popular method for per-
forming vibration analysis and testing is measuring the Frequency Re-
sponse Function (FRF) of the structure [?]. FRF, which is used in
vibration analysis and modal testing, is a complex transfer function,
with real and imaginary components, expressed in the frequency do-
main. Conceptually, it expresses the structural response to an applied
force as a function of frequency, where response can represent the
displacement, the velocity or the acceleration at a specific point of the
monitored structure.
Measuring natural frequencies and mode shapes leads to the iden-
tification of possible changes in the frequency response function of
the structure due to several reasons, including damage caused by an
earthquake or by massive flooding of the area around the building or
even within the building itself [?].
Here, we are proposing a novel SHM deployment, where we are using
accelerometer-equipped mobile smart devices instead of costly refer-
ence accelerometers. SHM of civil structures is usually performed by
employing an output-only approach that is esentially limited to only
sense, store and analyze micro-vibrations of structures. By placing
the smart devices in various locations within the building and extend-
ing the framework described in Section 5.1, we are able to collect and
analyze micro-vibrations in a distributed manner.
In a realistic SHM scenario, a domain experts team would place dis-
joint sets of monitoring smart devices on different floors of the moni-
tored building, as global modal frequencies may vary among different
floors, especially in very high buildings. Our framework accounts for
this need, by letting the user manually configure her device according
to the floor she resides on, thus grouping nodes by floor. Each floor
has a unique master node that computes the floor's modal frequen-
cies. An outline is depicted in Figure 5.2.
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Figure 5.2: An example deployment of sensing smart devices accross 3 floors of a civil struc-
ture. Nodei,j is the j − th node on the i − th floor. Nodei,m is the master node on the i − th
floor.
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Chapter 6

Conclusions

This dissertation addresses research problems in searching tempo-
ral document collections. We have proposed different approaches to
solving the addressed research questions. In summary, the contribu-
tions of this thesis are:

• We exploited term burstiness in order to detect events in social
media document streams.

• We proposed a state of the art technique for for determining the
creation time of non-timestamped documents. The proposed ap-
proach outperforms the methods of the relevant literature. We
improved the quality of document dating by incorporating term
burstiness information and textual similarity methods into the al-
gorithm. By conducting extensive experiments, we showed the
evaluation of our proposed approach and the improvement over
the baseline.

• We formally defined the difference between memes and events
in social media and thoroughly examined the differences between
the two different types of popular content along various descriptive
characteristics, proposing a set of features to aid the classification
of various types of content. We showed the usefulness of our
method via a burstiness-based event detection approach.
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